Skip to main content

Borehole Breakout Method

  • Chapter
Rock Stress and Its Measurement

Abstract

Spalling of the walls of boreholes or wellbores due to stress concentration produces elongated intervals with non-circular crosssections whose long axes share common average direction. Such intervals are defined as breakouts or breakout zones when the shorter diameter of the borehole corresponds to, or is close to, the diameter of the drillbit. The orientation of the major and minor horizontal in situ stresses around a vertical borehole can be inferred from the orientation of breakouts as it is usually assumed that breakouts occur in two diametrically opposed zones along the direction of the minimum horizontal in situ stress (Fig. 8.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexandrowski, P., Inderhaug, O.H. and Knapstad, B. (1992) Tectonic structures and wellbore breakout orientation, in Proc. 33rd US Symp. Rock Mech., Santa Fe, Balkema, Rotterdam, pp. 29–37.

    Google Scholar 

  • Apel, R., Zoback, M.D. and Fuchs, K. (1993) Drilling-induced tensile fractures in the KTB pilot hole: supplementary information in Zoback et al. (1993). Unpublished paper.

    Google Scholar 

  • Ask, M.V.S. (1996) In-situ stress determination from borehole breakouts in Denmark, unpublished Licentiate Thesis, Royal Institute of Technology, Division of Engineering Geology, Dept. of Civil and Environmental Eng., Stockholm, Sweden.

    Google Scholar 

  • Ask, M.V.S., Müller, B. and Stephansson, O. (1996) In situ stress determination from breakout analysis in the Tornquist Fan, Denmark. Terra Nova (in press).

    Google Scholar 

  • Babcock, E.A. (1978) Measurement of subsurface fractures from dipmeter logs. Am. Assoc. Petrol. Geol. Bull, 62, 1111–1126.

    Google Scholar 

  • Barton, C.B. et al. (1991) Interactive image analysis of borehole televiewer data, in Automated Pattern Recognition in Exploration Geophysics, Springer-Verlag, New York, pp. 217–242.

    Google Scholar 

  • Baumgärtner, J. et al. (1993) Analysis of deep hydraulic fracturing stress measurements in the KTB (FRG) and Cajon Pass (USA) scientific drilling projects — a summary, in Proc. 7th Cong. Int. Soc. Rock Mech. (ISRM), Aachen, Balkema, Rotterdam, Vol. 3, pp. 1685–1690.

    Google Scholar 

  • Bell, J.S. and Gough, D.I. (1979) Northeast-southwest compressive stress in Alberta: evidence from oil wells. Earth Planet. Sci. Lett., 45, 475–482.

    Article  Google Scholar 

  • Blümling, P. (1986) In-situ Spannungsmessung in Tiefborungen mit Hilfe von Bohrlochrandaus-bruchen und die Spannungsverteilung in der Kruste Mitteleuropas und Australiens, unpublished Dissertation, University of Karlsruhe, Karlsruhe.

    Google Scholar 

  • Brereton, R. and Müller, B. (1991) European stress: contributions from borehole breakouts. Phil. Trans. Roy. Soc. London, 337, 165–179.

    Article  Google Scholar 

  • Brudy, M. et al. (1995) Application of the integrated stress measurement strategy to the 9 km depth in the KTB boreholes, in Proc. Workshop on Rock Stresses in the North Sea, Trondheim, Norway, NTH and SINTEF Publ., Trondheim, pp. 154–164.

    Google Scholar 

  • Cowgill, S.M. et al. (1993) Crustal stresses in the North Sea from breakouts and other borehole data, in Proc. 34th US Symp. Rock Mech., Madison, Int. J. Rock Mech. Min. Sci. & Geomech Abstr., 30, 113–116.

    Google Scholar 

  • Cox, J.W. (1970) The high resolution dipmeter reveals dip-related borehole and formation characteristics, in Proc. 11th Annual Logging Symp., Society of Professional Well Log Analysis, 25 pp.

    Google Scholar 

  • Dart, R.L. and Zoback, M.L. (1987) Well-bore breakout-stress analysis within the continental United States, in Proc. 2nd Int. Symp. on Borehole Geophysics for Minerals, Geotechnical, and Groundwater Applications, Golden, Soc. of Prof. Well Log Analysts Publ., pp. 1–11.

    Google Scholar 

  • Ewy, R.T. and Cook, N.G.W. (1990) Deformation and fracture around cylindrical openings in rock-I. Observations and analysis of deformation, II. Initiation, growth and interaction of fractures. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 27, I. 387–407, II. 409-427.

    Article  Google Scholar 

  • Freudenthal, A.M. (1977) Stresses around spherical and cylindrical cavities in shear dilatant elastic media, in Proc. 18th US Symp. Rock Mech., Keystone, Johnson Publishing Co., 4B1–1–4B1–6.

    Google Scholar 

  • Gough, D.I. and Bell, J.S. (1982) Stress orientation from borehole wall fractures with examples from Colorado, East Texas, and northern Canada. Can. J. Earth Sci., 19, 1358–1370.

    Article  Google Scholar 

  • Guenot, A. (1989) Borehole breakouts and stress fields. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 26, 185–195.

    Google Scholar 

  • Haimson, B.C. and Edl, J.N. (1972) Hydraulic fracturing of deep wells. SPE Paper No. SPE 4061.

    Google Scholar 

  • Haimson, B.C. and Herrick, C.G. (1985) In-situ stress evaluation from borehole breakouts: experimental studies, in Proc. 26th US Symp. Rock Mech., Rapid City, Balkema, Rotterdam, 1207–1218.

    Google Scholar 

  • Haimson, B.C. and Herrick, C.G. (1986) Borehole breakouts — a new tool for estimating in situ stress?, in Proc. Int. Symp. on Rock Stress and Rock Stress Measurements, Stockholm, Centek Publ., LuleÃ¥, pp. 271–280.

    Google Scholar 

  • Haimson, B.C. and Lee, M.Y. (1995) Estimating in situ stress conditions from borehole breakouts and core disking — experimental results in granite, in Proc. Int. Workshop on Rock Stress Measurement at Great Depth, Tokyo, Japan, 8th ISRM Congress, pp. 19–24.

    Google Scholar 

  • Hickman, S.H., Healy, J.H. and Zoback, M.D. (1985) In-situ stress, natural fracture distribution, and borehole elongation in the Auburn geothermal well. J. Geophys. Res., 90, 5497–5512.

    Article  Google Scholar 

  • Jaeger, J.C. and Cook, N.G.W. (1976) Fundamentals of Rock Mechanics, 2nd edn, Chapman & Hall, London.

    Google Scholar 

  • Koslovsky, Y.A. (ed.) (1987) The Super Deep Well of the Kola Peninsula, Springer-Verlag, New York.

    Google Scholar 

  • Kramer, A. et al. (1994) Borehole televiewer data analysis from the New Hebrides Island Arc: the state of stress at Holes 829A and 831B, in Proc. Ocean Drill. Proj., Science Results, Ocean Drilling Program, College Station, Texas.

    Google Scholar 

  • Kutter, H.K. (1991) Influence of drilling method on borehole breakouts and core disking, in Proc. 7th Gong. Int. Soc. Rock Mech. (ISRM), Aachen, Balkema, Rotterdam, Vol. 3, pp. 1659–1664.

    Google Scholar 

  • Lee, M.Y. and Haimson, B.C. (1993) Borehole breakouts in Lac du Bonnet granite: a case of extensile failure mechanism. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 30, 1039–1045.

    Article  Google Scholar 

  • Leeman, E.R. (1964) The measurement of stress in rock — Part I. J. S. Afr. Inst. Min. Metall., 65, 45–114.

    Google Scholar 

  • Maloney, S. and Kaiser, P.K. (1989) Results of borehole breakout simulation tests, in Proc. Int. Symp. on Rock at Great Depth, Pau, Balkema, Rotterdam, pp. 745–751.

    Google Scholar 

  • Mardia, K.V. (1972) Statistics of Directional Data, Academic Press, London.

    Google Scholar 

  • Martin, C.D. (1995) Brittle rock strength and failure: laboratory and in situ, in Proc. 8th. Cong. Int. Soc. Rock Mech. (ISRM), Tokyo, Balkema, Rotterdam, Vol. 3 (in press).

    Google Scholar 

  • Martin, C.D., Martino, J.B. and Dzik, E.J. (1994) Comparison of borehole breakouts from laboratory and field tests, in Proc. Eurock’ 94: Int. Symp. on Rock Mech. in Petrol. Eng., Delft, Balkema, Rotterdam, 183–190.

    Google Scholar 

  • Mastin, L.G. (1984) Development of borehole breakouts in sandstone, unpublished MSc Thesis, Stanford University, Palo Alto.

    Google Scholar 

  • Moos, D. and Zoback, M.D. (1990) Utilization of observations of wellbore failure to constrain the orientation and magnitude of crustal stresses: application to continental, Deep Sea Drilling Project and Ocean Drilling Program boreholes. J. Geophys. Res., 95, 9305–9325.

    Article  Google Scholar 

  • Müller, B. et al. (1992) Regional patterns of tectonic stress in Europe. J. Geophys. Res., 97, 11783–11803.

    Article  Google Scholar 

  • Onaisi, A., Sarda, J.P. and Bouteca, M. (1990) Experimental and theoretical investigation of borehole breakouts, in Proc. 31st US Symp. Rock Mech., Golden, Balkema, Rotterdam, pp. 703–710.

    Google Scholar 

  • Paillet, F.L. and Kim, K. (1987) Character and distribution of borehole breakouts and their relationship to in situ stresses in deep Columbia river basalts. J. Geophys. Res., 92, 6223–6234.

    Article  Google Scholar 

  • Plumb, R.A. and Hickman, S.H. (1985) Stressinduced borehole elongation: a comparison between the four-arm dipmeter and the borehole televiewer in the Auburn geothermal well. J. Geophys. Res., 90, 5513–5521.

    Article  Google Scholar 

  • Rutqvist, J. et al. (1990) Simulation of borehole breakouts with a damage material model, in Proc. Int. Symp. Rock at Great Depth, Pau, Balkema, Rotterdam, Vol. 3, pp. 1439–1445.

    Google Scholar 

  • Santarelli, F.J. and Brown, E.T. (1989) Failure of three sedimentary rocks in triaxial and hollow cylinder compression tests. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 26, 401–413.

    Article  Google Scholar 

  • Santarelli, F.J., Brown, E.T. and Maury, V (1986) Analysis of borehole stresses using pressure dependent, linear elasticity. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 23, 445–449.

    Article  Google Scholar 

  • Shamir, G. and Zoback, M.D. (1992) Stress orientation profile to 3.5 km depth near the San Andreas fault at Cajon Pass, California. J. Geophys. Res., 97, 5059–5080.

    Article  Google Scholar 

  • Singh, U.K. and Digby, P.J. (1989a) A continuum damage model for simulation of the progressive failure of brittle rocks. Int. J. Solids Structures, 25, 647–663.

    Article  Google Scholar 

  • Singh, U.K. and Digby, P.J. (1989b) The application of a continuum damage model in the finite element simulation of the progressive failure and localization of deformation in brittle rock structures. Int. J. Solids Structures, 25, 1023–1038.

    Article  Google Scholar 

  • Stephansson, O., Savilahti, T. and Bjarnason, B. (1989) Rock mechanics of the deep borehole at Gravberg, Sweden, in Proc. Int. Symp. Rock at Great Depth, Pau, Balkema, Rotterdam, Vol. 2, pp. 863–870.

    Google Scholar 

  • Te Kamp, L., Rummel, F. and Zoback, M.D. (1995) Hydrofrac stress profile to 9 km at the German KTB site, in Proc. Workshop on Rock Stresses in the North Sea, Trondheim, Norway, NTH and SINTEF Publ., Trondheim, pp. 147–15

    Google Scholar 

  • Vernik, L. and Zoback, M.D. (1992) Estimation of maximum horizontal principal stress magnitude from stress-induced well bore breakouts in the Cajon Pass scientific research borehole. J. Geophys. Res., 97, 5109–5119.

    Article  Google Scholar 

  • Wiebols, G.A. and Cook, N.G.W. (1968) An energy criterion for the strength of rock in polyaxial compression. Int. J. Rock Mech. Min. Sci., 5, 529–549.

    Article  Google Scholar 

  • Zemanek, J. et al. (1970) Formation evaluation by inspection with the borehole televiewer. Geophysics, 35, 254–269.

    Article  Google Scholar 

  • Zheng, Z., Kemeny, J. and Cook, N.G.W. (1989) Analysis of borehole breakouts. J. Geophys. Res., 94, 7171–7182.

    Article  Google Scholar 

  • Zoback, M.D. et al. (1985) Well bore breakouts and in-situ stress. J. Geophys. Res., 90, 5523–5530.

    Article  Google Scholar 

  • Zoback, M.D. et al. (1993) Upper-crustal strength inferred from stress measurements to 6 km depth in the KTB borehole. Nature, 365, 633–635.

    Article  Google Scholar 

  • Zoback, M.L. (1992) First-and second-order patterns of stress in the lithosphere: The World Stress Map Project. J. Geophys. Res., 97, 11703–11728.

    Article  Google Scholar 

  • Zoback, M.L. et al. (1989) Global pattern of tectonic stress. Nature, 341, 291–298.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Amadei, B., Stephansson, O. (1997). Borehole Breakout Method. In: Rock Stress and Its Measurement. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5346-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5346-1_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6247-3

  • Online ISBN: 978-94-011-5346-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics