Skip to main content

Estimating in situ Stresses

  • Chapter
Book cover Rock Stress and Its Measurement

Abstract

Before measuring virgin stresses with some of the methods discussed in the following chapters, an attempt should be made to obtain an estimate of the in situ stress field. This can be done, for instance, from stress versus depth relationships or observations obtained from stress measurements made in the past in the region of interest or by extrapolation from regions with similar geological and tectonic settings. Information can also be derived from the topography, the geology, the rock fabric, the rock loading history, the first motion analysis of earthquakes, the occurrence of stress release phenomena (squeezing, pop-ups, buckling, etc.), breakouts in boreholes, tunnels and shafts, rock bursts, and the presence of stratification, heterogeneities or geological structures (faults, folds, shear zones, uncomformities, volcanic vents and dikes). Estimating in situ stresses can be useful in the early stage of engineering design, for the planning process and when selecting stress measuring methods and the location of those measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J. and Bell, J.S. (1991) Crustal stresses in Canada, in The Geology of North America, Decade Map Vol. 1, Neotectonics of North America, Geological Society of America, Boulder, Colorado, pp. 367–386.

    Google Scholar 

  • Ahola, M.P. (1990) Geomechanical evaluation of escarpments subjected to mining induced subsidence, in Proc. 31st US Symp. Rock. Mech., Golden, Balkema, Rotterdam, pp. 129–136.

    Google Scholar 

  • Akhpatelov, D.M. and Ter-Martirosyan, Z.G. (1971) The stressed state of ponderable semi-infinite domains. Armenian Acad. Sci. Mech. Bull, 24, 33–40.

    Google Scholar 

  • Aleksandrowski, P., Inderhaug, O.H. and Knapstad, B. (1992) Tectonic structures and wellbore breakout orientation, in Proc. 33rd US Symp. Rock Mech., Santa Fe, Balkema, Rotterdam, pp. 29–37.

    Google Scholar 

  • Allen, M.D., Chan, S.S.M. and Beus, M.J. (1978) Correlation of in-situ stress measurement and geologic mapping in the Lucky Friday Mine, Mullan, Idaho, in Proc. 16th Annual Symp. of Eng. Geol. and Soils Eng., Idaho Transportation Dept. of Highways, pp. 1–22.

    Google Scholar 

  • Amadei, B. (1983) Rock Anisotropy and the Theory of Stress Measurements, Lecture Notes in Engineering, Springer-Verlag.

    Google Scholar 

  • Amadei, B. and Pan, E. (1992) Gravitational stresses in anisotropic rock masses with inclined strata. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 29, 225–236.

    Google Scholar 

  • Amadei, B. and Savage, W.Z. (1985) Gravitational stresses in regularly jointed rock masses. A keynote lecture, in Proc. Int. Symp. on Fundamentals of Rock Joints, Bjorkliden, Centek Publ., Luleå, 463–473.

    Google Scholar 

  • Amadei, B. and Savage, W.Z. (1989) Anisotropic nature of jointed rock mass strength. ASCE J. Eng. Mech., 115, 525–542.

    Article  Google Scholar 

  • Amadei, B. and Savage, W.Z. (1993) Effect of joints on rock mass strength and deformability, in Comprehensive Rock Engineering (ed. J.A. Hudson), Pergamon Press, Oxford, Chapter 14, Vol. 3, pp. 331–365.

    Google Scholar 

  • Amadei, B., Savage, W.Z. and Swolfs, H.S. (1987) Gravitational stresses in anisotropic rock masses. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 24, 5–14.

    Article  Google Scholar 

  • Amadei, B., Savage, W.Z. and Swolfs, H.S. (1988) Gravity-induced stresses in stratified rock masses. Rock Mech. Rock Eng., 21, 1–20.

    Article  Google Scholar 

  • Anderson, E.M. (1951) The Dynamics of Faulting and Dyke Formation with Applications to Britain, Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Angelier, J. (1979) Determination of the mean principal directions of stresses for a given fault population. Tectonophysics, 56, T17–26.

    Article  Google Scholar 

  • Angelier, J. (1984) Tectonic analysis of fault slip data sets. J. Geophys. Res., 89, 5835–5848.

    Article  Google Scholar 

  • Angelier, J. (1989) From orientation to magnitudes in paleostress determinations using fault slip data. J. Struct. Geol., 11, 37–50.

    Article  Google Scholar 

  • Angelier, J., et al. (1982) Inversion of field data in fault tectonics to obtain the regional stress — I. Single phase fault populations: a new method of computing the stress tensor. Geophys. J. Roy. Astron. Soc., 69, 607–621.

    Article  Google Scholar 

  • Arjang, B. (1989) Pre-mining stresses at some hard rock mines in the Canadian shield, in Proc. 30th US Symp. Rock Mech., Morgantown, Balkema, Rotterdam, pp. 545–551.

    Google Scholar 

  • Arthaud, F. and Mattauer, M. (1969) Exemples de stylolites d’origine tectonique dans le Languedoc. Bull Soc. Geol France, 11, 738–744.

    Google Scholar 

  • Artyushkov, E.V. (1971) Rheological properties of the crust and upper mantle according to data on isostatic movements. J. Geophys. Res., 76, 1376–1390.

    Article  Google Scholar 

  • Asmis, H.W. and Lee, C.F. (1980) Mechanistic modes of stress accumulation and relief in Ontario rocks, in Proc. 13th Can. Symp. Rock Mech., Toronto, Canadian Institute of Mining and Metallurgy, CIM Special Vol. 22, pp. 51–55.

    Google Scholar 

  • Aydan, Ö. (1995) The stress state of the Earth and the Earth’s crust due to the gavitational pull, in Proc. 35th US Symp. Rock Mech., Lake Tahoe, Balkema, Rotterdam, pp. 237–243.

    Google Scholar 

  • Aytmatov, I.T. (1986) On virgin stress state of a rock mass in mobile folded areas, in Proc. Int. Symp. on Rock Stress and Rock Stress Measurements, Stockholm, Centek Publ., Luleå, pp. 55–59.

    Google Scholar 

  • Babcock, C.O. (1974a) A new method of analysis to obtain exact solutions for stresses and strains in circular inclusions. US Bureau of Mines Report of Investigation RI 7967.

    Google Scholar 

  • Babcock, C.O. (1974b) A geometric method for the prediction of stresses in inclusions, orebodies, and mining systems. US Bureau of Mines Report of Investigation RI 7838.

    Google Scholar 

  • Bandis, S.C., Lumsden, A.C. and Barton, N. (1983) Fundamentals of rock joint deformation. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 20, 249–268.

    Article  Google Scholar 

  • Barton, N. (1976) The shear strength of rock and rock joints. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 13, 255–279.

    Article  Google Scholar 

  • Batchelor, A.S. and Pine, R.J. (1986) The results of in-situ stress determinations by seven methods to depths of 2500 m in the Carnmenellis granite, in Proc. Int. Symp. on Rock Stress and Rock Stress Measurements, Stockholm, Centek Publ., Luleå, pp. 467–478.

    Google Scholar 

  • Bauer, S.J., Holland, J.F. and Parrish, D.K. (1985) Implications about in-situ stress at Yucca Mountain, in Proc. 26th US Symp. Rock Mech., Rapid City, Balkema, Rotterdam, pp. 1113–1120.

    Google Scholar 

  • Baumgärtner, J. et al. (1993) Deep hydraulic fracturing stress measurements in the KTB (Germany) and Cajon Pass (USA) scientific drilling projects — a summary, in Proc. 7th Cong. Int. Soc. Rock Mech. (ISRM), Aachen, Balkema, Rotterdam, Vol. 3, pp. 1685–1690.

    Google Scholar 

  • Bielenstein, H.U. and Barron, K. (1971) In-situ stresses. A summary of presentations and discussions given in Theme I at the Conference of Structural Geology to Rock Mechanics Problems. Dept. of Energy, Mines and Resources, Mines Branch, Ottawa, Internal Report MR71.

    Google Scholar 

  • Blackwood, R.L. (1979) An inference of crustal rheology from stress observations, in Proc. 4th Cong. Int. Soc. Rock Mech. (ISRM), Montreux, Balkema, Rotterdam, Vol. 1, pp. 37–44.

    Google Scholar 

  • Bock, H. (1979) Experimental determination of the residual stress field in a basaltic column, in Proc. 4th Cong. Int. Soc. Rock Mech. (ISRM), Montreux, Balkema, Rotterdam, Vol. 1, pp. 45–49.

    Google Scholar 

  • Brace, W.F. and Kohlstedt, D.L. (1980) Limits on lithospheric stress imposed by laboratory experiments. J. Geophys. Res., 85, 6248–6252.

    Article  Google Scholar 

  • Brady, B.H.G., Lemos, J.V. and Cundall, P.A. (1986) Stress measurement schemes for jointed and fractured rock, in Proc. Int. Symp. on Rock Stress and Rock Stress Measurements, Stockholm, Centek Publ., Luleå, pp. 167–176.

    Google Scholar 

  • Brekke, T. and Selmer-Olsen, R. (1966) A survey of the main factors influencing the stability of underground constructions in Norway, in Proc. 1st Cong. Int. Soc. Rock Mech. (ISRM), Lisbon, Lab. Nac. de Eng. Civil, Lisbon, Vol. II, 257–260.

    Google Scholar 

  • Broch, E. (1984) Development of unlined pressure shafts and tunnels in Norway. Underground Space, 8, 177–184.

    Google Scholar 

  • Broch, E. and Sorheim, S. (1984) Experiences from the planning, construction and supporting of a road tunnel subjected to heavy rockbursting. Rock Mech. Rock Eng., 17, 15–35.

    Article  Google Scholar 

  • Brooker, E.W. (1964) The influence of stress history on certain properties of remolded cohesive soils, unpublished PhD Thesis, Univ. of Illinois, 218 pp.

    Google Scholar 

  • Brown, E.T. and Hoek, E. (1978) Trends in relationships between measured in situ stresses and depth. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 15, 211–215.

    Article  Google Scholar 

  • Brown, E.T. and Windsor, C.R. (1990) Near surface in-situ stresses in Australia and their influence on underground construction, in Proc. Tunnelling Conf., Sydney, The Institution of Engineers, Australia, pp. 18–48.

    Google Scholar 

  • Brown, S.M., Leijon, B.A. and Hustrulid, W.A. (1986) Stress distribution within an artificially loaded, jointed block, in Proc. Int. Symp. on Rock Stress and Rock Stress Measurements, Stockholm, Centek Publ., Luleå, pp. 429–439.

    Google Scholar 

  • Brückl, E. and Scheidegger, A.E. (1974) In situ stress measurements in the copper mine at Mitterberg, Austria, Rock Mechanics, 6, 129–139.

    Article  Google Scholar 

  • Brudy, M. et al. (1995) Application of the integrated stress measurements strategy to 9 km depth in the KTB boreholes, in Proc. Workshop on Rock Stresses in the North Sea, Trondheim, Norway, NTH and SINTEF Publ., Trondheim, pp. 154–164.

    Google Scholar 

  • Buchner, F. (1981) Rhinegraben: horizontal stylolites indicating stress regimes of earlier stages of rifting. Tectonophysics, 73, 113–118.

    Article  Google Scholar 

  • Bulin, N.K. (1971) The present stress field in the upper parts of the crust. Geotectonics (Engl. Transi.), 3, 133–139.

    Google Scholar 

  • Bunnell, M.D. and Ko, K.C. (1986) In situ stress measurements and geologic structures in an underground coal mine in the Northern Wasatch Plateau, Utah, in Proc. 27th US Symp. Rock Mech., Tuscaloosa, SME/AIME, pp. 333–337.

    Google Scholar 

  • Burlet, D. and Cornet, F.H. (1993) Stress measurements at great depth by hydraulic tests in boreholes, in Proc. 7th Cong. Int. Soc. Rock Mech. (ISRM), Aachen, Balkema, Rotterdam, Vol. 3, pp. 1691–1697.

    Google Scholar 

  • Burlet, D. and Ouvry, J.F. (1989) In situ stress inhomogeneity in deep sedimentary formations relative to material heterogeneity, in Proc. Int. Symp. on Rock at Great Depth, Pau, Balkema, Rotterdam, Vol. 2, 1065–1071.

    Google Scholar 

  • Byerlee, J. (1978) Friction of rocks. Pure Appl. Geophys., 116, 615–626.

    Article  Google Scholar 

  • Carey, E. and Brunier, B. (1974) Analyse théorique et numérique d’un modele mécanique élémentaire appliqué à l’étude d’une population de failles. CR Hebd. Seanc. Acad. Sci. Paris, D, 279, 891–894.

    Google Scholar 

  • Carlsson, A. and Olsson, T. (1982) Rock bursting phenomena in a superficial rock mass in southern Central Sweden. Rock Mech., 15, 99–110.

    Article  Google Scholar 

  • Chaplow, R. and Eldred, C.D. (1984) Geotechnical investigations for the design of an extension to the Kariba South underground power station, Zimbabwe, in Proc. ISRM Symp. on Design and Performance of Underground Excavations, Cambridge, British Geotechnical Society, London, pp. 213–219.

    Google Scholar 

  • Chappell, J. (1973) Stress field associated with a dense fault pattern in New Guinea. J. Geol., 81, 705–716.

    Article  Google Scholar 

  • Chiu, C.H. and Gao, H. (1993) Stress singularities along a cycloid rough surface. Int. J. Solids and Structures, 30, 2983–3012.

    Article  Google Scholar 

  • Clark, B.R. and Newman, D.B. (1977) Modeling of non-tectonic factors in near-surface in-situ stress measurements, in Proc. 18th US Symp. Rock Mech., Golden, Johnson Publ., 4C3–1–4C3–6.

    Google Scholar 

  • Coates, D.F. (1964) Some cases of residual stress effects in engineering work, in Int. Conf on State of Stress in the Earth’s Crust, Santa Monica, Elsevier, New York, pp. 679–688.

    Google Scholar 

  • Cooling, C.M., Hudson, J.A. and Tunbridge, L.W. (1988) In-situ rock stresses and their measurements in the UK — Part II. Site experiments and stress field interpretation. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 25, 371–382.

    Article  Google Scholar 

  • Cornet, F.H. (1993) Stresses in rocks and rock masses, in Comprehensive Rock Engineering (ed. J.A. Hudson), Pergamon Press, Oxford, Chapter 17, Vol. 3, pp. 297–324.

    Google Scholar 

  • Coutinho, A. (1949) A theory of an experimental method for determining stresses not requiring an accurate knowledge of the elastic modulus. Int. Ass. Bridge and Structural Eng. Cong., 83(9), Paris.

    Google Scholar 

  • Cuisiat, F.D. and Haimson, B.C. (1992) Scale effects in rock mass stress measurements. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 29, 99–117.

    Article  Google Scholar 

  • Cundall, P.A. and Strack, O.D.L. (1979) A discrete numerical model for granular assemblies. Geotechnique, 29, 47–75.

    Article  Google Scholar 

  • Denkhaus, H. (1966) General report of Theme IV, in Proc. 1st Cong. Int. Soc. Rock Mech. (ISRM), Lisbon, Lab. Nac. de Eng. Civil, Lisbon, Vol. III, pp. 312–319.

    Google Scholar 

  • Dey, T.N. and Brown, D.W. (1986) Stress measurements in a deep granitic rock mass using hydraulic fracturing and differential strain curve analysis, in Proc. Int. Symp. on Rock Stress and Rock Stress Measurements, Stockholm, Centek Publ., Luleå, pp. 351–357.

    Google Scholar 

  • Doe, T. et al. (1981) Hydraulic fracturing and overcoring stress measurements in a deep borehole at the Stripa test mine, Sweden, in Proc. 22nd US Symp. Rock Mech., MIT Publ., Cambridge, pp. 403–408.

    Google Scholar 

  • Dolezalova, M. (1974) Geostatic stress state in crossanisotropic soil deposits, in Proc. 4th Danube-European Conf. on Soil Mech. and Found. Eng., Bled, Yugoslavia, pp. 155–160.

    Google Scholar 

  • Donnell, L.H. (1941) Stress concentrations due to elliptical discontinuities in plates under edge forces, T.V. Karman Anniversary Volume, Cal. Inst. of Tech., pp. 293–309.

    Google Scholar 

  • Duncan, J.M. and Goodman, R.E. (1968) Finite element analysis of slopes in jointed rocks. Corps of Engineers Report No. CR S-68-3.

    Google Scholar 

  • Dyke, C.G. (1989) Core discing: its potential as an indicator of principal in situ stress directions, in Proc. Int. Symp. on Rock at Great Depth, Pau, Balkema, Rotterdam, Vol. 2, 1057–1064.

    Google Scholar 

  • Eisbacher, G.H. and Bielenstein, H.U. (1971) Elastic strain recovery in Proterozoic rocks near Elliot Lake, Ontario. J. Geophys. Res., 76, 2012–2021.

    Article  Google Scholar 

  • Enever, J.R., Walton, R.J. and Windsor, C.R. (1990) Stress regime in the Sydney basin and its implications for excavation design and construction, in Proc. Tunnelling Conf., Sydney, The Institution of Engineers, Australia, 49–59.

    Google Scholar 

  • Enever, J.R., Walton, R.J. and Wold, M.B. (1990) Scale effects influencing hydraulic fracture and overcoring stress measurements, in Proc. Int. Workshop on Scale Effects in Rock Masses, Loen, Balkema, Rotterdam, pp. 317–326.

    Google Scholar 

  • Engelder, T. (1993) Stress Regimes in the Lithosphere, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Engelder, T. and Sbar, M.L. (1984) Near-surface in-situ stress: introduction. J. Geophys. Res., 89, 9321–9322.

    Article  Google Scholar 

  • Engelder, T. et al. (1978) Near surface in-situ stress pattern adjacent to the San Andreas fault, Palmdale, California, in Proc. 19th US Symp. Rock Mech., Reno, Univ. of Nevada Publ., pp. 95–101.

    Google Scholar 

  • Eriksson, L.G. and Michalski, A. (1986) Hydrostatic conditions in salt domes — a reality or a modeling simplification?, in Proc. Int. Symp. on Rock Stress and Rock Stress Measurements, Stockholm, Centek Publ., Luleå, pp. 121–132.

    Google Scholar 

  • Eshelby, J.D. (1957) The determination of the elastic field of an ellipsoidal inclusion and related problems, in Proc. Roy. Soc. A, 241, 376–396.

    Article  Google Scholar 

  • Etchecopar, A., Vasseur, G. and Daignieres, M. (1981) An inverse problem in microtectonics for the determination of stress tensors from fault striation analysis. J. Struct. Geol., 3, 51–65.

    Article  Google Scholar 

  • Evans, K.F. (1989) Appalachian stress study, 3, regional scale stress variations and their relation to structure and contemporary tectonics. J. Geophys. Res., 94, 17619–17645.

    Article  Google Scholar 

  • Evans, K.F., Engelder, T. and Plumb, R.A. (1989) Appalachian stress study, 1. A detailed description of in-situ stress variations in Devonian shale of the Appalachian Plateau. J. Geophys. Res., 94, 7129–7154.

    Article  Google Scholar 

  • Fairhurst, C. (1986) In-situ stress determination — an appraisal of its significance in rock mechanics, in Proc. Int. Symp. on Rock Stress and Rock Stress Measurements, Stockholm, Centek Publ., Luleå, pp. 3–17.

    Google Scholar 

  • Franklin, J.A. and Hungr, O. (1978) Rock stresses in Canada: their relevance to engineering projects. Rock Mech., Suppl. 6, 25–46.

    Google Scholar 

  • Friedman, M. (1964) Petrographie techniques for the determination of principal stress directions in rocks, in Proc. Int. Conf. on State of Stress in the Earth’s Crust, Santa Monica, Elsevier, New York, pp. 451–550.

    Google Scholar 

  • Friedman, M. (1972) Residual elastic strain in rocks. Tectonophysics, 15, 297–330.

    Article  Google Scholar 

  • Gao, H. (1991) Stress concentrations at slightly undulating surfaces. J. Mech. Phys. Solids, 39, 443–458.

    Article  Google Scholar 

  • Gay, N.C. (1979) The state of stress in a large dyke on E.R.P.M., Boksburg, South Africa. Inf. J. Rock Mech. Min. Sci. & Geomech. Abstr., 16, 179–185.

    Article  Google Scholar 

  • Gay, N.C. and Van Der Heever, P.J. (1982) In situ stresses in the Klerksdrop gold mining district, South Africa — a correlation between geological structure and seismicity, in Proc. 23rd US Symp. Rock Mech., Berkeley, SME/AIME, pp. 176–182.

    Google Scholar 

  • Gentry, D.W. (1973) Horizontal residual stresses in the vicinity of a breccia pipe. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 10, 19–36.

    Article  Google Scholar 

  • Gephart, J.W. and Forsyth, D.W. (1984) An improved method for determining the regional stress tensor using earthquake focal mechanism data: application to San Fernando earthquake sequence. J. Geophys. Res., 89, 9305–9320.

    Article  Google Scholar 

  • Germain, P. and Bawden, W.F. (1989) Interpretation of abnormal in situ stress at great depth, in Proc. Int. Symp. on Rock at Great Depth, Pau, Balkema, Rotterdam, Vol. 2, pp. 999–1004.

    Google Scholar 

  • Gerrard, C.M. (1975) Background to mathematical modeling in geomechanics: the roles of fabric and stress history, in Proc. Int. Symp. on Numerical Methods, Karlsruhe, Balkema, Rotterdam, pp. 33–120.

    Google Scholar 

  • Gibson, R.E. (1974) The analytical method in soil mechanics. 14th Rankine Lecture. Geotechnique, 24, 115–140.

    Article  Google Scholar 

  • Goetze, C. and Evans, B. (1979) Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics. Geophys. J. Roy. Astron. Soc., London, 59, 463–478.

    Article  Google Scholar 

  • Goodman, R.E. (1976) Methods of Geological Engineering, West Publ.

    Google Scholar 

  • Goodman, R.E. (1989) Introduction to Rock Mechanics, 2nd edn, Wiley.

    Google Scholar 

  • Gresseth, E.W. (1964) Determination of principal stress directions through an analysis of rock joint and fracture orientation, Star Mine, Burke, Idaho. US Bureau of Mines Report of Investigation RI 6413.

    Google Scholar 

  • Haimson, B.C. (1977) Recent in-situ stress measurements using the hydrofracturing technique, in Proc. 18th US Symp. Rock Mech., Golden, Johnson Publ., pp. 4C2–1–4C2–6.

    Google Scholar 

  • Haimson, B.C. (1979) New hydrofracturing measurements in the Sierra Nevada mountains and the relationship between shallow stresses and surface topography, in Proc. 20th US Symp. Rock Mech., Austin, Center for Earth Sciences and Eng. Publ., Austin, pp. 675–682.

    Google Scholar 

  • Haimson, B.C. (1980) Near surface and deep hydrofracturing stress measurements in the Waterloo quartzite. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 17, 81–88.

    Google Scholar 

  • Haimson, B.C. (1981) Confirmation of hydrofracturing results through comparisons with other stress measurements, in Proc. 22nd US Symp. Rock Mech., MIT Publ., Cambridge, pp. 409–415.

    Google Scholar 

  • Haimson, B.C. (1984) Pre-excavation in situ stress measurements in the design of large underground openings, in Proc. ISRM Symposium on Design and Performance of Underground Excavations, Cambridge, British Geotechnical Society, London, pp. 183–190.

    Google Scholar 

  • Haimson, B.C. (1990a) Stress measurements in the Sioux Falls quartzite and the state of stress in the Midcontinent, in Proc. 31st US Symp. Rock Mech., Golden, Balkema, Rotterdam, pp. 397–404.

    Google Scholar 

  • Haimson, B.C. (1990b) Scale effects in rock stress measurements, in Proc. Int. Workshop on Scale Effects in Rock Masses, Leon, Norway, Balkema, Rotterdam, pp. 89–101.

    Google Scholar 

  • Haimson, B.C. and Lee, C.F. (1980) Hydrofracturing stress determinations at Darlington, Ontario, in Proc. 13th Can. Symp. Rock Mech., Toronto, Canadian Institute of Mining and Metallurgy, CIM Special Vol. 22, pp. 42–50.

    Google Scholar 

  • Haimson, B.C. and Lee, M.Y. (1995) Estimating in situ stress conditions from borehole breakouts and core disking — experimental results in granite, in Proc. Int. Workshop on Rock Stress Measurement at Great Depth, Tokyo, Japan, 8th ISRM Cong., pp. 19–24.

    Google Scholar 

  • Haimson, B.C. and Rummel, F. (1982) Hydrofracturing stress measurements in the Iceland drilling project drillhole at Reydasfjordur, Iceland. J. Geophys. Res., 87, 6631–6649.

    Article  Google Scholar 

  • Haimson, B.C. and Voight, B. (1977) Crustal stress in Iceland. Pure and Appl. Geophys., 115, 153–190.

    Article  Google Scholar 

  • Haimson, B.C., Lee, M. and Herrick, C. (1993) Recent advances in in-situ stress measurements by hydraulic fracturing and borehole breakouts, in Proc. 7th Cong. Int. Soc. Rock Mech. (ISRM), Aachen, Balkema, Rotterdam, Vol. 3, pp. 1737–1742.

    Google Scholar 

  • Hansen, K.S. and Purcell, W.R. (1986) Earth stress measurements in the South Belridge oil field, Kern County, California. Paper SPE 15641 presented at 61st Annual Tech. Conf. of SPE, New Orleans.

    Google Scholar 

  • Hast, N. (1958) The measurement of rock pressures in mines. Sveriges Geol. Undersokning, Ser. C, No. 560.

    Google Scholar 

  • Hast, N. (1967) The state of stress in the upper part of the Earth’s crust. Eng. Geol, 2, 5–17.

    Article  Google Scholar 

  • Hast, N. (1969) The state of stress in the upper part of the Earth’s crust. Tectonophysics, 8, 169–211.

    Article  Google Scholar 

  • Hast, N. (1972) Stability of stress distributions in the Earth’s crust during geologic times and the formation of iron ore lenses at Malmberget. Phys. Earth Planet. Inter., 6, 221–228.

    Google Scholar 

  • Hast, N. (1973) Global measurements of absolute stress. Phil. Trans. Roy. Soc. London, A, 274, 409–419.

    Article  Google Scholar 

  • Hast, N. (1974) The state of stress in the upper part of the Earth’s crust as determined by measurements of absolute rock stress. Naturwissenschaften, 61, 468–475.

    Article  Google Scholar 

  • Hast, N. (1979) Limit of stresses in the Earth’s crust. Rock Mech., 11, 143–150.

    Article  Google Scholar 

  • Haxby, W.F. and Turcotte, D.L. (1976) Stresses induced by the addition or removal of overburden and associated thermal effects. Geology, 4, 181–184.

    Article  Google Scholar 

  • Hayashi, K. and Masuoka, M. (1995) Estimation of tectonic stress from slip data from fractures in core samples, in Proc. Int. Workshop on Rock Stress Measurement at Great Depth, Tokyo, Japan, 8th ISRM Cong., pp. 35–39.

    Google Scholar 

  • Heim, A. (1878) Untersuchungen über den Mechanismus der Gebirgsbildung, in Anschluss and die Geologische Monographie der Tōdi-Windgālen-Gruppe, B. Schwabe, Basel.

    Google Scholar 

  • Herget, G. (1973) Variation of rock stresses with depth at a Canadian iron mine. Int. J. Rock Mech. Min. Sci., 10, 37–51.

    Article  Google Scholar 

  • Herget, G. (1974) Ground stress determinations in Canada. Rock Mech., 6, 53–74.

    Article  Google Scholar 

  • Herget, G. (1980) Regional stresses in the Canadian shield, in Proc. 13th Can. Symp. Rock Mech., Toronto, Canadian Institute of Mining and Metallurgy, CIM Special Vol. 22, pp. 9–15.

    Google Scholar 

  • Herget, G. (1986) Changes of ground stresses with depth in the Canadian shield, in Proc. Int. Symp. on Rock Stress and Rock Stress Measurements, Stockholm, Centek Publ., Luleå, pp. 61–68.

    Google Scholar 

  • Herget, G. (1987) Stress assumptions for underground excavations in the Canadian shield. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 24, 95–97.

    Google Scholar 

  • Herget, G. (1993) Rock stresses and rock stress monitoring in Canada, in Comprehensive Rock Engineering (ed. J.A. Hudson), Pergamon Press, Oxford, Chapter 19, Vol. 3, pp. 473–496.

    Google Scholar 

  • Herget, G. and Arjang, B. (1990) Update on ground stresses in the Canadian shield, in Proc. Conf. on Stresses in Underground Structures, Ottawa, CANMET, pp. 33–47.

    Google Scholar 

  • Hoek, E. and Brown, E.T. (1980a) Underground Excavations in Rock, Institution of Mining and Metallurgy, London.

    Google Scholar 

  • Hoek, E. and Brown, E.T. (1980b) Empirical strength criterion for rock masses. ASCE J. Geotech. Eng., 106, 1013–1035.

    Google Scholar 

  • Holzhausen, G.R. and Johnson, A.M. (1979) The concept of residual stress in rock. Tectonophysics, 58, 237–267.

    Article  Google Scholar 

  • Hooker, V.E. and Duvall, W.L (1966) Stresses in rock outcrops near Atlanta, GA. US Bureau of Mines Report of Investigation RI 6860.

    Google Scholar 

  • Hooker, V.E., Bickel, D.L. and Aggson, J.R. (1972) In situ determination of stresses in mountainous topography. US Bureau of Mines Report of Investigation RI 7654.

    Google Scholar 

  • Howard, J.H. (1966) Vertical normal stress in the Earth and the weight of the overburden. Geol. Soc. Am. Bull, 77, 657–660.

    Article  Google Scholar 

  • Huang, Q. (1989) Modal and vectorial analysis for determination of stress axes associated with fault slip data. Math. Geol., 21, 543–558.

    Article  Google Scholar 

  • Hudson, J.A. and Cooling, C.M. (1988) In situ rock stresses and their measurement in the UK — Part I. The current state of knowledge. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 25, 363–370.

    Article  Google Scholar 

  • Hyett, A.J., Dyke, C.G. and Hudson, J.A. (1986) A critical examination of basic concepts associated with the existence and measurement of in-situ stress, in Proc. Int. Symp. on Rock Stress and Rock Stress Measurements, Stockholm, Centek Publ., Luleå, pp. 387–391.

    Google Scholar 

  • Jaeger, J.C. and Cook, N.G.W. (1963) Pinching off and discing of rocks. J. Geophys. Res., 86, 1757–1765.

    Google Scholar 

  • Jaeger, J.C. and Cook, N.G.W. (1976) Fundamentals of Rock Mechanics, 2nd edn, Chapman & Hall, London.

    Google Scholar 

  • James, P. (1991) Stress and strain during river downcutting. Austr. Geomech., 28–31.

    Google Scholar 

  • Jeffery, R.I. and North, M.D. (1993) Review of recent hydrofracture stress measurements made in the Carboniferous coal measures of England, in Proc. 7th Cong. Int. Soc. Rock Mech. (ISRM), Aachen, Balkema, Rotterdam, Vol. 3, pp. 1699–1703.

    Google Scholar 

  • Judd, W.R. (1964) Rock stress, rock mechanics and research, in Proc. Int. Conf. on State of Stress in the Earth’s Crust, Santa Monica, Elsevier, New York, pp. 5–54.

    Google Scholar 

  • Kanagawa, T. et al. (1986) In situ stress measurements in the Japanese Islands: overcoring results from a multi-element gauge at 23 sites. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 23, 29–39.

    Article  Google Scholar 

  • Kim, K. and Schmidt, B. (1992) Characterization of the state of in situ stress for the design of the Superconducting Super Collider interaction hall, in Proc. Eurock’ 92: Int. Symp. on Rock Characterization, Chester, UK, British Geotechnical Society, London, pp. 462–467.

    Google Scholar 

  • Kim, K. and Smith, C.S. (1980) Hydraulic fracturing stress measurements near the Keneenaw fault in upper Michigan, in Proc. 13th Can. Symp. Rock Mech., Toronto, Canadian Institute of Mining and Metallurgy, CIM Special Vol. 22, pp. 24–30.

    Google Scholar 

  • Kirby, S.H. (1983) Rheology of the lithosphere. Rev. Geophys. Space Phys., 21, 1458–1487.

    Article  Google Scholar 

  • Klein, R.J. and Barr, M.V. (1986) Regional state of stress in western Europe, in Proc. Int. Symp. on Rock Stress and Rock Stress Measurements, Stockholm, Centek Publ., Luleå, pp. 33–44.

    Google Scholar 

  • Klein, R.J. and Brown, E.T. (1983) The state of stress in British rocks. Report DOE/RW/83.8.

    Google Scholar 

  • Knill, J.L. (1968) Geotechnical significance of some glacially induced rock discontinuities. Bull. Assoc. Eng. Geol., 5, 49–62.

    Google Scholar 

  • Kohlbeck, F., Scheidegger, A.E. and Sturgul, J.R. (1979) Geomechanical model of an Alpine valley. Rock Mech., 12, 1–4.

    Article  Google Scholar 

  • Kramer, A. et al. (1994) Borehole televiewer data analysis from the New Hebrides Island Arc: the state of stress at holes 829A and 831B, in Proc. ODP, Science Results, Ocean Drilling Program, College Station, Texas.

    Google Scholar 

  • Kropotkin, P.N. (1972) The state of stress in the Earth’s crust as based on measurements in mines and on geophysical data. Phys. Earth Planet. Inter., 6, 214–218.

    Article  Google Scholar 

  • Kulhawy, F.H., Jackson, C.S. and Mayne, P.W. (1989) First order estimation of K 0 in sands and clays, in Proc. Foundation Engineering Cong., Evanston, ASCE, pp. 121–134.

    Google Scholar 

  • Kutter, H.K. (1993) Influence of drilling method on borehole breakouts and core disking, in Proc. 7th Cong. Int. Soc. Rock Mech. (ISRM), Aachen, Balkema, Rotterdam, Vol. 3, pp. 1659–1664.

    Google Scholar 

  • Lade, P.V. (1993) Rock strength criteria: the theories and evidence, in Comprehensive Rock Engineering (ed. J.A. Hudson), Pergamon Press, Oxford, Chapter 11, Vol. 3, pp. 255–282.

    Google Scholar 

  • Lambe, T.W. and Whitman, R.V. (1969) Soil Mechanics, Wiley, New York.

    Google Scholar 

  • Lang, P.A., Thompson, P.M. and Ng, L.K.W. (1986) The effect of residual stress and drill hole size on the in situ stress determined by overcoring, in Proc. Int. Symp. on Rock Stress and Rock Stress Measurements, Stockholm, Centek Publ., Luleå, pp. 687–694.

    Google Scholar 

  • Lee, C.F. (1981) In-situ stress measurements in southern Ontario, in Proc. 22nd US Symp. Rock Mech., MIT Publ., Cambridge, pp. 465–472.

    Google Scholar 

  • Lee, C.F. and Lo, K.Y. (1976) Rock squeeze of two deep excavations at Niagara Falls, in Rock Engineering for Foundations and Slopes, in Proc. ASCE Specialty Conf., Boulder, 116–140.

    Google Scholar 

  • Lee, F.T., Nichols, T.C. and Abel, J.F. (1969) Some relations between stress, geologic structure, and underground excavation in a metamorphic rock mass West of Denver, Colorado. US Geol. Surv. Prof. Pap., 650-C, pp. C127–C139.

    Google Scholar 

  • Lee, F.T., Abel, J. and Nichols, T.C. (1976) The relation of geology to stress changes caused by underground excavation in crystalline rocks at Idaho Springs, Colorado. US Geol. Surv. Prof. Pap., 965, Washington.

    Google Scholar 

  • Leeman, E.R. (1964) The measurement of stress in rock. J. South Afr. Inst. Mining Metall, 65, 45–114.

    Google Scholar 

  • Leijon, B.A. (1986) Application of the LUT triaxial overcoring techniques in Swedish mines, in Proc. Int. Symp. on Rock Stress and Rock Stress Measurements, Stockholm, Centek Publ., Luleå, pp. 569–579.

    Google Scholar 

  • Li, F. (1986) In situ stress measurements, stress state in the upper crust and their application to rock engineering, in Proc. Int. Symp. on Rock Stress and Rock Stress Measurements, Stockholm, Centek Publ., Luleå, pp. 69–77.

    Google Scholar 

  • Liao, J.J., Savage, W.Z. and Amadei, B. (1992) Gravitational stresses in anisotropic ridges and valleys with small slopes. J. Geophys. Res., 97, 3325–3336.

    Article  Google Scholar 

  • Lim, H.-U. and Lee, C.-I. (1995) Fifteen years’ experience on rock stress measurements in South Korea, in Proc. Int. Workshop on Rock Stress Measurement at Great Depth, Tokyo, Japan, 8th ISRM Cong., pp. 7–12.

    Google Scholar 

  • Lindner, E.N. (1985) In situ stress indications around Lake Ontario, in Proc. 26th US Symp. Rock Mech., Rapid City, Balkema, Rotterdam, pp. 575–590.

    Google Scholar 

  • Lindner, E.N. and Halpern, E.N. (1977) In-situ stress: an analysis, in Proc. 18th US Symp. Rock Mech., Johnson Publ., Golden, pp. 4C1–1–4C1–7.

    Google Scholar 

  • Ling, C.B. (1947) On the stresses in a notched plate under tension. J. Math. Phys., 26, 284–289.

    Google Scholar 

  • Liu, L. and Zoback, M.D. (1992) The effect of topography on the state of stress in the crust: application to the site of the Cajon Pass Scientific Drilling Project. J. Geophys. Res., 97, 5095–5108.

    Article  Google Scholar 

  • Lo, K.Y. (1978) Regional distribution of in-situ horizontal stresses in rocks in southern Ontario. Can. Geotech. J., 15, 371–381.

    Article  Google Scholar 

  • Lo, K.Y., et al. (1975) Stress relief and timedependent deformation of rocks, in Final Report to National Research Council of Canada, Special Project S-7307.

    Google Scholar 

  • Lo, K.Y. and Morton, J.D. (1976) Tunnels in bedded rock with high horizontal stresses. Can. Geotech. J., 13, 216–230.

    Article  Google Scholar 

  • Martin, C.D. and Chandler, N.A. (1993) Stress heterogeneity and geological structures. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 30, 993–999.

    Article  Google Scholar 

  • Martin, C.D. and Simmons, G.R. (1993) The Atomic Energy of Canada Limited Underground Research Laboratory: an overview of geomechanics characterization, in Comprehensive Rock Engineering (ed. J.A. Hudson), Pergamon Press, Oxford, Chapter 38, Vol. 3, pp. 915–950.

    Google Scholar 

  • Martin, C.D., Martino, J.B. and Dzik, E.J. (1994) Comparison of borehole breakouts from laboratory and field tests, in Proc. Eurock’ 94, Delft, Balkema, Rotterdam, pp. 183–190.

    Google Scholar 

  • Martna, J. (1988) Distribution of tectonic stresses in mountainous areas, in Proc. Int. Symp. on Tunneling for Water Resources and Power Projects, New Delhi.

    Google Scholar 

  • Martna, J. and Hansen, L. (1986) Initial rock stresses around the Vietas headrace tunnels no. 2 and 3, Sweden, in Proc. Int. Symp. on Rock Stress and Rock Stress Measurements, Stockholm, Centek Publ., Luleå, pp. 605–613.

    Google Scholar 

  • Matheson, D.S. and Thomson, S. (1973) Geological implications of valley rebound. Can. J. Earth Sci., 10, 961–978.

    Article  Google Scholar 

  • Mattauer, M. (1973) Les Déformations des Matériaux de l’Ecorce Terrestre, Herman Publ., Paris.

    Google Scholar 

  • Maury, V. (1987) Observations, researches and recent results about failure mechanisms around single galleries, in Proc. 6th Cong. Int. Soc. Rock Mech. (ISRM), Montreal, Balkema, Rotterdam, Vol. 2, pp. 1119–1128.

    Google Scholar 

  • McClintock, F.A. and Argon, A.S. (1966) Mechanical Behavior of Materials, Addison-Wesley.

    Google Scholar 

  • McCutchen, W.R. (1982) Some elements of a theory for in-situ stress. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 19, 201–203.

    Article  Google Scholar 

  • McGarr, A. (1980) Some constraints on levels of shear stress in the crust from observation and theory. J. Geophys. Res., 85, 6231–6238.

    Article  Google Scholar 

  • McGarr, A. (1988) On the state of lithospheric stress in the absence of applied tectonic forces. J. Geophys. Res., 93, 609–617.

    Article  Google Scholar 

  • McGarr, A. and Gay, N.C (1978) State of stress in the Earth’s crust. Ann. Rev. Earth Planet. Sci., 6, 405–436.

    Article  Google Scholar 

  • McKenzie, D.P. (1969) The relation between fault plane solutions for earthquakes and the directions of the principal stresses. Seism. Soc. Am. Bull., 50, 595–601.

    Google Scholar 

  • McTigue, D.F. and Mei, C.C. (1981) Gravity induced stresses near topography of small slopes. J. Geophys. Res., 86, 9268–9278.

    Article  Google Scholar 

  • McTigue, D.F. and Mei, C.C. (1987) Gravity induced stresses near axisymmetric topography of small slopes. Int. J. Num. Anal. Math. Geomech., 11, 257–268.

    Article  Google Scholar 

  • McTigue, D.F. and Stein, R.S. (1984) Topographic amplification of tectonic displacement: Implications for geodetic measurement of strain changes. J. Geophys. Res., 89, 1123–1131.

    Article  Google Scholar 

  • Meissner, R. and Strehlau, J. (1982) Limits of stresses in the continental crust and their relation to the depth-frequency distribution of shallow earthquakes. Tectonics, 1, 73–89.

    Article  Google Scholar 

  • Michael, A.J. (1984) Determination of stress from slip data: faults and folds. J. Geophys. Res., 89, 11517–11526.

    Article  Google Scholar 

  • Mills, K.W., Pender, M.J. and Depledge, D. (1986) Measurement of in situ stress in coal, in Proc. Int. Symp. on Rock Stress and Rock Stress Measurements, Stockholm, Centek Publ., Luleå, pp. 543–549.

    Google Scholar 

  • Molinda, M. et al. (1992) Effects of horizontal stress related to stream valleys on the stability of coal mine openings. US Bureau of Mines Report of Investigation RI 9413.

    Google Scholar 

  • Moos, D. and Zoback, M.D. (1990) Utilization of observations of well bore failure to constrain the orientation and magnitude of crustal stresses: application to continental, deep sea drilling project and ocean drilling program boreholes. J. Geophys. Res., 95, 9305–9325.

    Article  Google Scholar 

  • Mount, V.S. and Suppe, J. (1987) State of stress near the San Andreas fault; implications for wrench tectonics. Geology, 15, 1143–1146.

    Article  Google Scholar 

  • Müller, B. et al. (1992) Regional patterns of tectonic stress in Europe. J. Geophys. Res., 97, 11783–11803.

    Article  Google Scholar 

  • Muller, O. and Pollard, D.D. (1977) The stress state near Spanish Peaks, Colorado determined from a dike pattern. Pure Appl. Geophys., 115, 69–86.

    Article  Google Scholar 

  • Myrvang, A.M. (1976) Practical use of rock stress measurements in Norway, in Proc. ISRM Symp. on Investigation of Stress in Rock, Advances in Stress Measurement, Sydney, The Institution of Engineers, Australia, pp. 92–99.

    Google Scholar 

  • Myrvang, A.M. (1993) Rock stress and rock stress problems in Norway, in Comprehensive Rock Engineering (ed. J.A. Hudson), Pergamon Press, Oxford, Chapter 18, Vol. 3, pp. 461–471.

    Google Scholar 

  • Myrvang, A., Hansen, S.E. and Sørensen, T. (1993) Rock stress redistribution around an open pit mine in hard rock. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 30, 1001–1004.

    Article  Google Scholar 

  • Nakamura, K. (1977) Volcanoes as possible indicators of tectonic stress orientation — principle and proposal. J. Volcanol. Geotherm. Res., 2, 1–16.

    Article  Google Scholar 

  • Nakamura, K., Jacob, K.H. and Davies, J.N. (1977) Volcanoes as possible indicators of tectonic stress orientation — Aleutians and Alaska. Pure and Appl. Geophys., 115, 87–112.

    Article  Google Scholar 

  • Natau, O., Borm, G. and Rockel, Th. (1989) Influence of lithology and geological structure on the stability of the KTB pilot hole, in Proc. Rock at Great Depth, Pau, Balkema, Rotterdam, pp. 1487–1490.

    Google Scholar 

  • Nichols, T.C. (1975) Deformations associated with relocation of residual stresses in a sample of Barre granite from Vermont. US Geol. Surv. Pap., 875.

    Google Scholar 

  • Nichols, T.C. and Savage, W.Z. (1976) Rock strain recovery — factor in foundation design, in Rock Engineering for Foundations and Slopes, ASCE Specialty Conf., Boulder, Vol. 1, pp. 34–54.

    Google Scholar 

  • Niwa, Y. and Hirashima, K.I. (1971) The theory of the determination of stress in an anisotropic elastic medium using an instrumented cylindrical inclusion, in Mem. Faculty Eng., Kyoto University, 33, 221–232.

    Google Scholar 

  • Obara, Y. et al. (1995) Measurement of stress distribution around fault and considerations, in Proc. 2nd Int. Conf. on the Mechanics of Jointed and Faulted Rock, Vienna, Balkema, Rotterdam, pp. 495–500.

    Google Scholar 

  • Obert, L. and Stephenson, D.E. (1965) Stress conditions under which core discing occurs. SME Trans., 232, 227–235.

    Google Scholar 

  • Ode, H. (1957) Mechanical analysis of the dike pattern of the Spanish Peaks area, Colorado. Geol. Soc. Am. Bull., 38, 567–576.

    Article  Google Scholar 

  • Orowan, E. (1948) Classification and nomenclature of internal stresses, in Proc. Symp. on Internal Stresses, Inst. Metals, 47–59.

    Google Scholar 

  • Orr, C.M. (1975) High horizontal stresses in near surface rock masses, in Proc. 6th Regional Conf. for Africa on Soil Mech. Found. Engr., Durban, pp. 201–206.

    Google Scholar 

  • Ortlepp, W.D. and Gay, N.C. (1984) Performance of an experimental tunnel subjected to stresses ranging between 50 MPa and 230 MPa, in Proc. ISRM Symp. on Design and Performance of Underground Excavations, Cambridge, British Geotechnical Society, London, 337–346.

    Google Scholar 

  • Oudenhoven, M.S., Babcock, C.O. and Blake, W. (1972) A method for the prediction of stresses in an isotropic inclusion or orebody of irregular shape. US Bureau of Mines Report of Investigation RI 7645.

    Google Scholar 

  • Palmer, J.H.L. and Lo, K.Y. (1976) In situ stress measurements in some near-surface rock formations — Thorold, Ontario. Can. Geotech. J., 13, 1–7.

    Article  Google Scholar 

  • Pan, E. and Amadei, B. (1993) Gravitational stresses in long asymmetric ridges and valleys in anisotropic rock. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 30, 1005–1008.

    Article  Google Scholar 

  • Pan, E. and Amadei, B. (1994) Stresses in an anisotropic rock mass with irregular topography. ASCE J. Eng. Mech., 120, 97–119.

    Article  Google Scholar 

  • Pan, E., Amadei, B. and Savage, W.Z. (1994) Gravitational stresses in long symmetric ridges and valleys in anisotropic rock. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 31, 293–312.

    Article  Google Scholar 

  • Pan, E., Amadei, B. and Savage, W.Z. (1995) Gravitational and tectonic stresses in anisotropic rock with irregular topography. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 32, 201–214.

    Article  Google Scholar 

  • Parker, J. (1973) The relationship between structure, stress, and moisture. Eng. and Mining J., October, 91–95.

    Google Scholar 

  • Pickering, D.J. (1970) Anisotropic elastic parameters for soils. Geotechnique, 20, 271–276.

    Article  Google Scholar 

  • Pine, R.J. and Batchelor, A.S. (1984) Downward migration of shearing in jointed rock during hydraulic injections. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 21, 249–263.

    Google Scholar 

  • Pine, R.J. and Kwakwa, K.A. (1989) Experience with hydrofracture stress measurements to depths of 2.6 km and implications for measurements to 6 km in the Carnmenellis granite. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 26, 565–571.

    Article  Google Scholar 

  • Plumb, R.A. (1994) Variations of the least horizontal stress magnitude in sedimentary rocks, in Proc. 1st North Amer. Rock Mech. Symp., Austin, Balkema, Rotterdam, pp. 71–78.

    Google Scholar 

  • Plumb, R.A., Evans, K.F. and Engelder, T. (1991) Geophysical log responses and their correlation with bed-to-bed stress contrasts in Paleozoic rocks, Appalachian Plateau, NY. J. Geophys. Res., 96, 14509–14528.

    Article  Google Scholar 

  • Pollard, D.D. (1978) Forms of hydraulic fractures as deduced from field studies of sheet intrusions, in Proc. 19th US Symp. Rock Mech., Reno, Univ. of Nevada Publ., pp. 1–9.

    Google Scholar 

  • Pollard, D.D. and Segall, P. (1987) Theoretical displacements and stresses near fractures in rock: with applications to faults, joints, veins, dikes, and solution surfaces, in Fracture Mechanics of Rock, Academic Press, London, pp. 277–349.

    Google Scholar 

  • Preston, D.A. (1968) Photoelastic measurement of elastic strain recovery in outcropping rocks. Trans. AGU, Abstract, 49, p. 302.

    Google Scholar 

  • Price, N.J. (1966) Fault and Joint Development in Brittle and Semi-Brittle Rocks, Pergamon Press, London.

    Google Scholar 

  • Price, N.J. (1974) The development of stress systems and fracture patterns in undeformed sediments, in Proc. 3rd Cong. Int. Soc. Rock Mech. (ISRM), Denver, Nat. Academy of Sciences, Washington, DC, 487–496.

    Google Scholar 

  • Price, N.J. and Cosgrove, J.W. (1990) Analysis of Geological Structures, Cambridge University Press.

    Google Scholar 

  • Reches, Z. (1987) Determination of the tectonic stress tensor from slip along faults that obey the Coulomb yield condition. Tectonics, 6, 849–861.

    Article  Google Scholar 

  • Rosengren, L. and Stephansson, O. (1990) Distinct element modelling of the rock mass response to glaciation at Finnsjön, Central Sweden. SKB Technical Report 90-40, Stockholm.

    Google Scholar 

  • Rosengren, L. and Stephansson, O. (1993) Modelling of rock mass response to glaciation at Finnsjön, Central Sweden. Tunnelling and Underground Space Technol., 8, 75–82.

    Article  Google Scholar 

  • Rummel, F. (1986) Stresses and tectonics of the upper continental crust — a review, in Proc. Int. Symp. on Rock Stress and Rock Stress Measurements, Stockholm, Centek Publ., Luleå, pp. 177–186.

    Google Scholar 

  • Rummel, F., Höhring-Ermann, G. and Baumgärtner, J. (1986) Stress constraints and hydrofracturing stress data for the continental crust. Pure Appl. Geophys., 124, 875–895.

    Article  Google Scholar 

  • Russell, J.E. and Hoskins, E.R. (1973) Residual stresses in rock, in Proc. 14th US Symp. Rock Mech., University Park, ASCE Publ., pp. 1–24.

    Google Scholar 

  • Salamon, M.D.G. (1968) Elastic moduli of a stratified rock mass. Int. J. Rock Mech. Min. Sci., 5, 519–527.

    Article  Google Scholar 

  • Savage, J.C. (1983) Strain accumulation in the western United States. Ann. Rev. Earth Planet. Sci., 11, 11–43.

    Article  Google Scholar 

  • Savage, J.C., Proscott, W.H. and Lisowski, M. (1987) Deformation along the San Andreas fault 1982–1986 as indicated by frequent geodolite measurements. J. Geophys. Res., 92, 4785–4797.

    Article  Google Scholar 

  • Savage, W.Z. (1978) The development of residual stress in cooling rock bodies. Geophys. Res. Lett., 5, 633–636.

    Article  Google Scholar 

  • Savage, W.Z. (1994) Gravity induced stresses in finite slopes. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 31, 471–483.

    Article  Google Scholar 

  • Savage, W.Z. and Swolfs, H.S. (1986) Tectonic and gravitational stress in long symmetric ridges and valleys. J. Geophys. Res., 91, 3677–3685.

    Article  Google Scholar 

  • Savage, W.Z., Swolfs, H.S. and Powers, P.S. (1985) Gravitational stress in long symmetric ridges and valleys. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 22, 291–302.

    Article  Google Scholar 

  • Savage, W.Z., Swolfs, H.S. and Amadei, B. (1992) On the state of stress in the near surface of the Earth’s crust. Pure Appl. Geophys., 138, 207–228.

    Article  Google Scholar 

  • Sbar, M.L. and Sykes, L.R. (1973) Contemporary compressive stress and seismicity in eastern North America: an example of intra-plate tectonics. Geol. Soc. Am. Bull., 84, 1861–1882.

    Article  Google Scholar 

  • Sbar, M.L. et al. (1979) Stress pattern near the San Andreas fault, Palmdale, California, from nearsurface in situ measurements. J. Geophys. Res., 84, 156–164.

    Article  Google Scholar 

  • Scheidegger, A.E. (1977) Geotectonic stress determination in Austria, in Proc. Int. Symp. on Field Measurements in Rock Mechanics, Zurich, Balkema, Rotterdam, Vol. 1, pp. 197–208.

    Google Scholar 

  • Scheidegger, A.E. (1982) Principles of Geodynamics, 3rd edition, Springer-Verlag.

    Google Scholar 

  • Scheidegger, A.E. (1995) Geojoints and geostresses, in Proc. 2nd Int. Conf. on the Mechanics of Jointed and Faulted Rock, Vienna, Balkema, Rotterdam, pp. 3–35.

    Google Scholar 

  • Selmer-Olsen, R. (1974) Underground openings filled with high pressure water or air. Bull. Int. Ass. Eng. Geol., 9, 91–95.

    Article  Google Scholar 

  • Sezawa, K. and Nishimura, G. (1931) Stresses under tension in a plate with heterogeneous insertions. Aero. Res. Inst. (Tokyo, Japan), 6, 25–45.

    Google Scholar 

  • Shamir, G. and Zoback, M.D. (1992) Stress orientation profile to 3.5 km depth near the San Andreas fault at Cajon Pass, California. J. Geophys. Res., 97, 5059–5080.

    Article  Google Scholar 

  • Sheorey, P. R. (1994) A theory for in-situ stresses in isotropic and transversely isotropic rock. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 31, 23–34.

    Article  Google Scholar 

  • Silvestri, V. and Tabib, C. (1983a) Exact determination of gravity stresses in finite elastic slopes: Part I. Theoretical considerations. Can. Geotech. J., 20, 47–54.

    Article  Google Scholar 

  • Silvestri, V and Tabib, C. (1983b) Exact determination of gravity stresses in finite elastic slopes: Part II. Applications. Can. Geotech. J., 20, 55–60.

    Article  Google Scholar 

  • Skempton, A. (1961) Horizontal stresses in an overconsolidated Eocene clay, in Proc. 5th Int. Cong. Soil Mech., Paris, Vol. 1, pp. 531–537.

    Google Scholar 

  • Smith, R.B. and Bruhn, R.L. (1984) Intraplate extensional tectonics of the Eastern Basin Range. J. Geophys. Res., 89, 5733–5762.

    Article  Google Scholar 

  • Solomon, S.C., Sleep, N.H. and Richardson, R.M. (1975) On the forces driving plate tectonics: inferences from absolute plate velocities and intraplate stresses. Geophys. J. Roy. Astron. Soc., 42, 769–801.

    Google Scholar 

  • Solomon, S.C., Richardson, R. and Bergman, E.A. (1980) Tectonic stress: models and magnitudes. J. Geophys. Res., 85, 6086–6092.

    Article  Google Scholar 

  • Spicak, A. (1988) Interpretation of tectonic stress orientation on the basis of laboratory model experiments. Phys. Earth Planet. Inter., 51, 101–106.

    Article  Google Scholar 

  • Srolovitz, D.J. (1989) On the stability of surfaces of stressed solids. Acta Metall., 37, 621–625.

    Article  Google Scholar 

  • Stacey, T.R. (1982) Contribution to the mechanism of core discing. J. South Afr. Inst. Mining Metall., 269–274.

    Google Scholar 

  • Steiner, W. (1992) Swelling rock in tunnels: characterization and effect of horizontal stresses, in Proc. Eurock’ 92: Int. Symp. on Rock Characterization, Chester, UK, British Geotechnical Society, London, pp. 163–173.

    Google Scholar 

  • Stephansson, O. (1988) Ridge push and glacial rebound as rock stress generators in Fennoscandia, in Geological Kinematics and Dynamics: From Molecules to the Mantle (ed. C. Talbot), Bull. Geol. Inst. Upps., Spec. Issue, NS, 14, 39–48.

    Google Scholar 

  • Stephansson, O. (1993) Rock stress in the Fennoscandian shield, in Comprehensive Rock Engineering (ed. J.A. Hudson), Pergamon Press, Oxford, Chapter 17, Vol. 3, pp. 445–459.

    Google Scholar 

  • Stephansson, O., Särkkä, P. and Myrvang, A. (1986) State of stress in Fennoscandia, in Proc. Int. Symp. on Rock Stress and Rock Stress Measurements, Stockholm, Centek PubL, Luleå, pp. 21–32.

    Google Scholar 

  • Stephansson, O., Savilahti, T. and Bjarnason, B. (1989) Rock mechanics of the deep borehole at Gravberg, Sweden, in Proc. Int. Symp. on Rock at Great Depth, Pau, Balkema, Rotterdam, Vol. 2, pp. 863–870.

    Google Scholar 

  • Stephansson, O., Ljunggren, C. and Jing, L. (1991) Stress measurements and tectonic implications for Fennoscandia. Tectonophysics, 189, 317–322.

    Article  Google Scholar 

  • Stephen, R.M. and Pirtz, D. (1963) Application of birefringent coating to the study of strains around circular inclusions in mortar prisms. SESA Experimental Mech., 3, 91–97.

    Article  Google Scholar 

  • Sturgul, J.R., Scheidegger, A.E. and Greenshpan, Z. (1976) Finite element model of a mountain massif. Geology, 4, 439–442.

    Article  Google Scholar 

  • Sugawara, K. and Obara, Y. (1993) Measuring rock stress, in Comprehensive Rock Engineering (ed. J.A. Hudson), Pergamon Press, Oxford, Chapter 21, Vol. 3, pp. 533–552.

    Google Scholar 

  • Sugawara, K. and Obara, Y. (1995) Rock stress and rock stress measurements in Japan, in Proc. Int. Workshop on Rock Stress Measurement at Great Depth, Tokyo, Japan, 8th ISRM Cong., pp. 1–6.

    Google Scholar 

  • Swolfs, H.S. (1984) The triangular stress diagram — a graphical representation of crustal stress measurements. US Geol. Surv. Prof. Pap., 1291, Washington, 19 pp.

    Google Scholar 

  • Swolfs, H.S. and Savage, W.Z. (1985) Topography, stresses, and stability at Yucca Mountain, Nevada, in Proc. 26th US Symp. Rock Mech., Rapid City, Balkema, Rotterdam, pp. 1121–1129.

    Google Scholar 

  • Swolfs, H.S., Handin, J. and Pratt, H.R. (1974) Field measurement of residual strain in granitic rock masses, in Proc. 3rd Cong. Int. Soc. Rock Mech. (ISRM), Denver, National Academy of Sciences, Washington, DC, 2A, pp. 563–568.

    Google Scholar 

  • Sykes, L.R. and Sbar, M.L. (1973) Intraplate earthquakes, lithosphere stresses and the driving mechanisms of plate tectonics. Nature, 245, 298–302.

    Article  Google Scholar 

  • Szymanski, J.C. and Harper, T.R. (1979) Interpretation of in-situ strain relief measurements: stress redistribution associated with heterogeneity, in Proc. 20th US Symp. Rock Mech., Austin, pp. 691–694.

    Google Scholar 

  • Talobre, J.A. (1967) La Mecanique des Roches, 2nd edn, Dunod, Paris.

    Google Scholar 

  • Te Kamp, L., Rummel, F. and Zoback, M.D. (1995) Hydrofrac stress profile to 9 km at the German KTB site, in Proc. Workshop on Rock Stresses in the North Sea, Trondheim, Norway, NTH and SINTEF Publ., Trondheim, pp. 147–153.

    Google Scholar 

  • Terzaghi, K. (1962) Measurement of stresses in rock. Geotechnique, 12, 105–124.

    Article  Google Scholar 

  • Terzaghi, K. and Richart, F.E. (1952) Stresses in rock about cavities. Geotechnique, 3, 57–90.

    Article  Google Scholar 

  • Ter-Martirosyan, Z.G. and Akhpatelov, D.M. (1972) The stressed state of an infinite slope with a curvilinear boundary object to a field of gravity and percolation. J. Probl. Geomech., 5, 81–91.

    Google Scholar 

  • Ter-Martirosyan, Z.G., Akhpatelov, D.M. and Manvelyan, R.G. (1974) The stressed state of rock masses in a field body forces, in Proc. 3rd Cong. Int. Soc. Rock Mech. (ISRM), Denver, National Academy of Sciences, Washington DC, Part A, pp. 569–574.

    Google Scholar 

  • Teufel, L.W. (1986) In situ stress and natural fracture distribution at depth in the Piceance Basin, Colorado: implications to stimulation and production of low permeability gas reservoirs, in Proc. 27th US Symp. Rock Mech., Tuscaloosa, SME/AIME, pp. 702–708.

    Google Scholar 

  • Teufel, L.W. and Farrell, H.E. (1990) In situ stress and natural fracture distribution in the Ekofisk field, North Sea. Sandia National Lab. Report No. SAND-90-1058C.

    Google Scholar 

  • Teufel, L.W., Rhett, D.W. and Farrell, H.E. (1991) Effect of reservoir depletion and pore pressure drawdown on in-situ stress and deformation in the Ekofisk Field, North Sea, in Proc. 32nd US Symp. Rock Mech., Balkema, Rotterdam, pp. 63–72.

    Google Scholar 

  • Tinchon, L. (1987) Evolution des contraintes naturelles en fonction de la profondeur et de la tectonique aux Houillères du bassin de Lorraine. Revue de l’Industrie Minerale — Mines et Carrières — les Techniques, 69, 281–288.

    Google Scholar 

  • Towse, D.F. and Heuze, F.E. (1983) Estimating in-situ stresses and rock mass properties from geological and geophysical data: applications in the hydraulic fracturing of tight gas reservoirs. Lawrence Livermore National Laboratory Report UCRL-53443.

    Google Scholar 

  • Tullis, T.E. (1977) Reflections on measurement of residual stress in rock. Pure Appl. Geophys., 115, 57–68.

    Article  Google Scholar 

  • Turcotte, D.L. (1973) Driving mechanisms for plate tectonics. Geofisica Internac., 13, 309–315.

    Google Scholar 

  • Turcotte, D.L. and Oxburgh, E.R. (1973) Mid-plate tectonics. Nature, 244, 337–339.

    Article  Google Scholar 

  • Turcotte, D.L. and Schubert, G. (1982) Geodynamics: Applications of Continuum Physics to Geological Problems, Wiley.

    Google Scholar 

  • Turner, F.J. and Weiss, L.E. (1963) Structural Analysis of Metamorphic Tectonites, McGraw-Hill.

    Google Scholar 

  • Van Heerden, W.L. (1976) Practical application of the CSIR triaxial strain cell for rock stress measurements, in Proc. ISRM Symposium on Investigation of Stress in Rock, Advances in Stress Measurement, Sydney, The Institution of Engineers, Australia, pp. 1–6.

    Google Scholar 

  • Varnes, D.J. (1970) Model for simulation of residual stress in rock, in Proc. 11th US Symp. Rock Mech., Berkeley, SME/AIME, 415–426.

    Google Scholar 

  • Varnes, D.J. and Lee, F.T. (1972) Hypothesis of mobilization of residual stress in rock. Geol. Soc. Am. Bull, 83, 2863–2866.

    Article  Google Scholar 

  • Vernik, L. and Zoback, M.D. (1992) Estimation of maximum horizontal principal stress magnitude from stress-induced well bore breakouts in the Cajon Pass scientific research borehole. J. Geophys. Res., 97, 5109–5119.

    Article  Google Scholar 

  • Voight, B. (1966a) Interpretation of in-situ stress measurements. Panel Report on Theme IV, in Proc. 1st Cong. Int. Soc. Rock Mech. (ISRM), Lisbon, Lab. Nac de Eng. Civil, Lisbon, Vol. III, pp. 332–348.

    Google Scholar 

  • Voight, B. (1966b) Beziehung Zwischen grossen Horizontalen Spannungen im Gebirge und der Tektonik und der Abtragung, in Proc. 1st Cong. Int. Soc. Rock Mech. (ISRM), Lisbon, Lab. Nac. de Eng. Civil, Lisbon, Vol. II, pp. 51–56.

    Google Scholar 

  • Voight, B. (1971) Prediction of in-situ stress patterns in the Earth’s crust, in Proc. Int. Symp. on the Determination of Stresses in Rock Masses, Lab. Nac. de Eng. Civil, Lisbon, pp. 111–131.

    Google Scholar 

  • Voight, B. and Hast, N. (1969) The state of stresses in the upper part of the Earth’s crust: a discussion. Eng. Geol., 3, 335–344.

    Article  Google Scholar 

  • Voight, B. and St. Pierre, B.H.P. (1974) Stress history and rock stress, in Proc. 3rd Cong. Int. Soc. Rock Mech. (ISRM), Denver, National Academy of Sciences, Washington DC, 2A, pp. 580–582.

    Google Scholar 

  • Warpinski, N.R. (1989) Determining the minimum in-situ stress from hydraulic fracturing through perforations. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 26, 523–531.

    Article  Google Scholar 

  • Warpinski, N.R. and Teufel, L.W. (1987) In-situ stresses in low permeability, nonmarine rocks, in Proc. SPE/DOE Joint Symp. on Low Permeability Reservoirs, Denver, Paper SPE/DOE 16402, pp. 125–138.

    Google Scholar 

  • Warpinski, N.R. and Teufel, L.W. (1991) In-situ stress measurements at Rainier Mesa, Nevada Test Site — influence of topography and lithology on the stress state in tuff. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 28, 143–161.

    Google Scholar 

  • Warpinski, N.R., Branagan, P. and Wilmer, R. (1985) In situ stress measurements at US DOE’s multiwell experiment site, Mesaverde group, Rifle, Colorado. J. Petrol Technol., 37, 527–536.

    Google Scholar 

  • White, J.M., Hoskins, E.R. and Nilssen, T.J. (1978) Primary stress measurement at Eisenhower Memorial Tunnel, Colorado. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 15, 179–182.

    Article  Google Scholar 

  • Whitehead, W.S., Hunt, E.R. and Holditch, S.A. (1987) The effects of lithology and reservoir pressure on the in-situ stresses in the Waskon (Travis Peak) field, in Proc. SPE/DOE Joint Symp. on Low Permeability Reservoirs, Denver, Paper SPE/DOE 16403, pp. 139–152.

    Google Scholar 

  • Wong, I.G. (1993) The role of geological discontinuities and tectonic stresses in mine seismicity, in Comprehensive Rock Engineering (ed. J.A. Hudson), Pergamon Press, Oxford, Chapter 15, Vol. 5, pp. 393–410.

    Google Scholar 

  • Worotnicki, G. and Denham, D. (1976) The state of stress in the upper part of the Earth’s crust in Australia according to measurements in mines and tunnels and from seismic observations, in Proc. ISRM Symposium on Investigation of Stress in Rock, Advances in Stress Measurement, Sydney, The Institution of Engineers, Australia, pp. 71–82.

    Google Scholar 

  • Worotnicki, G. and Walton, R.J. (1976) Triaxial hollow inclusion gauges for determination of rock stresses in-situ, Supplement to Proc. ISRM Symposium on Investigation of Stress in Rock, Advances in Stress Measurement, Sydney, The Institution of Engineers, Australia, pp. 1–8.

    Google Scholar 

  • Zoback, M.D. (1991) State of stress and crustal deformation along weak transform faults. Phil. Trans. Roy. Soc. London, A, 337, 141–150.

    Article  Google Scholar 

  • Zoback, M.D. (1993) In situ stress measurements and geologic processes, in Lecture Notes of the Short Course on Modern In-Situ Stress Measurement Methods, 34th US Symp. Rock Mech., Madison, Wisconsin.

    Google Scholar 

  • Zoback, M.D. and Healy, J.H. (1992) In-situ stress measurements to 3.5 km depth in the Cajon Pass scientific research borehole: implications for the mechanics of crustal faulting. J. Geophys. Res., 97, 5039–5057.

    Article  Google Scholar 

  • Zoback, M.D. et al. (1987) New evidence of the state of stress of the San Andreas fault system. Science, 238, 1105–1111.

    Article  Google Scholar 

  • Zoback, M.D. et al. (1993) Upper-crustal strength inferred from stress measurements to 6 km depth in the KTB borehole. Nature, 365, 633–635.

    Article  Google Scholar 

  • Zoback, M.L. (1989) State of stress and modern deformation of the Northern Basin and Range province. J. Geophys. Res., 94, 7105–7128.

    Article  Google Scholar 

  • Zoback., M.L. (1992) First-and second-order patterns of stress in the lithosphere: The World Stress Map project. J. Geophys. Res., 97, 11703–11728.

    Article  Google Scholar 

  • Zoback, M.L. and Zoback, M.D. (1980) State of stress in the conterminous United States. J. Geophys. Res., 85, 6113–6156.

    Article  Google Scholar 

  • Zoback, M.L. et al. (1989) Global patterns of tectonic stress. Nature, 341, 291–298.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Amadei, B., Stephansson, O. (1997). Estimating in situ Stresses. In: Rock Stress and Its Measurement. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5346-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5346-1_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6247-3

  • Online ISBN: 978-94-011-5346-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics