Skip to main content

References

  • Chapter
Handbook of Splines

Part of the book series: Mathematics and Its Applications ((MAIA,volume 462))

  • 1024 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

Books, Monographs and Proceedings

  1. Agarwal R.P.; Chow Y.M.; Wilson S.J. (eds): Numerical Mathematics. Singapore 1988, I.S.N.M. vol. 86, Birkhäuser Verlag, 1988.

    Google Scholar 

  2. Ahlberg J.H.; Nilson E.N.; Walsh J.L.: The theory of splines and their applications. Acad. Press, New York 1967.

    MATH  Google Scholar 

  3. Albrecht J.; Collatz L. (eds): Numerische Methoden bei Differentialgleichungen und mit funktionalanalytischen Hilfsmitteln. I.S.N.M. 19, Basel, 1974.

    Google Scholar 

  4. Albrecht J.; Collatz L. (eds): Moderne Methoden der numerischen Matematik. (Tagung der 200 Jahr-Feier Tech. Univ. Clausthal, 1975). I.S.N.M. 32, Birkhäuser Verlag, Basel — Stuttgart, 1976.

    Google Scholar 

  5. Albrecht J.; Collatz L. (eds): Numerische Behandlung von Differentialgleichungen, insbesondere mit der Methoden der Finite Elemente. I.S.N.M., 31, Birkhäuser Verlag, Basel, 1976.

    Google Scholar 

  6. Albrecht J.; Collatz L. (eds): Numerical treatment of Inteqral Equations. I.S.N.M., 54, Birkhäuser, 1980.

    Google Scholar 

  7. Alexits G.; Stechkin S.B. (eds): Constructive theory of functions. (Proc. Conf. Budapest 1969). Akadémiai Kiadó, Budapest, 1972.

    MATH  Google Scholar 

  8. Alexits G.; Turan P. (eds): Fourier Analysis and approximation theory. Vol I — II. (Proc. Conf. Budapest 1976). North — Holland Publishing Co. Amsterdam, 1978.

    MATH  Google Scholar 

  9. Alt F.L.; Rubinoff M. (eds): Advances in computers. Vol 10, Acad. Press., New York, 1970.

    Google Scholar 

  10. Ansorge R.; Törnig W. (eds): Numerische Behandlung nichtlinearer Integrodifferential — und Differentialgleichungen. (Conf. Inst. Oberwolfach, 1973), Lecture Notes in Math. 395, Springer Verlag, Berlin — Heidelberg — New York, 1974.

    MATH  Google Scholar 

  11. Ansorge R.; Collatz L.; Hämmerlin G.; Törnig W. (eds): Numerische Behandlung von Differentialgleichungen. (Conf. Inst. Oberwolfach, 1974), I.S.N.M., vol. 27, Birkhäuser Verlag, Basel — Stuttgart, 1975.

    MATH  Google Scholar 

  12. Ansorge R.; Collatz L.; Hämmerlin G.; Törnig W. (eds): Approximate and qualitative methods in the theory of differential and functional — differential equations (russian). Akad. Nauk. Ukrain S.S.R., Inst. Math. Kiev, 1979.

    Google Scholar 

  13. Ansorge R.; Collatz L.; Hämmerlin G.; Törnig W. (eds): Approximation Theory. (Proc. Intern. Colloq. Bonn, 1976). Lecture Notes in Math. 556, I.S.B.N. 1976.

    Google Scholar 

  14. Arcangeli R.: D msplines sur un domain borné de R n. Pubication U.A. 1204, CNRS No 1986/2.

    Google Scholar 

  15. Arcangeli R.: Army Numerical Analysis and Computers Conference. (White Sands Missile Rande, White Sands, N.M. 1979). U.S.A. Army Research Office, Research Triangle Park, N.C. 1979.

    Google Scholar 

  16. Atteia Marc: Hilbertian kernels and spline functions. North — Holland Publ. Co. Amsterdam, 1992, XII + 386 pp.

    MATH  Google Scholar 

  17. Aubin J.P.: Approximation of elliptic boundary value problems. Wiley, New York, 1972.

    MATH  Google Scholar 

  18. Aziz K.A. (ed.): Lecture series in differential equations. Vol.2. Van Nostrand Reinhold Company, New York, 1969.

    Google Scholar 

  19. Aziz K.A. (ed.): The mathematical foundation of the finit element method with application to partial differential equations. Acad. Press, New York, 1972.

    Google Scholar 

  20. Barnhill R.E. (ed.): Geometry processing for design and manufacturing. SIAM 1991, 220 pp. Philadelphia.

    Google Scholar 

  21. Barnhill R.E.; Boehm W. (eds): Surface in computer aided geometric design. (Conf.Inst. Oberwolfach 1982). Springer, 1982.

    Google Scholar 

  22. Barnhill R.E.; Boehm W. (eds): Surface in computer aided design. North Holland, Amsterdam, 1983.

    Google Scholar 

  23. Barnhill R.E.; Boehm W. (eds): Surfaces in CAGD’84. North Holland, Amsterdam, 1985.

    Google Scholar 

  24. Barnhill R.E.; Boehm W.; Hoschek J. (eds): Curves and surfaces in CAGD. CAGD 7 (1990), No 1–4, Elsevier Science Publishers, Amsterdam, 1990, I — XII + 373 pp.

    Google Scholar 

  25. Barnhill R.E.; Bercovier M.; Boehm W.; Capasso V.; Hoschek J.; Temam R. (eds): Topics in computer aided geometric design. Proceeds of the conference held in Evice, May 12-19, 1990, RAIRO Model. Math. Anal. Numer. 26 (1992), No., Dunod, Paris, 1962, 232 pp.

    Google Scholar 

  26. Barnhill R.E.; Riesenfeld R.E. (eds): Computer aided geometric design. (Proc. Conf. Univ. of Utah, Salt Lake City, 1974). Acad. Press. New York — London, 1974.

    MATH  Google Scholar 

  27. Barsky Brian A.: Computer graphics and geometric modeling using beta — splines. Comput. Sci. Work. Springer Verlag Berlin, I.S.B.N., 1988.

    MATH  Google Scholar 

  28. Bartels R.H.; Beatty J.C.; Barsky B.A.: An introduction to the use of splines in computer graphics and geometric modeling. Morgan Kaufmann Publishers, Los Altos, California, 1987.

    Google Scholar 

  29. Bartels R.H.; Beatty J.C.; Barsky B.A.: B-splines I,II. Mathématiques et CAO 7, Paris, Hermes, I.S.B.N., 1988.

    Google Scholar 

  30. Berdyshev V.I.; Subbotin Ju. N.: Numerical methods of approximation of functions. (russian). Sverdlovsk. Ural. Publ. House, 1979, 118 pp.

    Google Scholar 

  31. Bezhaev A.Yu.; Vasilenko V.A.: Variational spline theory. NCC Novosibirsk, 1993.

    Google Scholar 

  32. Bezier P.: The mathematical basis of the UISURF CAD System. Butterworths, London, 1986

    Google Scholar 

  33. Bezier P.: Numerical control mathematics and applications. Wiley, New York, 1972.

    MATH  Google Scholar 

  34. Birkhoff G.; Varga R.S. (eds): Numerical solution of field problems in continuum physics. (SIAM — AMS) Proc. vol.2, Amer. Math. Soc., Providence (R.I.), 1970.

    Google Scholar 

  35. Björk A.; Dahlquist G.: Numerische Methoden. Oldenburg Verlag, München, 1972.

    Google Scholar 

  36. Blum E.K.: Numerical analysis and computation: theory and Practice. Addison-Wesley, Reading, 1972.

    MATH  Google Scholar 

  37. Bojanov B.D.; Hakopian H.A.; Sahakian A.A.: Spline functions and multivariate interpolations. Kluwer Acad. Publishers, Dordrecht, 1993, IX + 276 pp.

    MATH  Google Scholar 

  38. Boor C. de (ed): Mathematical aspects of finite elements in partial differential equations. (Proc. Symp. M.R.C. Univ. Wiscousin Madison, 1974), Acad. Press., 1974.

    Google Scholar 

  39. Boor C. de: A practical guide to splines. Springer Verlag, Berlin — Heidelberg — New York, 1978.

    MATH  Google Scholar 

  40. Boor C. de; Hölig K.; Riemenschneider S.D.: Box Splines. Springer Verlag, 1993, 200 pp.

    Google Scholar 

  41. Boor C. de: Splinefunktionen. (Lectures in Mathematics) Birkhäuser Verlag, Baset-Boston — Berlin, 1990, 184 pp.

    MATH  Google Scholar 

  42. Böhmer K.: Spline — Funktionen. Teubner, Stuttgart, 1974.

    Google Scholar 

  43. Böhmer K.; Meinardus G.; Schempp W. (eds): Spline — Funktionen, Vörträge und Aufsätze. (Conf. Inst. Oberwolfach, 1973). Bibliographisches Institut Mannheim, 1974.

    Google Scholar 

  44. Böhmer K.; Meinardus G.; Schempp W. (eds): Spline-Functions. (Proc. Internat. Sympos. Karlsruhe, 1975). Lecture Notes in Math. 501, Springer Verlag, Berlin — Heidelberg — New York, 1976.

    MATH  Google Scholar 

  45. Braess D.; Schumaker L.L. (eds): Numerical methods in approximation theory. Vol. 9. Birkhäuser, Basel — Boston — Berlin, 1992.

    MATH  Google Scholar 

  46. Bramble J.H. (ed): Numerical solution of partial differential equations. (Proc. Symp. Univ. Maryland, 1965). Acad. Press, New York, 1966.

    MATH  Google Scholar 

  47. Brebia C.A. (ed): Progress in boundary element methods. Wiley, New York, 1981.

    Google Scholar 

  48. Brosowski B.; Martensen E. (eds): Methoden und Verfahren der mathematischen Physik. Bibliographisches Institut Mannheim, 1971.

    Google Scholar 

  49. Brosowski B.; Martensen E. (eds): Approximation and optimisation in mathematical physics. Verlag Peter Lang Gmb H, Frankfurt a M — Bern, 1983.

    Google Scholar 

  50. Brudnyj Yu. A.; Shalashov V.K.: Theory of splines. Textbook, (russian). Yaroslavl: Yaroslavskij Gosudarstvennyj Univ. 91 pp. 1983.

    Google Scholar 

  51. Brunner H.; van der P.J. Houwen: The numerical solution of Volterra equations. North — Holland. Amsterdam — New York, 1986.

    MATH  Google Scholar 

  52. Butzer P.L.; Kahane J.; Nagy-Sz. B. (eds): Linear operators and approximations. (Conf. Inst. Oberwolfach, 1971) Birkhäuser Verlag, Basel, 1972.

    Google Scholar 

  53. Butzer P.L.; Nagy-Sz. B. (eds): Abstract spaces and approximations. (Conf. Inst. Oberwolfach, 1968). Birkhäuser Verlag, Basel, 1969.

    Google Scholar 

  54. Butzer P.L.; Nagy-Sz. B.; Görlich E. (eds): Functional analysis and approximations. (Conf. Inst. Oberwolfach, 1980). Birkhäuser Verlag, Basel — Boston — Stuttgart, 1981.

    Google Scholar 

  55. Butzer P.L.; Stens R.L.; Nagy-Sz. B.; (eds): Anniversary volume on approximation theory and functional analysis. I.S.N.M. 65, Birkhäuser Verlag, 1984, 633 pp.

    Google Scholar 

  56. Cadete Rodrigues Odete Maria: ”Splines” Polinomials. Alguns Topices a Programes. Inst. Gulbenkian de Ciêncis. Centre de Calcule Cientifco. Ceiras (Portugal), 1980, 202 pp.

    Google Scholar 

  57. Cavaretta A.S.; Dahmen W.; Micchelli C.A.: Stationary Subdivision. Mem. AMS, 453, Providence, R.I, Vol 93, 1991.

    Google Scholar 

  58. Cheney E.W. (ed): Approximation Theory III, IV, VII. (Proc. Conf. honoring. Prof. G.G. Lorincz, Univ. of Texas, Austin, 1980). Acad. Press. New York — London 1980; IV; Acad. Press, New York — London, 1984; VII, Acad Press, Boston MA, 1983.

    Google Scholar 

  59. Cieselski Z.: Theory of spline functions. (polish.) Gdansk University, 1976.

    Google Scholar 

  60. Cieselski Z.: Lectures on Spline Functions, (polish). Gdansk University, 1979.

    Google Scholar 

  61. Cieselski Z. (ed): Approximation and Function Spaces. North Holland, Amsterdam, 1981.

    Google Scholar 

  62. Cieselski Z. (ed): Approximation and function spaces. Banach Center Publications, 22 P.W.N. — Polish Scientific Publishers, Warsaw, 1989, 486 pp.

    Google Scholar 

  63. Cieselski Z.; Musielak J. (eds): Approximation theory. Reidel Publish. Co and P.W.N — Polish. Sci. Publ. Warszava, 1972.

    Google Scholar 

  64. Cieselski Z.; Musielak J. (eds): Approximation Theory. Warszawa, Dordrecht, Boston, 1975.

    Google Scholar 

  65. Chui C.K.: Vertex splines. Lecture Notes Howard University, 1987.

    Google Scholar 

  66. Chui C.K.: Multivariate splines. SIAM, Philadelphia, 1988.

    Google Scholar 

  67. Chui C.K.: Multivariate splines: Theory and Applications. SIAM, Enterprise Haus, Middlesex, England, 189 pp, 1988.

    Google Scholar 

  68. Chui C.K.: An introduction to Wavelets. Academic Press 1992, Series Wavelet Analysis and its Applications, 265 pp.

    Google Scholar 

  69. Chui C.K. (ed): Wavelet. A tutorial in theory and applications. Academic Press, Inc. Boston, MA, 1992, X + 725 pp.

    Google Scholar 

  70. Chui C.K.; Montefusco Laura; Puccio Luigia: Walvelets: Theory, Algorithms and Applications. Academic Press, 1994.

    Google Scholar 

  71. Chui C.K.; Schempp W.; Zeller K. (eds): Multivariate Approximation Theory IV. Proc. Conf. Oberwolfach, 12 — 18 Febr. 1989, I.S.N.M. vol. 90, Birkhäuser Verlag, 1989, X + 342 pp.

    Google Scholar 

  72. Chui C.K.; Schumaker L.L.; David J.D. (eds): Approximation Theory V. (Proc. of the fifth Inter. Symp. Texas, A M Univ., College Station, Texas, January 13 — 17, 1986). Acad. Press. XVIII + 651 pp.

    Google Scholar 

  73. Chui C.K.; Schumaker L.L.; Utreras F. (eds): Topics in multivariate approximation. Academic Press, New York, 1987.

    MATH  Google Scholar 

  74. Chui C.K.; Schumaker L.L.; Ward J. (eds): Approximation Theory IV. Academic Press, 1983; Approximation Theory V, Academic Press, New York, 1986; Approximation Theory VI, Academic Press, 1989, Vol. I — II, 692 pp.

    Google Scholar 

  75. Clauer A.; Purgathofer W. (eds): Austrographics 88, Aktuelle Entwich, in der Graph. Datenverarbeitung. Wien, 28–30 Sept. 1988, Informatik — Fachberichte, 183, Springer Berlin, 1988.

    Google Scholar 

  76. Collatz L.; Meinardus G. (eds): Numerische Methoden der Approximationstheorie I. (Conf. Inst. Oberwolfach, 1971). Birkhäuser Verlag, Basel, 1972.

    Google Scholar 

  77. Collatz L.; Meinardus G.; Unger H. (eds): Numerische Mathematik, Differentialgleichungen, Approximationstheorie. (Conf. Inst. Oberwolfach, 1966). Birkhäuser Verlag, Basel, 1968.

    MATH  Google Scholar 

  78. Collatz L.; Meinardus G.; Werner H. (eds): Numerische Mathematik, Differentialgleichungen, Approximationstheorie. I.S.N.M. 30, Birkhäuser Verlag, Basel — Stuttgart, 1976.

    Google Scholar 

  79. Collatz L.; Meinardus G.; Werner H. (eds): Numerische Methoden der Approximationstheorie. I.S.N.M. 42, Birkhäuser Verlag, Basel — Stuttgart, 1978.

    MATH  Google Scholar 

  80. Collatz L.; Meinardus G.; Werner H. (eds): Numerische Methoden der Approximationstheorie. I.S.N.M. 52, Birkhäuser Verlag, Basel — Stuttgart, 1980.

    MATH  Google Scholar 

  81. Collatz L.; Meinardus G.; Werner H. (eds): Numerical method of approximation theory. I.S.N.M. 59, Birkhäuser Verlag, Basel 1982.

    Google Scholar 

  82. Collatz L.; Meinardus G.; Nürnberger G. (eds): Numerical methods of approximation theory. I.S.N.M. 81, Birkhäuser Verlag, Basel, 1987.

    MATH  Google Scholar 

  83. Collatz L.; Meinardus G.; Nürnberger G. (eds): Computing mthode in applied science and engineering. (Second Inter. Symp., Versailles, 1975). Lecture Notes in Econom, and Math. Systems, Vol 134, Springer Verlag, Berlin, 1976.

    Google Scholar 

  84. Collatz L.; Meinardus G.; Nürnberger G. (eds): Nonuniform rational B — splines: Theory and practice. Computer — Aided Design, No. 2, Special Issue, 27 1995.

    Google Scholar 

  85. Conte A.; Demichelis V.; Fontanella F.; Galligani I. (eds): Workshop on computational Geometry. World Sci., Singapore 1992.

    Google Scholar 

  86. Conte S.; Boor C. de: Elementary numerical analysis. Mc. Grow Hill, New York, 1972.

    MATH  Google Scholar 

  87. Cox M.G.; Mason J.C. (eds): Algorithms for the approximation of functions and data. Oxford Univ. Press. I. 1987, II, 1989.

    Google Scholar 

  88. Daehlen M.; Lyche Tom; Schumaker L.L. (eds): Mathematical methods for curves and surfaces. (Internat. Conf. held in June 16–21, 1994 in Ulvik, Norway). Vanderbilt Univ. Press, Vanderbilt, TN. 1995, 578 pp.

    MATH  Google Scholar 

  89. Dahmen W.; Gasca M.; Micchelli C.A. (eds): Contribution to the computation of curves and surfaces. Acad. de Ciencias Exacts, Zaragoza, 1990, 129 pp.

    Google Scholar 

  90. Dahmen W.; Gasca M.; Micchelli C.A. (eds): Computations of curvces and surfaces. Kluwer Acad. Publ., Dordrecht, 1990, X + 536 pp.

    Google Scholar 

  91. Delvos F.J.; Schempp W.: Boolean Methods in interpolation and approximation. Pitman Research Notes in Math. Series, 230, John Wiley and Sons, New York, 1989, 168 pp.

    MATH  Google Scholar 

  92. Demyanovich Yu.K.: Local approximation on a manifold and minimal splines. (russian), Izdatelstvo Sankt-Petersburkogo Universiteta, St. Petersburg, 1994, 356 pp.

    Google Scholar 

  93. DeVore R.A., Lorentz: Constructive approximation — Polynomials and spline approximation. I.S.B.N. Springer Verlag.

    Google Scholar 

  94. DeVore R.A.; Micchelli C.A. (eds): Constructive Approximation Special Issue: Wavelets. Vol. 9, Nrs 2–3, Springer Internat. 1993.

    Google Scholar 

  95. DeVore R.A.; Scherer K.: Quantitative Approximation. Acad. Press. N.Y.. 1980.

    MATH  Google Scholar 

  96. Dierckx P.: Curve and surface fitting with splines. Monographs on Numerical Analysis the Clarendon. Press. Oxford Univ. Press, New York, 1993, XVIII+285 pp.

    MATH  Google Scholar 

  97. Diksit H.P.; Micchilli C.A. (eds): Advances in computational mathematics. World Scientific. Singapore — London — Hong Kong, 1994.

    Google Scholar 

  98. Douglas Jr.; Dupont T.: Collocation methods for parabolic equations in a single space dimension. Lect. Notes in Math. Vol. 385, Springer Verlag, 1974.

    Google Scholar 

  99. Dzjadyk V.K. (ed): Teoria priblijenii funkţii i eio prilojenia. (Sbornik Trudov). Izd. Inst. Mat. Akad. Nauk Ukrain, S.S.R., Kiev, 1974.

    Google Scholar 

  100. Dzjadyk V.K. (ed): Vaprosî teorii priblijenii funkţii i eio prilojenii. (Sbornik Trudov). Izd. Inst. Mat. Akad. Nauk Ukrain, S.S.R., Kiev, 1976.

    Google Scholar 

  101. Dzjadyk V.K. (ed): Studies in the theory of approximation of functions and their applications. (russian). Akad. Nauk Ukrain, S.S.R., Inst. Math. Kiev, 1978.

    Google Scholar 

  102. Dzjadyk V.K.; Korneicuk N.P. (eds): Vaprosî teorii approximaţii funkţii. (russian). Akad. Nauk Ukrain, S.S.R., Inst. Mat. Kiev, 1980.

    Google Scholar 

  103. Eggen Bertus; Luscher N.; Vogt M.J.: Numerische Methoden in CAD. Braunschweig, Friedri Vieweg — Sohn, 1989, 109 pp.

    MATH  Google Scholar 

  104. Eiden Lars; Linde Witmeyer-Koch: Numerical Analysis. Academic Press, Boston — New York — Toronto, 1990.

    MATH  Google Scholar 

  105. Elschner J.: On spline approximation for a class of noncompact integral equations. Report Math. 88-09, Akad. der Wissenschaften der DDR, Berlin, 1988.

    Google Scholar 

  106. Elschner J.; Schmidt G.: On spline interpolation in periodic Sobolev spaces. Akad. Wiss. der D.D.R., Berlin, 1983.

    MATH  Google Scholar 

  107. Eubank R.: Spline smoothing and non — parametric regression. Dekker, New York, 1988.

    Google Scholar 

  108. Farm G. (ed): Geometric modelling. SIAM. Philadelphia, 1987.

    Google Scholar 

  109. Parin G.: Curves and surfaces for computer aided geometric design. Academic Press, Inc. Boston, MA, 1988.

    Google Scholar 

  110. Farm G.: Curves and surfaces for computer aided geometric design. A practical guide. With the contributions of P. Bézier and W. Boehm. Second edition. 1990, XVII + 444 pp. Academic Press, Inc. Boston, MA, 1990, Third Edition, 1993, XVIII + 473 pp.

    Google Scholar 

  111. Farin G. (ed): NURBS for curves and surface design. Philadelphia SIAM Publ. ISBN, 1991, 200 pp. Papers from SIAM Conf on Geom. Design held in Tempe, Arizona, 1990.

    Google Scholar 

  112. Farin G.: NURBS curves and surfaces. AK Peters, Ltd. Wellesley, MA 1995, XII + 229 pp.

    Google Scholar 

  113. Fedotova Ye.A.: Practical hints on the use of the spline approximation in ”Polye” programming system. Kharkov, 1984.

    Google Scholar 

  114. Fejes Juliu: Funcţii Spline in teoria mecanismelor. Editura Ştiinţifică şi Enciclopedică, Bucureşti, 1981.

    Google Scholar 

  115. Fiorot J.C.; Jeannin P.: Courbes splines rationnelles. Masson, Paris, 1992, 275 pp. (english edition by John Wiley), Chichester 1992, XIV + 322 pp.

    Google Scholar 

  116. Fredrickson P.: Triangular spline interpolation. Whitehead University, 670, Canada.

    Google Scholar 

  117. Fleisher J.: Spline smoothing routines. Reference Manual for the 1110. Academic Computer Center, Univ. of Wisconsin, Madison, 1979.

    Google Scholar 

  118. Frehse J.; Leis R.; Schaback R. (eds): Finite Elements. Tagungsband des Sonderforschungsbereiches 72. Bonner. Math. Schriften 89, Bonn, 1976.

    Google Scholar 

  119. Freiman C.V. (ed): Information Processing 71. (Proc. IFLP Congres, Ljubliana, 1971). North — Holland Publ. Co. Amsterdam, 1972.

    MATH  Google Scholar 

  120. Friedman J.; Grosse E.; Stuetzle W.: Multidimensional additive spline approximation. SLAC PUB. 2504, Stanford Univ., 1980.

    Google Scholar 

  121. Gabushin V.N.; Bunykov M.A.; Mironov V.I.: Splines and numerical metods of approximation theory. Academy of Sciences USSR, Center of Math. Ural, Sverdlovsk, 1984 (russian).

    Google Scholar 

  122. Gagev B.M. (ed): Prilojenia funcţionalynovo analiza s priblijennîm vîcislenia. Izd. Kazanscovo Univ., Kazan, 1974.

    Google Scholar 

  123. Garabedian H.L. (ed): Approximation of Functions. (Proc. Symp. on Approx of Functions, Warren, Michigan, 1964). Elsevier, Amsterdam, 1965.

    Google Scholar 

  124. Garnic H.G.; Unni K.R.; Williamson J.L. (eds): Functional analysis and its applications. (Proc. Inter. Conf. Madras, 1973). Springer Verlag, Berlin-Heidelberg-New York, 1973.

    Google Scholar 

  125. Gasca M.; Micchelli C.A. (eds): Computation of curves and Surfaces. Kluwer Acad. Publishers, Dordrecht, 1990.

    Google Scholar 

  126. Gasca M.; Micchelli C.A. (eds): Total positivity and its applications. Kluwer Acad. Publishers, 1996, 532 pp.

    Google Scholar 

  127. Gasser T.; Rosemblatt M (eds): Smoothing technique for curve estimation. Lecture Notes in Math. 759, Springer Verlag, 1979.

    Google Scholar 

  128. Gerald C.F.: Applied numerical analysis. Addison — Wesley, Reading, 1970.

    MATH  Google Scholar 

  129. Gladwall I.; Wait R. (eds): Survey on numerical methods for partial differential equations. Clarendon Press. Oxford, 1979.

    Google Scholar 

  130. Glowinski R.; Lions J.L. (eds): Computing methods in applied sciences and engineering I–II. (Proc. Third. Internat. Symp. Versailles, 1978). I. Lecture Notes in Math. 704, II. Lecture Notes in Physics, 91, Springer Verlag, Berlin — New York, 1979.

    Google Scholar 

  131. Glowinski R.; Rodin E.Y.; Zienkiewicz C. (eds): Energy methods in finite element analysis. (Wiley Series in Num. Math. in Engineering). Wiley, Chichester — New York — Brisbane, 1979.

    MATH  Google Scholar 

  132. Godunov S.K.; Miller J.J.H.; Novikov V.A. (eds): BAIL IV. Proceed. Fourth. Intern. Conf. on Boundary and Interior Layers — Comput and Asymp. Methods, Novosibirsk, Conf. Series, Vol. 10, Dublin, Boole Press, I.S.B.N., 1986.

    MATH  Google Scholar 

  133. Goldman R.N.; Lyche Tom (eds): Knot insertion and deletion algorithms for Bspline curves and surfaces. Geometric Design Publications. SIAM, Philadelphia, PA, 1993, XIV + 197 pp.

    Google Scholar 

  134. Gomez A.; Guerra F.; Jiménez M.A.; Lopez G. (eds): Approximation and optimization. Proceed. Int. Sem. Havana, Cuba, Jan. 1987, Lect. Notes in Math. 1354, Springer, Berlin, 1988.

    MATH  Google Scholar 

  135. Grebennikov A.I.: Methodî splainov v cislenom analize. Moskov. Gos. Univ., Moscov, 1979.

    Google Scholar 

  136. Grebennikov A.I.: Method of splines and solution of illpoised problems in approximation theory. (russian). Moskva. Izd. Mosk. Univ. 1983.

    Google Scholar 

  137. Grebennikov A.I.: Metodî i algoritmî v cislennom analise. Izd. Mosk. Gos. Univ. Moskow, 1984.

    Google Scholar 

  138. Grebennikov A.I.: Mathematical modeling methods, automation of the processing of observations and their applications. Moskov. Gos. Univ., Moskow 275, 1986, (russian).

    Google Scholar 

  139. Greville T.N.E. (ed): Theory and applications of spline functions. (Proc. Seminar M.R.C. Univ. Wisconsin, 1968). Acad. Press, New York, 1969.

    MATH  Google Scholar 

  140. Grusa Karl — Ulrich: Zweidimensionale interpolierende Lg — Splines und ihre Anwendungen. Lecture Notes in Math. 916, Springer Verlag, Berlin — Heidelberg — New York, 1982.

    MATH  Google Scholar 

  141. Hackbusch W.: Integralgleichungen. Theorie und Numerik. Teubner, Stuttgart, 1989.

    MATH  Google Scholar 

  142. Hagen ten P.J.T. (ed): Eurographics’83. North — Holland, Amsterdam, 1983.

    Google Scholar 

  143. Hagen H. (ed): Topics in surface modelling. SIAM Publ. Philadelphia, 1992, X+219 pp.

    Google Scholar 

  144. Hagen H. (ed): Curve and surface design. SIAM Publ. Philadelphia, 1992, X+205 pp.

    MATH  Google Scholar 

  145. Hagen R.; Roch S.; Silbermann B.: Spectral theory of approximation methods for convolution equations. Operator Theory: Advances and Applications, vol. 74, Birkhäuser, 1995, XII + 373 pp.

    Google Scholar 

  146. Hagen H.; Roller D. (eds): Geometric modelling. Methods and Aplications. Springer Verlag, Berlin, 1991, VIII + 286 pp.

    Google Scholar 

  147. Hakopian H.; Bojanov B.: Theory of spline functions. (bulgarian). Nauka i Izkustvo, Sofia, 1990.

    Google Scholar 

  148. Hämmerlin G.: Numerische Mathematik. Bibliographisches Institut, Mannheim, 1970.

    MATH  Google Scholar 

  149. Hämmerlin G. (ed): Numerische Integration. (Conf. Inst. Oberwolfach, 1978). I.S.N.M. 55, Birkhäuser Verlag, Basel — Stuttgart, 1979.

    MATH  Google Scholar 

  150. Hämmerlin G.; Hoffmann K.H. (eds): Constructive methods for the practical treatment of integral equations. ISNM 73 (1985), Birkhäuser Verlag, Basel — Boston — Stuttgart.

    Google Scholar 

  151. Hämmerlin G.; Hoffmann K.H. (eds): Numerische Mathematik. Springer Verlag, I.S.B.N., 1989.

    Google Scholar 

  152. Handseomb D.C. (ed): Methods of numerical approximation. Pergamon Press. Oxford, 1966.

    Google Scholar 

  153. Handscomb D.C. (ed): Multivariate Approximation. Acad. Press. London — New York — San Francisco, 1978.

    MATH  Google Scholar 

  154. Handscomb D.C. (ed): The Mathematics of surfaces III. (Proceedings Third Conf. Oxford, Sept. 19–21, 1988). Clarendon Press, Oxford Univ. Press. New York, 1989.

    MATH  Google Scholar 

  155. Haussmann W.; Jetter K. (eds): Multivariate approximation and interpolation. I.S.N.M. 94, (1990), Birkhäuser Verlag, Basel — Boston — Berlin.

    MATH  Google Scholar 

  156. Hayes J.G. (ed): Approximations of functions and data. (Proc. Conf. Inst. Math. Appl., Canterbury, 1967). Athlone Press, 1970.

    Google Scholar 

  157. Henrici P.: Esentials of numerical analysis. Wiley, New York — Toronto, 1982.

    Google Scholar 

  158. Herceg D. (ed): Numerical method and approximation theory II. Univ. of Novi Sad. Inst. of Math. Fac. of Sci. Novi Sad, 1985, DC + 206 pp.

    Google Scholar 

  159. Holland A.S.B.; Sahney B.N.: The general problem of approximation and spline functions. R.E. Krieger Publ. Company, Huntington, New York, 1979.

    MATH  Google Scholar 

  160. Holmes R.B.: A course on optimization and best approximation. Lecture Notes in Math. Springer Verlag, Heidelberg, 1972.

    MATH  Google Scholar 

  161. Hosaka M.: Modeling of curves and surfaces in CAD/CAM. Springer-Verlag, New York, 1992.

    Google Scholar 

  162. Hoschek J. (ed): Free — form curves and free — forms surfaces. CAGD 10 (1993), No 3–4, Elsevier Scientific Publ. Co., Amsterdam, 1993.

    Google Scholar 

  163. Hoschek J.; Lasser D.: Grundlagen der geometrischen Datenverarbeitung. Teubner, Stuttgart, 1989.

    MATH  Google Scholar 

  164. Hoschek J.; Lasser D.: Fundamentals of Computer Aided Geometrie Design. Peters, USA, 1995.

    Google Scholar 

  165. Hubbard B.E. (ed): Numerical solution of partial differential equations II. Acad. Press, New York, 1971.

    MATH  Google Scholar 

  166. Huber P.J.: Robust statistics. Wiley, New York, 1981.

    MATH  Google Scholar 

  167. Ignatov M.I.; Pevnyi A.B.: Natural splines of several variables. (russian). Nauka Leningrad. Otdelenie, Leningrad, 1991, 126 pp.

    Google Scholar 

  168. Hin V.P. (ed): Numerical method and mathematical modeling. (russian). Akad. Nauk SSSR Sibirsk. Otdel. Novosibirsk 1990, 167 pp.

    Google Scholar 

  169. Ilioi C.: Splines and finite elements. Published by Fac. of Math., Univ. Iaşi, Romania, 1996, 168pp.

    Google Scholar 

  170. Ionescu D.V.: Cuadraturi numerice. Ed. Tehnică, Bucureşti, 1957.

    MATH  Google Scholar 

  171. Ionescu D.V.: Diferenţe Divizate. Ed. Acad. R.S.R, Bucureşti, 1978.

    MATH  Google Scholar 

  172. Iserles A.; Powell M.: State of the art in numerical analysis. Institute Mathematics Applications, Essex, 1987.

    MATH  Google Scholar 

  173. Jetter K.; Utreras F.I.(eds): Multivariate approximation: From CAGD to Wavelets. World Scientific, Singapore, 1993.

    MATH  Google Scholar 

  174. Jordan Engeln G.; Reutter F.: Numerische Mathematik für Ingineure. Bibliographisches Institut, Mannheim, 1972.

    Google Scholar 

  175. Joubert G.R. (ed): Proceedings of the seventh South — African symposium on numerical mathematics. University of Natal. Durban, 1981.

    MATH  Google Scholar 

  176. Jovanoviç B.S. (ed): VI Conference on applied mathematics. Tara (Yugoslavia), 31.8-3.9. 1988, Univ. of Belgrad, 1989.

    Google Scholar 

  177. Karlin S.: Total positivity. Stanford Univ. Press., Stanford, 1968.

    MATH  Google Scholar 

  178. Karlin S.; Micchelli C.A.; Pinkus A.; Schoenberg I. J.: Studies in spline functions and approximation theory. Acad. Press. New York, 1976.

    MATH  Google Scholar 

  179. Karlin S.; Studden W.J.: Tschebyscheff systems with applications in analysis and statistics. Interscience, New York, 1966.

    Google Scholar 

  180. Kirov G.H.: Approximation with quasi — splines. Inst. of Physics, Bristol, 1992, VIII + 251 pp.

    MATH  Google Scholar 

  181. Knopp K.: Theory and application of infinite series. Hafner, New York, 1971.

    Google Scholar 

  182. Korneychuk N.P.: Splainî v teorii priblijenia. Nauka, Moskva, 1984, 352 pp.

    Google Scholar 

  183. Korneychuk N.P.: Extremal problems in approximation theory, (russian). Nauka, Moskva, 1976, 320 pp.

    Google Scholar 

  184. Korneychuk N.P. (ed): Questions of analysis and approximations. Collection of scientific works. (russian), Kiev; Institut Mat. A N USSR., 1989, 122 pp.

    Google Scholar 

  185. Korneychuk N.P.; Babenko V.F.; Ligun A.A.: Extremal properties of polynomials and splines. (russian), Naukova Dumka, Kiev, 1992, 304 pp.

    Google Scholar 

  186. Korneychuk N.P.; Stechkin S.B.; Telyakovski S.A. (eds): Theory of the approximation of functions. (russian). Proceed. Internal. Conf. Kiev, 1983, Nauka, Moskva, 1987.

    Google Scholar 

  187. Kuznefsov A.Yu. (ed): Approximation and interpolation methods. (russian). Akad. Nauk SSSR, Sibirsk. Otdel. Novosibirsk, 1981, 156 pp.

    Google Scholar 

  188. Kvasov B.I.: Iteraţionnîi metod postroenija polikubiceskih splain — funkţii i nehatorie primerî ispolzovanija poslednîh. Otcet N.I.S. Univ. Novosibirsk, 1972, 101 pp.

    Google Scholar 

  189. Kvasov B.I. (ed): Modelirovanie v mehanike. Sbornik naucinîh trudov. Akad. Nauk SSSR Sibirskoe Otdelenie, Tom 5, Novosibirsk, 1991.

    Google Scholar 

  190. Lancaster P., Salkauskas K.: Curve and surface fitting. An introduction. Academic Press, New York, 1986.

    MATH  Google Scholar 

  191. Langer R.E. (ed): On numerical approximation. Proc. Symp. M.R.C. Univ. of Wisconsin Press, Madison, 1959.

    MATH  Google Scholar 

  192. Lapidus L.; Schiesser W.E. (eds): Numerical methods for differential systems. Recent developments in algorithms, software and applications. Acad. Press. New York — London, 1976.

    MATH  Google Scholar 

  193. Launer R.L.; Wilkinson G.N. (eds): Robustness in statistics. Academic Press, New York, 1979.

    MATH  Google Scholar 

  194. Laurent P.J.: Approximation et Optimization. Hermann. Paris, 1972.

    Google Scholar 

  195. Laurent P.J.; Méhautéle Alain, Schumaker L.L. (eds): Curves and surfaces. Proc. Int. Conf. in Chamonix-Mont — Blanc, June 1990, Academic Press, 1991, XVIII + 514 pp.

    Google Scholar 

  196. Laurent P.J.; Méhautéle Alain, Schumaker L.L. (eds): Curves and surfaces in geometric design. Proc. Second Internat. Conf. in Chamanix — Mont — Blanc, June, 10–16, 1993, A.K. Peters, Ltd. Wellesleg, MA, 1994, XVI + 490 pp.

    MATH  Google Scholar 

  197. Laurent P.J.; Méhautéle Alain, Schumaker L.L. (eds): Wavelets, images and surface fitting. Proc. Second Internat. Conf. in Chamanix — Mont — Blanc, June, 10–16, 1993, A.K. Peters, Ltd. Wellesleg, MA, 1994, XVI + 529 pp.

    MATH  Google Scholar 

  198. Laurie D.P. (ed): Symposium on numerical mathematics, 11 th. South Africa, July, 8–10, 1985. J. Comput. Appl. Math. 18/1987/, North — Holland, Publ. Co. Amsterdam — New York, 1987, 128 pp.

    Google Scholar 

  199. Law A.G.; Sahnei B.N. (eds): Theory of approximation with applications. Proc. Conf. Univ. Calgary, Alberta, 1975.

    Google Scholar 

  200. Li Yue Sheng: Spline function and interpolation. (chinese). Shanghai Science and Technology Press, 1983.

    Google Scholar 

  201. Li Y.; Qi D.: Spline function methods. (chinese). Chinese Science, Publ. Beijing. Beijing, 1979.

    Google Scholar 

  202. Livshits K.I.: Smoothing of experimental data by splines. (russian) Tomsk. Gos. Univ. Tomsk, 1991, 181 pp.

    Google Scholar 

  203. Locher F.: Numerische Mathematik für Informatiker. Springer Verlag, 1992.

    Google Scholar 

  204. Lorentz G.G. (ed): Approximation Theory. Acad. Press. New York-London, 1973.

    MATH  Google Scholar 

  205. Lorentz G.G.; Chui C.K.; Schumaker L.L. (eds): Approximation Theory II. (Proc. Internat. Sympos. Univ. Texas, Austin, 1976), Acad. Press. New York — London, 1976.

    MATH  Google Scholar 

  206. Lorentz G.G.; Jeffer K.; Riemenschneider S.D.: Birkhoff interpolation. Addison — Wesley Publ. Co. 1983.

    Google Scholar 

  207. Lyche Tom; Schumaker L.L. (eds): Mathematical methods in computer aided geometric design. I. Acad. Press, Boston, 1989, XV + 611 pp. II. Acad. Press, Boston, 1992. XVIII + 626 pp.

    MATH  Google Scholar 

  208. Makarov V.L.; Khlobystov V.V.: Spline — approximation of functions. (russian). Moskva, Vyshaya Shkola 80 pp., 1983.

    Google Scholar 

  209. Malozemov V.N.; Pevnyi A.B.: Polinomial splines. (russian). Leningrad Univ Leningrad, 1986, 120 pp.

    Google Scholar 

  210. Marčuk G.I.: Variational — difference methods in mathematical physics. (Proc. of the All — Union Conference, Novosibirsk, 1977), Akad. Nauk. SSSR. Sibirsk. Otdel. Vycisl. Centr. Novosibirsk, 1978.

    Google Scholar 

  211. Marek Ivo (ed): Proceedings of the second int. Symp. on numerical Analysis. (ISNA), Prague, August 1987. Teubner, Leipzig 107, 1988.

    Google Scholar 

  212. Martin R.R. (ed): The Mathematics of Surface, I, II. Clarendon Press, Oxford, 1987.

    Google Scholar 

  213. Mason J.C.; Cox M.G. (eds): Algorithms for approximation II. Proceedings of the Second Intern. Conf. held at the Royal Military College of Science, Shrivenham, July 12–15, 1988. Chapman and Hall Ltd. London, 1990, (XVIII +514 pp.).

    MATH  Google Scholar 

  214. McCartin B.J.: Theory, computation and applications of exponential splines. DOE /E.R./03077-171, Oct. 1981.

    Google Scholar 

  215. McCarthy D.; Williams M.C. (eds): Manitoba Conference on Numerical Mathematics and Computing. Winnipeg, Man., 1977. Utilitas Mathematica Publ.Inc. Winnipeg, Manitoba, 1978.

    Google Scholar 

  216. McKenna J.; Ternana R. (eds): ICIAM’87. Proced of the l’intern. Conf. of ind. and appl. math. Paris, 1987, SIAM, Philadelphia, PA, ISBN, 1988.

    Google Scholar 

  217. Medveev N.V.: Application of splines in approximation theory. (russian). Guvaš Gos. Univ. Cheboksary, 1977.

    Google Scholar 

  218. Meek D.S.; van Rees G.H.J. (eds): Manitoba Conference on Numerical Mathematics and Computing I. Univ. of Manitoba, Winnipeg, 1981. Utilitas Mathematica Publ. Inc. Winnipeg, Manitoba, 1982, II. Univ. of Manitoba Winnipeg 1985, Idem 1986.

    Google Scholar 

  219. Meek D.S.; Stanton R.G.; Rees G.H.J van (eds): Proceed. of the eighteenth Manitoba conference. Univ. Manitoba, Oct. 1988, Congressus Numerantium 68, 69, Winnipeg. Utilitas Math. Publ. Inc., 1989.

    Google Scholar 

  220. Le Méhauté A.: Piecewise polynomial interpolation in R n: Basic aspects of the finite element method. CAT 113 Texas A M University, 1986.

    Google Scholar 

  221. Meinardus G. (ed): Approximation in Theorie und Praxis. (Proc Sympos. Siegen, 1979). Bibliographisches Institut Mannheim-Wien — Zurich, 1979.

    MATH  Google Scholar 

  222. Meinardus G.; Nürnberger G. (eds): Delay Equations. Approximation and Application. (Proc. International Symposium at the Univ. of Mannheim.) Oct. 8–11, 1984. Birkhäuser Verlag, Basel, 1985.

    MATH  Google Scholar 

  223. Meir A.; Sharma A. (eds): Spline functions and approximation theory. Birkhäuser Verlag. 1973.

    Google Scholar 

  224. Merz P.: Spline smoothing by generalized cross — validation, a technique for data smoothing. Chevron Research Company. Richmond, CA.

    Google Scholar 

  225. Micchelli C.A.: Mathematical Aspects of Geometric Modeling. SIAM CBMS-NSF, Regional Conference Series in Applied Mathematics 65, 1994, IX + 256 pp.

    Google Scholar 

  226. Micchelli C.A.; Pai D.V.; Lymaye B.V. (eds): Methods of functional analysis in Approximation Theory. Birkhäuser Verlag, Basel, Boston, Stuttgart, 1986, 410 pp.

    MATH  Google Scholar 

  227. Micchelli C.; Rivlin T.J.: Optimal estimation in Approximation Theory. Plenum Press, New York, 1977.

    MATH  Google Scholar 

  228. Micchelli C.A.; Said H.B. (eds): Computer aided geomtric design. Proceed. Internat. Conf., CAGD, Penany, Malaysia, July 4–8, 1994. Ann. Numer. Math. 3, No. 1–4, 424 pp., 1996.

    Google Scholar 

  229. Micula G.: Funcţii spline şi aplicaţii. Ed. Tehnică, Bucureşti, 1978.

    MATH  Google Scholar 

  230. Micula G.: Bibliografie asupra funcţiilor spline. Litografa Univ. Cluj — Napoca, Cluj — Napoca, 1977.

    Google Scholar 

  231. Micula G.: Theorie und Anwendung von Spline — Funktionen. Literaturverzeichnis. Preprint Nr. 890. Technische Hochschule, Darmstadt, 1985, 1625.

    Google Scholar 

  232. Micula G.: Theorie und Anwendung von Spline — Funktionen. Preprint Nr. 1071, Juli, 1987. Technische Hochschule Darmstadt, 1987.

    Google Scholar 

  233. Micula G.: Theorie and Applications of Spline Functions. Freie Universität Berlin. Preprint Nr. A 89/1. Fachbereich Mathematik. Serie Mathematik, 1989, 249 pp.

    Google Scholar 

  234. Micula G.; Gorenflo R.: Theory and applications of spline functions. Part I and Part II. Preprint Nr. A — 91 — 33. Freie Universität Berlin, Fachbereich Mathematik, Serie A Mathemetik, Berlin, 1991.

    Google Scholar 

  235. Mitchell A.R.: Computational methods in partial differential equations. Wiley, Aberdeen, 1969.

    MATH  Google Scholar 

  236. Morrell A.J.H. (ed): Information Processing 68. Mathematics Software. North-Holland Publ. Co. Amsterdam, 1969.

    Google Scholar 

  237. Motornyj V.P. (ed): Studies on modern problems of summation and approximation of functions and their applications. Collection of scientific works (russian). Dnepropetrovsk Gosud. Univ. (URSS), 1987, 132 pp.

    Google Scholar 

  238. Miihlenbeim H.: Die numerische Losung der Schalengleichung mit verallgemeinerten bikubischen Splinefunktionen. R. Oldenbourg Verlag, München — Wien, 1977.

    Google Scholar 

  239. Nevai P.; Pinkus A. (eds): Progress in approximation theory. Academic Press, Inc. Boston, MA, 1991, XII + 916 pp.

    MATH  Google Scholar 

  240. Nikolski S.M.: Kvadraturnîe formulî. (russian). Third edition. Nauka, Moskow, 1979.

    Google Scholar 

  241. Nikolski S.M. (ed): Theory of functions and approximations Part 1. (russian). Proceed. of the Third Saratov Winter School Saratov, Ian. 27-Febr. 7, 1986. Saratov Gos. Univ. 1987, 156 pp.; Part. 2, 1988, 160 pp.

    Google Scholar 

  242. Noye J. (ed): Numerical solution of partial differential equation. (Proc. Conf. Num. Sol. Diff. Eqs., Queen’s College. Melbourne Univ. 1981). North — Holland, Publ. Co. 1982.

    Google Scholar 

  243. Nürnberger G.: Approximation by Spline Functions. Springer Verlag, Berlin — Heidelberg — New York, 1989, 243 pp.

    MATH  Google Scholar 

  244. Nürnberger G.; Schmidt J.W.; Walz G. (eds): Multivariate approximation and splines. Birkhäuser V., ISNM Vol.125, Basel, 1997.

    Google Scholar 

  245. Ortega J.M.; Rheinboldt W.C. (eds): Numerical solution of nonlinear problems. SIAM. Philadelphia. (PA), 1970.

    MATH  Google Scholar 

  246. Ortiz Eduardo L. (ed): Numerical approximation of partial differential equations. Proceed. Internat. Symp. Madrid, 1985, North — Holland, Publ. Co. Amsterdam — New York, 1987, 433 pp.

    MATH  Google Scholar 

  247. Pavlidis T.: Algorithms for Graphics and Image processing. Computer Science Press, Rockville, M.D., 1982.

    Google Scholar 

  248. Penkov B.; Vacov D. (eds): Constructive function theory. (Proc. Conf. Varna, 1970). Publ. House Bulgarian Acad. Sci. Sofia, 1972.

    Google Scholar 

  249. Penkov B.; Vacov D. (eds): Physics and mechanics of nonlinear phenomena. (russian) Nauka. Dumka. Kiev. 1979.

    Google Scholar 

  250. Piegl A.L. (ed): Fundamental Developments of Computer-Aided Geometric Modeling. Acad. Press, 1993.

    Google Scholar 

  251. Piegl L.; Tiller W.: The nonuniform rational B — splines. Book. Springer Verlag, USA, 1995.

    Google Scholar 

  252. Poirier D.J.: The econometrics of structural change with special emphasis on spline functions. North — Holland, Publ. Co. Amsterdam, 1976.

    MATH  Google Scholar 

  253. Poirier D.J.: Polynomial and spline approximation. Theory and applications. Proc. NATO Adv. Study Inst. Calgary, 1978. Reidel Publ., Dordrecht, 1979, 321 pp.

    Google Scholar 

  254. Popov B.A.: Uniform approximation by splines. (russian). Naukova Dumka, Kiev, 1989, 272 pp.

    MATH  Google Scholar 

  255. Powell M.J.D.: Approximation theory and methods. Cambridge University Press. Cambridge-New York, 1981.

    MATH  Google Scholar 

  256. Prenter P.M.: Spline and variational methods. Wiley, New York-London, 1975.

    Google Scholar 

  257. Prenter P.M.: Proc. Internat. Congr. Math. Vancouver. Vol.2 1975.

    Google Scholar 

  258. Prenter P.M.: Proc. Symp.Appl. Math. XXII. American Mathematical Society. Providence. R.I., 1978.

    Google Scholar 

  259. Prenter P.M.: Programî Optimizaţii (russian). (Sbornik Trudov). Vîpusk 6 Swerdlowsk, 1975.

    Google Scholar 

  260. Prössdorf S.; Silbermann B.: Numerical analysis for integral and related operator equations. Birkhäuser Verlag, Basel, 1991.

    Google Scholar 

  261. Qing Hua Du; Masataka Tanaka (eds.): Theory and applications of boundary element methods. Proceeds. of the Fourth China-Japan Symposium of BEM. Internat. Academic Publishers, Beijing, 1991, XII + 478 pp.

    Google Scholar 

  262. Ralston A.; Wilf H.S. (eds.): Mathematical methods for digital computers, vol.II. Wiley, New York, 1967.

    MATH  Google Scholar 

  263. Rice J.R.: The approximation of functions, vol.II. Nonlinear and multivariate theory. Addison-Wesley, Reading, 1969.

    Google Scholar 

  264. Risler I.J.: Mathematical methods for CAD. Cambridge University Press., Cambridge, 1992.

    MATH  Google Scholar 

  265. Rivlin T.J.: An introduction to the approximation of functions. Blatsdell Publ. Co. Waltham, 1969.

    MATH  Google Scholar 

  266. Rogers D.F.; Adams J.A.: Mathematical elements for computer grafics.

    Google Scholar 

  267. Rustagi J.S. (ed): Optimizing method in statistics. (Proc. Symp. Ohio State Univ. 1971). Acad. Press, New York, 1971.

    Google Scholar 

  268. Sahney N. Badri (ed): Polynomial and spline approximation. Theory and applications. (Proc. NATO Advanced Study, Calgari, 1978). D. Reidei Publ. Co. Dordrecht-Boston, Mass-London, 1979.

    Google Scholar 

  269. Sapidis N.S. (eds): Designing fair curves and surfaces. SIAM Philadelphia, 1994, McGrow-thill. Publ.Comp., New-York, 1990.

    Google Scholar 

  270. Sard A.: Linear Approximation. Amer. Math. Soc. Providence, Rhode Island, 1963.

    MATH  Google Scholar 

  271. Sard A.; Weintraub S.: A book of Splines. Wiley, New York, 1971.

    MATH  Google Scholar 

  272. Sauer R.; Szabo I. (eds): Mathematische Hilfsmittel das Ingineurs. Vol.3. Springer Verlag. Berlin, 1968.

    Google Scholar 

  273. Schabaek R.; Scherer K. (eds): Approximation Theory. (Proc. Internat. Colloq. Inst. Math. Univ. Bonn, 1976). Lecture Notes in Math. 556. Springer — Verlag, Berlin — New York, 1976.

    Google Scholar 

  274. Schäffer K.A.: Splinefunktionen in der Statistik. Vandenhoeck-Ruprecht, Göttingen, 1978.

    MATH  Google Scholar 

  275. Schempp W.: Complex contour integral representation of cardinal spline functions. Contemporary Math. vol 7 AMS. Providence Rhode, Island, 1982.

    Google Scholar 

  276. Schempp W.; Zeller K. (eds): Constructive theory of functions of several variables. Lecture Notes in Math. 571, Springer Verlag Berlin-New York, 1977.

    MATH  Google Scholar 

  277. Schempp W.; Zeller K. (eds): Multivariate approximation theory I, II, III, IV. (C.K. Chui), I.S.N.M. I. Proc.Conf. M.R.I. Oberwolfach, 1979. Birkhäuser Verlag, vol 51, 1979. II. Proc.Conf. M.R.L Oberwolfach, 1982. Birkhäuser, 1982, vol 61. III. Proc.Conf. M.R.I. Oberwolfach, 1985. Birkhäuser, 1985, vol 75. IV. Proc.Conf. M.R.I. Oberwolfach, 1989. Birkhäuser, 1989, vol 90.

    Google Scholar 

  278. Schmidt G.: Splines und die näherungsweise Lösung von Pseudo-differentialgleichungen auf geschlossenen Kurven. Report Math. 86–9. Akad. der Wissenschaftender D.D.R., Berlin, 1986, 166 pp.

    Google Scholar 

  279. Schmidt J.W.; Späth H. (eds): Spline in Numerical Analysis. Akademie-Verlag, Berlin, 1989. Contr. Int. Sem. ISAM-89, Weissing, G.D.R., 1989.

    Google Scholar 

  280. Schoenberg I.J. (ed): Approximation with special emphasis on spline functions. (Proc. Sympos. M.R.C. Univ. Wisconsin, Madison, 1969). Acad. Press. New York, 1969.

    MATH  Google Scholar 

  281. Schoenberg I.J.: Cardinal spline interpolation. CBMS 12. SIAM. Philadelphia, 1973.

    Google Scholar 

  282. Schoenberg I.J.: Mathematical Time Exposures. The Mathematical Association of America, 1982 (Translated in romanian as: Privelişti Matematice, 1988), 270 pp.

    Google Scholar 

  283. Schultz M.M.: Spline analysis. Printice Hall. Englewood Cliffs, 1973.

    MATH  Google Scholar 

  284. Schumaker L.: Spline functions. Basic Theory. Wiley New York — Chichester-Brisbane — Toronto, 1981.

    MATH  Google Scholar 

  285. Schurer F.; van Rooij P.J.L.: A bibliography on spline functions. Technological Univ. Eindhoven. Eindhoven, 1973, T.H. — Report 73.-W. S.K.-01.

    Google Scholar 

  286. Scitovski R. (ed): VII Conference on Applied Mathematics. Univ. of Osijek, 1990, VIII + 236 pp., Yugoslavia

    Google Scholar 

  287. Sendov B.; Lazarov R.D. (eds): Numerical methods and applications. (Proceed. Internat. Conf. Sofia, August, 1989). Publ. House Bulgarian Acad. of Sciences, Sofia, 1989, 583 pp.

    MATH  Google Scholar 

  288. Sendov B.; Petrushev P.; Maleev R.; Tashev S. (eds): Constructive Theory of Functions’ 84. Bulgarian Acad. Sciences, Sofia, 1984.

    Google Scholar 

  289. Sendov B.; Petrushev P.; Ivanov K.; Maleev R.: Constructive theory of functions’ 87. Bulgarian Acad. Sciences, Sofia, 1988.

    Google Scholar 

  290. Seymour V.P. (ed): Numerical method for partial differential equations. Academic Press. New York — London — Toronto, 1979.

    Google Scholar 

  291. Singh P.S. (ed): Approximation Theory. Wavelet and Applications. Kluwer Acad. Publ. Dordrecht, 1995.

    Google Scholar 

  292. Singh P.S.; Carbone A.; Charon R.: Approximation theory, spline functions and applications. (Proceedings NATO Advanced Study Inst., Maratea, Italy, April — May 1991), NATO Adv. Sci. Inst. Series, Math. and Phys. Sci. 356, 1992, Kluwer Academic Publisher, Dordrecht — Boston — London, 1992, 480 pp.

    MATH  Google Scholar 

  293. Singh S.P.; Burry J.H.W.; Watson B. (eds): Approximation theory and spline functions. Dordrecht; O Reidel Publishing Company, 1984.

    MATH  Google Scholar 

  294. Slaby M. Steve; Stachel H.(eds): Proceedings of the Third International Conference on Engineering Graphics and Descriptive Geometry, vol 2 (Heldin Vienna, July 11–16, 1988) Techn. Univ. of Vienna, 1988, VIII + 349 pp.

    Google Scholar 

  295. Snijman J.A. (ed): Proceedings of nineth South Africa Symposium on numerical mathematics. Durban. Univ. of Natal, 1983.

    Google Scholar 

  296. Shisha O. (ed): Inequalities I, II, III. Academic Press. New York, 1965, 1967, 1970.

    Google Scholar 

  297. Sokolnikoff I.S.: Mathematical theory of elasticity. McGraw — Hill, New York, 1956.

    MATH  Google Scholar 

  298. Späth H.: Algorithmen für elementare Ausgleichsmodelle. R. Oldenburg, München, 1973.

    MATH  Google Scholar 

  299. Späth H.: Spline Algorithms for Curves and Surfaces. Winnipeg. Utilitas Math. Publ. Co. 1974.

    MATH  Google Scholar 

  300. Späth H.: Eindimensionale Spline — Interpolations — Algorithmen. Oldenbourg Verlag, München, 1990, 391 pp.

    MATH  Google Scholar 

  301. Späth H.: Zweidimensional Spline — Interpolations — Algorithmen. Oldenbourg Verlag, München, 1991, 293 pp.

    Google Scholar 

  302. Späth H.: Spline-Algorithmen zur Konstruktion glatter Kurven und Flächen. Oldenbourg Verlag, München, 1978.

    MATH  Google Scholar 

  303. Späth H.: One dimensional spline interpolation algorithms. Wellesley — Peters (ISBN 1-56881-016-4), X+404 p, 1995.

    Google Scholar 

  304. Späth H.: Two-dimensional spline interpolation algorithms. A.K. Peters Ltd. Wellesley M.A., VIII-304 pp., 1995.

    MATH  Google Scholar 

  305. Stěckin S.B. (ed): Approximation of functions by polynomials and splines. (russian). Trudî Mat. Inst. Steklov, 145 (1980), Nauka, Moskow, 1980.

    Google Scholar 

  306. Stěckin S.B. (ed): A collection of papers from All-Union School on the theory of functions. (russian). Trudî Mat. Inst. Steklov, 189 (1989), Nauka, Moscow, 1989, 200 pp.

    Google Scholar 

  307. Stěckin S.B.; Subotin Ju.N.: Splainî v vîcislitelnoi matematike. Nauka. Moskva, 1976.

    Google Scholar 

  308. Stěckin S.B.; Teljakovski S.A. (eds): Theory of approximation of functions. (russian). (Proc. Internat. Conf. Kaluga, 1975). Izd. Nauka, Moskow, 1977.

    Google Scholar 

  309. Stoer J.: Einführung in die numerische Mathematik I. Springer Verlag, Heidelberg, 1972.

    MATH  Google Scholar 

  310. Strasser W.; Seidel H.P. (eds): Theory and practice of geometric modeling. (Proceeds. Conf. Blaubeuren, Oct. 3–7, 1988) Springer Verlag, Berlin — New York, 1989, X + 547 pp.

    MATH  Google Scholar 

  311. Strehmel K. (ed): 1. Numerical treatment of differential equations. Proceedings of ”NUMDIFF — 4”, at Martin-Luther Univ. Hall-Wittenberg, G.D.R., May, 1987, Teubner Leipzig, 1988.

    Google Scholar 

  312. Strehmel K. (ed): 2. Proceedings of ”NUMDIFF — 5”, at Martin — Luther Univ. Hall — Wittenberg, May 1989, Teubner, Stuttgart, 1991, 372 pp.

    Google Scholar 

  313. Su B-Q; Liu D-Y: Computational geometry-curve and surface modeling. G-Z. Chang Trans., Academic Press Inc., San Diego, 1989.

    MATH  Google Scholar 

  314. Sun J.C.: Spline function and computational geometry. (Chinese), Academic Press, Beijing, 1982.

    Google Scholar 

  315. Szabados J.; Tandori K. (eds): A Haar Memorial Conference. Vol. I, II, Papers from the Conf. in Budapest, August, 1985, North — Holland Publ. Co, Amsterdam — New York, 1987, 1018 pp.

    MATH  Google Scholar 

  316. Talbot A. (ed): Approximation theory. (Proc. Sympos. Lancaster, 1969). Acad. Press. London, 1970.

    MATH  Google Scholar 

  317. Thomas R.S.D.; Williams H.C. (eds): Proceedings of the Manitoba Conferences on Numerical Mathematica I,II,III. University of Manitoba, Winnipeg, 1971, 1972, 1973. Utilitas Mathematica Publishing Inc, Winnipeg, 1971, 1972, 1973.

    Google Scholar 

  318. Tikhonov A.N. (ed): Application of computers to the solution of problems of mathematical physics. (russian). Collection of scientific works. Moskva, Izdatel. Mosk. Univ. 1985.

    Google Scholar 

  319. Törnig W.: Numerische Mathematik für Inginieure und Physiker. Band I, II. Springer Velag, Berlin-Heidelberg-New York, 1979, 1980.

    Google Scholar 

  320. Turner R. Peter (ed): Topica in numerical analysis. (Proc. of the SERC Summer School, Univ. Lancaster, 1981). Lecture Notes in Math., 965, Springer Verlag, Berlin-New York, 1982.

    Google Scholar 

  321. Varga R.S.: Functional analysis and approximation theory in numerical analysis. (C.B.M.S. Regional Conf. Series in Appl. Math. 3) SIAM, Philadelphia, 1971.

    MATH  Google Scholar 

  322. Vasilenko V.A.: Teoria splain funkţii. Novosibirsk, N.G.U., 1978.

    Google Scholar 

  323. Vasilenko V.A.: Spline functions, theory, algorithms, programs. (russian). Nauka. Sibirsk. Otdel. Novosibirsk, 1983, 215 pp.

    Google Scholar 

  324. Vasilenko V.A.; Zjuzin M.V.; Kovalkov A.V.: Spline funcţii i tifrovîe filtrî. Akad. Nauk. SSSR., Novosibirsk, 1986, 156 pp.

    Google Scholar 

  325. Vasil’eva V.A.: Foundation of spline theory. Textbook. (russian). Irkutskij Gos. Univ. im A.A.Jdanova. Irkuts Izd. Irkutskogo Universitets, 1982, 176 pp.

    Google Scholar 

  326. Vershinin V.V.: Smoothing splines and their derivatives. (russian). Novosibirsk, 1980, 202 pp.

    Google Scholar 

  327. Vershinin V.V.; Zavjalov Iu. S.; Pavlov N.N.: Ekstremalnîe svoistva splainov i zadacia aglajivania. Nauka, Novosibirsk, 1988, 102 pp.

    Google Scholar 

  328. Wahba G.: Spline modelle for observational data. SIAM Publications, 1990, Philadelphia ISBN, XII+169 pp., 1990.

    Google Scholar 

  329. Wakulicz A. (ed): Numerical analysis and mathematical modelling. Banach Center Publications 24, P.W.N. Polisch Scientific Publishers, Warsaw, 1990, 566 pp.

    MATH  Google Scholar 

  330. Walz Guido: Spline-Funktionen im Komplexen. Bibliographisches Institut Mannheim 1991, 185 pp.

    Google Scholar 

  331. Wang Ren Hong; Liang X.Z.: Approximation of multivariate functions. Science Press, Beijing, 1988.

    Google Scholar 

  332. Wang Ren Hong; Zhou Yunshi (eds): A friendly collection of Mathematical Papers. Jilin Press, Changchun. R.R. China, 1990.

    Google Scholar 

  333. Watson G.A. (ed): Proceedings of the Conference of Numerical Solution of Differential Equations. Dundee, Scotland, 1973. Lecture Notes in Math. 363, Springer Verlag, Berlin-Heidelberg-New York, 1973.

    Google Scholar 

  334. Watson G.A.: Approximation Theory and Numerical Methods. Wiley, New York, 1980.

    MATH  Google Scholar 

  335. Wendroff B.: First principles of numerical analysis. Addison — Wesley, Reading, 1969.

    MATH  Google Scholar 

  336. Werner H.; Schaback R.: Praktische Mathematik II. Springer Verlag, Berlin, 1972.

    MATH  Google Scholar 

  337. Whiteman J.R. (ed): The mathematics of the finite-element. Method and applications, I, II. Academic Press, London, 1974, 1976.

    Google Scholar 

  338. Whiteman J.R. (ed): The mathematics of finite elements and applications VI. MAFELAP, Brunel Univ. Uxbridge, 1987.

    Google Scholar 

  339. Yamaguchi F.: Curves and surfaces in computer aided geometric design. Springer Verlag, Berlin, 1988.

    MATH  Google Scholar 

  340. Young D.M.; Gregory R.T.: A survey of numerical mathematics. Addison-Wesley, Reading, 1972.

    MATH  Google Scholar 

  341. Zavjalov S.Iu. (ed): Metodî splain funcţii. Vîcislit. Sistemî 65 (Sbornik Trudov). Akad. Nauk. SSSR, Novosibirsk, 1975.

    Google Scholar 

  342. Zavjalov S.Iu.; Fadeev S.I. (eds): Vicislitelnîe Sistemî 56. (Sbornik Trudov). Akad. Nauk. SSSR, Novosibirsk, 1973.

    Google Scholar 

  343. Zavjalov S.Iu.; Fadeev S.I. (eds): Metodî Splain funcţii. Vîcislitelnîe Sistemi 98.(Sbornik Naucinîh Trudov). Akad. Nauk, SSSR, Novosibirsk, 1983.

    Google Scholar 

  344. Zavjalov S.Iu.; Fadeev S.I. (eds): Splain Approximaţia i Cislenie Analiz. Vîcislitelnîe Sistemî 108. (Sbornik Trudov). Akad.Nauk. SSSR, Novosibirsk, 1985.

    Google Scholar 

  345. Zavjalov S. Iu.; Imamov A.: Metodî splain funcţii. Vîcislit. Sistemî 75. (Sbornik Trudov). Akad. Nauk. SSSR. Novosibirsk, 1978.

    Google Scholar 

  346. Zavjalov S.Iu; Kvasov V.J.; Miroşnicenko V.L.: Metodî splain funcţii. Nauka. Moskva, 1980, 352pp.

    Google Scholar 

  347. Zavjalov S. Iu.; Leus V.A.: Splain funcţii v injenernoi geometrii. Vîcislit. Sistemi 86, Novosibirsk, 1981.

    Google Scholar 

  348. Zavjalov S. Iu.; Leus V.A.; Skorospelov V.A.: Spiamî v injenernoi geometrii. Maşinostoroenie, 1985, 221 pp.

    Google Scholar 

  349. Zavjalov S.Iu.; Miroşnicenko V.L. (eds): 1. Metodî splain funcţii. Vîcislit. Sistemi 81 (Sbornik Trudov), Akad. Nauk. SSSR. Novosibirsk, 1979.

    Google Scholar 

  350. Zavjalov S.Iu.; Miroşnicenko V.L. (eds): 2. Metodî splain funcţii. Vîcislit. Sistemî 87 (Sbornik Trudov) Akad. Nauk. SSSR. Novosibirsk, 1981.

    Google Scholar 

  351. Zavjalov S.Iu.; Miroşnicenko V.L. (eds): 3. Metodî splain funcţii. Vîcislitelnie Sistemî 93. (Sbornik Trudov). Akad. Nauk. SSSR. Novosibirsk, 1982.

    Google Scholar 

  352. Zavjalov S.Iu.; Miroşnicenko V.L. (eds): 4. Priblijenîe splamomi. Vîcislitelnie Sistemî 106. (Sbornik Trudov). Akad. Nauk. SSSR., Novosibirsk, 1984.

    Google Scholar 

  353. Zavjalov S.Iu.; Miroşnieenko V.L.; Kosarev Ju.G. (eds): Metodî Splain Funcţii. Vîcislitelnîe Sistemî 72.

    Google Scholar 

  354. Zavjalov. S. Iu.; Miroşaicenko V.L.: Splainî v vycislitelnîe matematike. Vîcislitelnie Sistemî 115 (Sbornik Trudov). Akad. Nauk. SSSR. Novosibirsk, 1986.

    Google Scholar 

  355. Zavjalov S.Iu.; Miroşnicenko V.L.: Approximaţia Splainami. Vîcislitelnie Sistemî 125 (Sbornik Trudov). Akad. Nauk. SSSR, Novosibirsk, 1987.

    Google Scholar 

  356. Zavjalov S.Iu.; Miroşnicenko V.L. (eds): Approximaţia Splainami. Vîcislitelnie Sistemi 128 (Sbornik naucinîh Trudov). Akad. Nauk. SSSR, Novosibirsk, 1988.

    Google Scholar 

  357. Zavjalov S.Iu.; Miroşnicenko V.L. (eds): Priblijenie Splainami. Vîcislitelnie Sistemi 137 (Sbornik naucinîh Trudov). Akad. Russ. Novosibirsk, 1990.

    Google Scholar 

  358. Zavjalov S.Iu.; Miroşnicenko V.L. (eds): Splainy i ikh prilozhen. Vîcislitelnie Sistemî 142 (Sbornik naucinîh trudov). Akad. Nauk. SSSR, Novosibirsk, 1991.

    Google Scholar 

  359. Zavjalov S.Iu.; Miroşnicenko V.L. (eds): Interpoljaţia i approximaţia splainami. Vicislitelnie Sistemi 142, (Sbornik năucinîh trudov). Russ. Akad. Nauk, Novosibirsk, 1992.

    Google Scholar 

  360. Zavjalov S.Iu.; Miroşnicenko V.L. (eds): Interpol. i Approks. splainami. Vychisl. Sistemy, No. 147, Russ. Akad. Nauk, Novosibirsk, 1992.

    Google Scholar 

  361. Zavjalov S.Iu.; Miroşnicenko V.L. (eds): Splines and their applications. (russian), Vychisl. Sistemy, No.154, Russ. Akad. Nauk Novosibirsk, 1995.

    Google Scholar 

Original Papers

  • Abe Hirotade; Sakairi Natsuhiko; Statani Ryohei; Okuda Hideo: High — order spline interpolations in the partiele. J. Comput. Phys. 63 (1986), No 2, 247–267.

    MATH  Google Scholar 

  • Abdelmalek Nabih N.: Piecewise liniar least — squares approximation of planar curves. Int. J. Syst. Sci., 21 (1990). No 7, 1393–1403.

    MATH  Google Scholar 

  • Abdeshov H.U.: Spline — approximation in the three — bodyes problem. (russian). Teor. i Prikl. Voprocy Mat. Modelir Alma — Ata, (1990), 64–72.

    Google Scholar 

  • Abdullaev P.S.; Mahmudov A.A.; Juldachev U. Ju.: Opredelenie vysotnîh otmetok reljefa metodom splain — approximaţii. Voprî. vycisl. i prikl. matem. (Taschkent)., 61 (1980), 148–149.

    Google Scholar 

  • Ablameiko S.V.; Vasiliev V.P.: Izpolzovanie B — splainov dlja zadaci formirovania matematiceskoi modeli linii v SAPR. Vycisl. tehn. i maschinostroenii (Minsk), 2 (1979), 35–40.

    Google Scholar 

  • Abraham Vimala: On the existence and uniqueness of M — Splines. J. Approx. Theory, 43 (1985), 36–42.

    MathSciNet  MATH  Google Scholar 

  • Achilles D.: Pipeline Fourier transform with implicit spline interpolation. A.E.U. — Arch. Elektron. Übertragungstech. Electron. Comun., 29 (1975), 74–80.

    MathSciNet  Google Scholar 

  • Adamczyk L.W.; Rymarczyk M.: Data smoothing using weighted cubic spline functions Pr. Nauk A.E. Wroclawin, 301 (1985), 5–13.

    Google Scholar 

  • Adams J.A.: A comparison of methods for cubic spline curve fitting. Computer — Aided Design, 6 (1974) No. 1, 1–9.

    Google Scholar 

  • Adams E.; Spreuer H.: Konvergente numerische Schrankenkonstruktion mit Spline — Funktionen für nichtlineare gewöhnliche bzw. lineare parabolische Randwertaufgaben. Lect. Notes Comput. Sci., 29 (1975), 118–126.

    Google Scholar 

  • Agačev Ju. R.: 1. Approximate solution of the Goursat problem by the spline collocation method. (russian). Izv. Vyss. Ucebn. Zaved. Math. 6 (1979), 66–69.

    Google Scholar 

  • Agačev Ju. R.: 2. Spline methods for solving differential and integrodifferential equations. (russian). Izv¿ Vyss. Učebn. Zaved. Math., 10 (1979), 87–91.

    Google Scholar 

  • Ahlberg J.H.: 1. Spline approximation and computer-aided design. Advances in Computers, 10 (1970), 275–290.

    Google Scholar 

  • Ahlberg J.H.: 2. The spline approximation as an engineering tool. Computer Aided Engineering, G.M.L. Gladwell, ed. 1971, 1–18.

    Google Scholar 

  • Ahlberg J.H.: 3. Cardinal splines on the real line. J. Approx. Theory 5 (1972), 428–437.

    MathSciNet  MATH  Google Scholar 

  • Ahlberg J.H.; Nilson E.N.: 1. Convergence properties of the spline fit. J.Soc.Indust. Appl. Math. 11 (1963), 95–104.

    MathSciNet  MATH  Google Scholar 

  • Ahlberg J.H.; Nilson E.N.: 2. Orthogonality properties of spline functions. J. Math. Anal. Appl., 11 (1965), 321–337.

    MathSciNet  MATH  Google Scholar 

  • Ahlberg J.H.; Nilson E.N.; Walsh. J.L: 1. Complex cubic splines. Trans. Amer. Math. Soc., 12 (1967), 391–413.

    Google Scholar 

  • Ahlberg J.H.; Nilson E.N.; Walsh. J.L: 2. Properties of analytic splines.(I).Complex polynomial splines. J. Math. Anal. Appl. 27 (1969), 262–278.

    MathSciNet  MATH  Google Scholar 

  • Ahlberg J.H.; Nilson E.N.; Walsh. J.L: 3. Complex polynomial splines on the unit circle. J. Math. Anal. Appl. 33 (1971), 234–257.

    MathSciNet  MATH  Google Scholar 

  • Agarwal R.P.; Wong Patricia J.Y.: Explicit error bounds for the derivatives of spline interpolation in L 2-norm. Appl. Anal. 55 (1994), No. 3–4, 189–205.

    MathSciNet  MATH  Google Scholar 

  • Aiunt S.A.: Chebyshev and Zolotarev perfect convolution K-splines and optimal K-extrapolation. Maths. Notes 57 (1995), No.2, 121–126.

    Google Scholar 

  • Akimova I.N.: Numerical methods using piecewise functions for the approximation of functions of two variable. (russian). Trudy Mosk. Aviats. Int., 232 (1971), 23–60.

    Google Scholar 

  • Al-Said E.A.: Spline solutions for system of second-order boundary-value problems. Intern. J. Computer Math., 62 (1996), 143–154.

    MathSciNet  MATH  Google Scholar 

  • Alaylioglu Ayse; Eyre D.; Brannigan M.; Svenne J.P.: Spline Galerkin solution of integral equations for three — body scattering above break — up. J. Comput. Phys., 62 (1986), No. 2, 383–399.

    MathSciNet  MATH  Google Scholar 

  • Alaylioglu Ayse; Lubinsky D.S.; Eyre D.: Product integration of logaritmic singular integrands based on cubic splines. J. Comput. Appl. Math., 11 (1984), 353–366.

    MathSciNet  MATH  Google Scholar 

  • Albasiny E.L.; Hoskins W.D.: 1. Cubic spline solution to two — point boundary value problems. Comput. J., 12 (1969), 151–153.

    MathSciNet  MATH  Google Scholar 

  • Albasiny E.L.; Hoskins W.D.: 2. The numerical calculation of odd — degree polynomial splines with equispaced knots. J. Inst. Math. Appl., 7 (1971), 384–397.

    MathSciNet  MATH  Google Scholar 

  • Albasiny E.L.; Hoskins W.D.: 3. Increased accuracy cubic spline solutions to two — point boundary value problems. J. Inst. Math. Appl., 9 (1972), 47–55.

    MathSciNet  MATH  Google Scholar 

  • Albasiny E.L.; Hoskins W.D.: 4. Some explicit error bounds for polynomial splines of odd order defined on a uniform set of knots. Proc. 3rd Southeast Conf. Combinat Graph Theory, Computing, Florida Atlantic Univ. Boca Ratou, (1972), 252–279.

    Google Scholar 

  • Albasiny E.L.; Hoskins W.D.: 5. Explicit error bounds for periodic splines of odd order on a uniform mesh. J. Inst. Maths. Applics., 12 (1973), 303–318.

    MathSciNet  MATH  Google Scholar 

  • Albeanu Gr.; Niculescu F. Rodica: A Galerkin trigonometric B-spline approach for renewal function computation. An. Univ. Bucureşti Mat. 44 (1995), Mat.-Info, 29–40.

    MathSciNet  Google Scholar 

  • Albrecht G.; Farouki R.T.: Construction of C 2 Pythagorean-hodograph interpolating splines by the homotopy method. Adv. Comput. Math. 5 (1996), No.2, 417–442.

    MathSciNet  MATH  Google Scholar 

  • Aldroubi A.; Unser M.; Eden M.: Cardinal spline filtres: stability and convergence to the ideal sinc interpolator. Signal Process., 28 (1992), No.2, 127–138.

    MathSciNet  MATH  Google Scholar 

  • Aldroubi A.; Eden M.; Unser M.: Discrete spline filters for multi-resolutions and wavelets of 1–2. SIAM J. Math. Anal., 25 (1994), No.5, 1412–1432.

    MathSciNet  MATH  Google Scholar 

  • Aleksandrov L.; Drenska M.; Karadzhov D.: Application of rod splines for solving the radical Schrödinger equation for complet states. (russian). Z. Vyčisl. Math, i Mat — Fiz., 22 (1982), 375–381.

    MathSciNet  MATH  Google Scholar 

  • Alekseva S.I.: Ob odnom metode postroenia splain — reşenie nekatorîh tipov kraevîh zadaci. Priblijen metodî mat. analiza. (Kiev), (1977), 3–9.

    Google Scholar 

  • Alfeld P.: 1. A discrete C 1 — interpolant for tetraedral data. Rocky Mt. J. Math., 14 (1984), 5–16.

    MathSciNet  MATH  Google Scholar 

  • Alfeld P.: 2. A trivariate Clough — Tocher scheme for tetrahedral. Comput. Aided. Geom. Design, 1 (1984), 169–181.

    MATH  Google Scholar 

  • Alfeld P.: 3. A bivariate C 2 Clough — Tocher scheme. Comput. Aided Geom. Design., 1 (1984), 257–267.

    MATH  Google Scholar 

  • Alfeld P.: 4. Multivariate perpendicular interpolation. SIAM J. Numer. Anal., 22 (1985), 95–106.

    MathSciNet  MATH  Google Scholar 

  • Alfeld P.: 5. On the dimension of multivariate piecewise polynomials. In Proceed. Biennial Dundee Conf. on Numer. Anal., Pitman, (1985).

    Google Scholar 

  • Alfeld P.: 6. A case study of multivariate piecewise polynomials. Geom. Modelling, G. Farin (ed). SIAM, Philadelphia, (1987), 149–160.

    Google Scholar 

  • Alfeld P.: 7. Upper and lower bounds on the dimension of multivariate spline spaces. SIAM J. Numer. Anal. 33 (1996), No.2, 571–588.

    MathSciNet  MATH  Google Scholar 

  • Alfeld P.; Barnhill R.E.: A transfinite C 2 — interpolant over triangles. Rocky Mt. J. Math., 14 (1984), 17–40.

    MathSciNet  MATH  Google Scholar 

  • Alefeld P.; Neamţu M.; Schumaker L.L.: 1. Bernstein — Bezier polynomials on spheres and sphere-like surfaces. CAGD, 13 (1996), No.4, 333–349.

    Google Scholar 

  • Alefeld P.; Neamţu M.; Schumaker L.L.: 2. Dimension and local bases of homogeneous spline spaces. SIAM J. Math. Anal. 27 (1996), No.5, 1482–1501.

    MathSciNet  Google Scholar 

  • Alefeld P.; Neamţu M.; Schumaker L.L.: 3. Fitting scattered data on sphere-like surfaces using spherical splines. J. Comp. Appl. Math. J. Comput. Appl. Maths., 73 (1996), 15–43.

    Google Scholar 

  • Alfeld P.; Piper P.; L.L. Schumaker: 1. An explicit basis for C 1 quartic bivariate splines SIAM J. Numer. Anal., 24 (1987), No.4, 891–911.

    MathSciNet  MATH  Google Scholar 

  • Alfeld P.; Piper P.; L.L. Schumaker: 2. Spaces of bivariate splines on triangulations with holes. Approx. Theory and its Appl., 3 (1987), No.4, 1–10.

    MathSciNet  MATH  Google Scholar 

  • Alfeld P.; Piper P.; L.L. Schumaker: 3. Minimally supported bases for spaces of bivariate piecewise polynomials of smoothness r and degree d ≥ 4r + 1. Comput. Aided Geom. Design., 4 (1987), 105–123.

    MathSciNet  MATH  Google Scholar 

  • Alfeld P.; Schumaker L.L.: 1. The dimension of bivariate spline spaces of smoothness r for degree d ≥ 4r + 1. Construct. Approx., 3 (1987), 189–197.

    MathSciNet  MATH  Google Scholar 

  • Alfeld P.; Schumaker L.L.: 2. On the dimension of bivariate spline spaces of smoothness r and degree d = 3r + 1. Numer. Math., 57 (1990), 651–661.

    MathSciNet  MATH  Google Scholar 

  • Alfeld P.; Schumaker L.L.; Whiteley W.: The generic dimension of the space of C 1 splines of degree d ≥ 8 on tetraedral decompositions. SIAM J. Numer. Anal., 30 (1993), 889–920.

    MathSciNet  MATH  Google Scholar 

  • Alfeld P.; Schumaker L.L.; Sirvent Maritza: On dimension and existence of local bases for multivariate spline spaces. J. Approx. Theory, 70 (1992), No.2, 243–264.

    MathSciNet  MATH  Google Scholar 

  • Alfeld P.; Sirvent Maritza: The stucture of multivariate superspline spaces of high degree Math. Comput., 57 (1991), No.195, 299–308.

    MathSciNet  MATH  Google Scholar 

  • Ali A.H.A.; Gardner G.A.; Gardner L.R.T.: A collocation solution for Burger’s equation using cubic B — spline finite elements. Comput. Methods Appl. Mech. Engrg., 100 (1992), No.3, 325–337.

    MathSciNet  MATH  Google Scholar 

  • Alia G.; Barsi F.; Martinelli E.; Tani N.: Angular spline: A new approach to the interpolation problem in computer graphics. Comput. Vision Graphics Image Process., 39 (1987), No.1, 56–72.

    MATH  Google Scholar 

  • Allouard Y.: Application des splines à une méthode variationnelle de résolution d’une système d’équations differentielles aux valeurs initiales. Innovative Numer. Anal. Eng. Sci. Proc. 2 nd. Intera. Symp. Montreal, 1980. Charlottesville (1980), 575–581.

    Google Scholar 

  • Amann H.: On the approximative solution of nonlinear integral equations. Numer. Math., 19 (1972), 29–45.

    MathSciNet  MATH  Google Scholar 

  • Amini S.; Sloan I. H.: Collocation methods for second kind integral equations with non — compact operators. J. Integral Eqs and Applications, 2 (1989), No.1, 1–30.

    MathSciNet  Google Scholar 

  • Amodei L.; Benbourhim M.N.: A vector spline approximation. J. Approx. Theory, 67 (1991), 51–79.

    MathSciNet  MATH  Google Scholar 

  • Amos D.E.; Slater M.L.: 1. Polynomial and spline approximation by quadratic programming. Comm. ACM, 12 (1969), 379–381.

    MathSciNet  MATH  Google Scholar 

  • Amos D.E.; Slater M.L.: 2. Polynomial and spline approximation by quadratic programming. Communic. Assoc. Comp. Machinery, 12 (1969), 379.

    MathSciNet  MATH  Google Scholar 

  • Anaskina V.V.; Grisiha T.N.; Khrapko V.N.; Ciudinovskih A.J.; Jurba A.N.; Tolkačev S.F.: 1. Zadanie sinovoi poverhnosti splain — funcţiani. J. Vîčisl. Mat. i Mat — Fiz., 22 (1982), 465–467.

    Google Scholar 

  • Anaskina V.V.; Grisiha T.N.; Khrapko V.N.; Ciudinovskih A.J.; Jurba A.N.; Tolkačev S.F.: 2. Representation of a boat surface by spline functions. (russian). Din. Sist. Kiev, 1 (1982), 106–112.

    Google Scholar 

  • Anastassiou G.: Spline monotone approximation with linear differential operators. Approx. Theory and its Appl., 5;4 (1989), 61–67.

    MathSciNet  MATH  Google Scholar 

  • Anderson J.I.: A piecewise approach to piecewise approximation. Numer. Algorithms, 15 (1997), No.2, 139–152.

    MathSciNet  MATH  Google Scholar 

  • Anderson J.; Ardili R.W.B.; Moriarty K.J.M.; Beckwith R.C.: A cubic spline interpolation of unequally spaced data points. Computer Phys. Comun., 16 (1979), 199–206.

    Google Scholar 

  • Anderson J.; Cox M.Q.; Mason J.C.: Tensor — product spline interpolation to data on or near a family of lines. Numer. Algorithms, 5 (1993), No. 1–4, 193–204.

    MathSciNet  MATH  Google Scholar 

  • Anderson J.S.; Jones R.H.; Swanson G. D.: Smoothing polynomial splines for bivariate data. SIAM J. Sci. Stat. Comput., 11 (1990), 749–766.

    MathSciNet  MATH  Google Scholar 

  • Anderssen R.S.; White E.T.: Improved numerical methods for Volterra integral equations of the first kind. Comput. J., 14 (1971), 442–443.

    MathSciNet  MATH  Google Scholar 

  • Anderssen R.S.; Houg F.R.; Wahlbin L.B.: On pointwise stability of cubic smoothing splines with nonuniform sampling points. RAIRO, Modelisation Math. Anal. Numér., 25 (1991), No.6, 671–692.

    MATH  Google Scholar 

  • Andersson L.E.; Elfwing T.: 1. An algorithm for constrained interpolation. SIAM J. Sci. Stat. Comput., 8 (1987), 1012–1025.

    MATH  Google Scholar 

  • Andersson L.E.; Elfwing T.: 2. Interpolation and approximation by monoton cubic splines. J. Approx. Theory, 66 (1991), 302–333.

    MathSciNet  MATH  Google Scholar 

  • Andersson L.E.; Elfwing T.: 3. Best constrained approximation in Hilbert spaces and interpolation by cubic splines subject to obstacles. SIAM J. Sci. Comput. 16 (1995), No.5., 1209–1232.

    MathSciNet  MATH  Google Scholar 

  • Andreev A.S.: 1. On interpolation by cubic spline of a function possesing discontinuities. C.R. Acad. Bulgare Sci., 27 (1974), 881–884.

    MathSciNet  MATH  Google Scholar 

  • Andreev A.S.: 2. Interpolati on by quadratic and cubic spline in L p. Constr. funct. theory. Proc. int. Conf. Varna (Bulgaria), 1981, (1983), 211–216.

    Google Scholar 

  • Andreev A.S.; Popov V.A.; Sendov B.: 1. Jakson’s type theorems for one — sided polynomial and spline approximation. C.R. Acad. Bulgare Sci., 30 (1977), 1533–1536.

    MathSciNet  MATH  Google Scholar 

  • Andreev A.S.; Popov V.A.; Sendov B.: 2. Some estimation of numerical solution of boundary value problem for ordinary differential equations of second order. C.R. Acad. Bulgare Sci., 10 (1979), 1025–1026.

    MathSciNet  Google Scholar 

  • Andreev A.S.; Popov V.A.; Sendov B.: 3. Teoremî tipa Jaksona dlja nailucisih odnostaronîh priblijenii trigonometriceskimi mnogocilenami i splainami. Mat. Zametki, 26 (1979), No.5, 791–804.

    MathSciNet  MATH  Google Scholar 

  • Andreev A.S.; Popov V.A.; Sendov B.: 4. Otenki progreşnosti čislennove reşenia obîknavenîh differenţi alnîh uravnenii. J. Vîcisl. Mat. i Mat-Fiz., 21 (1981), 635–650.

    MathSciNet  MATH  Google Scholar 

  • Andreev A.S.; Popov V.A.; Sendov B.: 5. Convergence rate for spline collocation to Fredholm integral equation of second kind. Pliska Studia. Math. Bulgarica, 5 (1983), 84–92.

    MATH  Google Scholar 

  • Andreev A.; Tasev S.: 1. Über den Effekt von Gibbs bei der Spline — Interpolation dritter Ordnung: Math. and Education. Math. Proc. Conf. Bulg. Math. Soc. Vidin, (1973), 47–52.

    Google Scholar 

  • Andreev A.S.; Penev I.L.: On the numerical solution of boundary value problems of second order ordinary differential equations by a cubic splines. (bulgarian). Godisnik. Viss. Učebn. Zaved. Pril. Math., 13 (1977), 65–75.

    MathSciNet  Google Scholar 

  • Andreeva N.L.: 1. Reşenie integralnova uravnenija tipa sviortki s pomosciu splain — funkţii Diff. Uravn. i teorii funcţii (Saratov), 2 (1980), 92–102.

    MATH  Google Scholar 

  • Andreeva N.L.: 2. Ekstrapoliaţia ishodnîh pri approksimaţii poverhnostei kubiceskimi splainami. Isled. po prikl. mat. Leningrad. Polit. Inst., (1990), 94–98.

    Google Scholar 

  • Andria G.D.; Byrne G.D.; Hall C.A.: Convergence of cubic spline interpolants of functions possesing discontinuities. J. Approx. Theory, 8 (1973), 150–159.

    MathSciNet  MATH  Google Scholar 

  • Andria G.D.; Byrne G.D.; Hall D.R.: 1. Integration formulas and schemes based on g-splines. Math. Comput., 27 (1973), 831–838.

    MATH  Google Scholar 

  • Andria G.D.; Byrne G.D.; Hall D.R.: 2. Natural spline implicit methods. BIT, 13 (1973), 131–144.

    MATH  Google Scholar 

  • Anselone P.M.; Laurent P.J.: A general method for the construction of interpolating or smoothing spline. Numer. Math., 12 (1968), 66–82.

    MathSciNet  MATH  Google Scholar 

  • Ansley C.F.; Kohn R.: On the equivalence of two stochastic approaches to spline smoothing J. Appl. Prob., 23A (1986), 391–405.

    MathSciNet  Google Scholar 

  • Ansley C.F.; Kohn R.; Wong C.M.: Nonparametric spline regression with prior information. Biometrika, 80 (1993), 75–88.

    MathSciNet  MATH  Google Scholar 

  • Antes H.: 1. Splinefunktionen bei der Losung von Integralgleichungen. Numer. Math., 19 (1972), 116–126.

    MathSciNet  MATH  Google Scholar 

  • Antes H.: 2. Bicubic fundamental splines in plate bending. Internat. J. Numer. Math. Eng., 8 (1974), 503–511.

    MathSciNet  MATH  Google Scholar 

  • Antes H.: 3. Plattenberechnung mit Fundamental Splinefunktionen. ZAMM, 54 (1974), 182–183.

    Google Scholar 

  • Anthony H.M.; Cox M.G.: 1. An automatic algorithm for immunoassay curves calibration using controlled quadratic splines. IMA J. Math. Appl. Med. Biol., 6 (1989), Nr.2, 91–110.

    MathSciNet  MATH  Google Scholar 

  • Anthony H.M.; Cox M.G.: 2. The fitting of extremly large data sets by bivariate splines. In Algorithms for Approximation, Clarendon Press, Oxford, 1987, 5–20.

    Google Scholar 

  • Anthony H.M.; Cox M.G.; Harris P.M.: 1. The fitting of extremaly data sets by bivariate splines. In Algorithms for Approximation, Clarendon Press, Oxford, 1987, 5–20.

    Google Scholar 

  • Anthony H.M.; Cox M.G.; Harris P.M.: 2. The use of local polynomial approx. in a knot — placement strategy for least — squares spline fitting. Nat. Phys. Lab. Div. Inf. Technol. and Comput. Rept., 148 (1989), 1–15.

    Google Scholar 

  • Anwar M.N.: A direct cubic spline approach for initial value problems. Splines in Numer. Anal. (Weissig 1989), 9–18. Math. Res. 52, Akademie — Verlag, Berlin, (1989).

    Google Scholar 

  • Anwar M.N.; Tarazi EI M.N.: Direct cubic spline with application to quadrature. Communic. Appl. Numerical Methods, 5 (1989), 237–246.

    MATH  Google Scholar 

  • Apaicheva L.A.: Spline-methods to salve certain class of weakly singular integral equations Russ. Math., 38 (1994), No.1, 83–87.

    MathSciNet  Google Scholar 

  • Appelt W.: Fehlereinschliessung für die Lösungen einer Klasses elliptischer Rondwertaufgaben. ZAMM, 54 (1974), 207–208.

    Google Scholar 

  • Apprato D.: Etude de la convergence du produit tensorial de fonctions spline a une variable satisfaisant a des conditions d’interpolation de Lagrange. Annales Faculté de Sciences Toulouse, VI (1984), 153–170.

    MathSciNet  Google Scholar 

  • Apprato D.; Arcangeli R.: Ajustement spline le long d’un ensemble de courbes. RAIRO, Math. Modelling and Numer. Anal., 25 (1991), No.2, 193–212.

    MathSciNet  MATH  Google Scholar 

  • Apprato D.; Arcangeli R.; Gaches J.: Fonction spline par moyennes local sur un ouvert borné de ℝ n. Ann. Fac. Sci. Toulouse, 5 (1983), 61–67.

    MathSciNet  MATH  Google Scholar 

  • Apprato D.; Arcangeli R.; Mauzanilla R.: Sur la construction de surfaces de classe C k à partir d’un grand nombre de données de Lagrange. Model. Math. et Anal. Numer., 21 (1987), No.4, 529–555.

    MATH  Google Scholar 

  • Arad Nur.; Dyn Nira: Almost cardinal spline interpolation. J. Approx. Theory, 62 (1990), 133–144.

    MathSciNet  MATH  Google Scholar 

  • Arcangéli R.: Splines d’ordre (m,s). Publication UA 1204 CNRS No. 90/12.

    Google Scholar 

  • Arcangéli R.; Rabut C.: 1. Sur l’erreur d’interpolation par fonctions spline. Public. Mathématique, Univ. de Ian et des pays de l’Advur., (1984), I, 1–15.

    Google Scholar 

  • Arcangéli R.; Rabut C.: 2. Sur l’erreur d’interpolation par fonction spline. RAIRO, Math. Modeling and Numer. Anal., 20 (1986), No.2, 191–201.

    MATH  Google Scholar 

  • Arcangéli R.; Ycart B.: Almost sure convergence of smoothing D m — splines for noisy data. Numer. Math., 66 (1993), No.3, 281–294.

    MathSciNet  MATH  Google Scholar 

  • Archer D.A.: 1. Cubic spline collocation methods for nonlinear parabolic problems. Fall. SIAM — SIGNUM Meeting. Austin, Texas, (1972).

    Google Scholar 

  • Archer D.A.: 2. An Oh 4 cubic spline collocation method for quasilinearer parabolic equations. SIAM J. Numer. Anal., 14 (1977), 620–637.

    MathSciNet  MATH  Google Scholar 

  • Archer D.A.; Diaz J.C.: 1. A family of modified collocation methods for second order two point boundary value problems. SIAM J. Numer. Anal., 15 (1978), 242–254.

    MathSciNet  MATH  Google Scholar 

  • Archer D.A.; Diaz J.C.: 2. A collocation — Galerkin methods for a first order hyperbolic equation with space and time — dependent coefficient. Math. Comput., 38, 37–53.

    Google Scholar 

  • Arge Erlend; Daehlen Morten: Grid point interpolation on finite region using C l box splines. SIAM J. Numer. Anal., 29 (1992), No.4, 1136–1153.

    MathSciNet  MATH  Google Scholar 

  • Arge Erlend; Daehlen Morten; Tveito Aslak: Box spline interpolation: a computational study. J. Comput. Appl. Math., 44 (1992), No.3, 303–329.

    MathSciNet  MATH  Google Scholar 

  • Arhipov A.E.: Ob adnom metode kusocino — polinomialnîi approkcimaţii. Vestn. Kiev. Politehn. Inst. Tehn. Kibemetika, 4 (1980), 22–26.

    Google Scholar 

  • Arndt H.: 1. On uniqueness of best spline approximations with free knots. J. Approx. Theory, 11 (1974), 118–125.

    MathSciNet  MATH  Google Scholar 

  • Arndt H.: 2. Interpolation mit regulären Splines. J. Approx. Theory, 20 (1977), 23–45.

    MathSciNet  MATH  Google Scholar 

  • Arndt H.: 3. Konvexe Zerlegung von Differenzenquotieten mit auf die Spline interpolation. SIAM, CHE, 42 (1978), 33–47.

    MathSciNet  Google Scholar 

  • Arndt H.: 4. Losung von gewöhnlichen Differentialgleichungen mit nichtlinearen Splines. Numer. Math., 33 (1979), 323–338.

    MathSciNet  MATH  Google Scholar 

  • Arndt H.: 5. Über die Verwendung von nichtlinearen Splines zur Integration gewöhnlicher Differentialgleichungen. ZAMM, 60 (1987), 280–281.

    MathSciNet  Google Scholar 

  • Arnold D.N.: A spline trigonometric Galerkin method and an exponentially convergent boundary integral method. Math. Comput., 41 (1983), 383–398.

    MATH  Google Scholar 

  • Arnold D.N.; Saranen Jukka: On the asymptotic convergence of spline collocation methods for partial differential equations. SIAM J. Numer. Anal., 21 (1984), 459–472.

    MathSciNet  MATH  Google Scholar 

  • Arnold D.N.; Wenland W.L.: 1. On the asymptotic convergence of collocation methods. Math. Comput., 41 (1983), 349–381.

    MATH  Google Scholar 

  • Arnold D.N.; Wenland W.L.: 2. The convergence of spline collocation for strongly elliptic equations on curves. Numer. Math., 47 (1985), 317–341.

    MathSciNet  MATH  Google Scholar 

  • Aronsson Gunnar: Perfect splines and nonlinear optimal control theory. J. Approx. Theory, 25 (1979), 142–152.

    MathSciNet  MATH  Google Scholar 

  • Arostov V.V.: Appoximation of operators of consolution type by linear bounded operators. Approximation of functions by polynomial and splines. (russian). Tradî Math. Inst. Steklov, 145 (1980), 3–19.

    Google Scholar 

  • Artemev S.S.; Demidov G.V.: Determination of the density of distribution of the solution of a stochastic differential equation using splines. (russian). Chisl. Methody. Mekh. Sploshn. Sredy, 15 (1984), No.4, 3–10.

    MathSciNet  Google Scholar 

  • Arthur D.W.: 1. The solution of Fredholm integral equations using spline functions. J. Inst. Math. Applics., 11 (1973), 121–129.

    MathSciNet  MATH  Google Scholar 

  • Arthur D.W.: 2. A minimisation problem with a solution of spline type. Proc. Roy. Irisch. Acad. Sect. A, 74 (1974), 79–86.

    MathSciNet  MATH  Google Scholar 

  • Arthur D.W.: 3. Multivariate spline functions, I, II. Construction, Properties and computations. I. J. Approx. Theory, 12 (1974), 396–411 II. J. Approx. Theory, 15 (1975), 1–10.

    MathSciNet  MATH  Google Scholar 

  • Artzi-Ben A.; Ron A.: Translates of exponential box splines and their related spaces. Trans. Amer. Math. Soc., 309 (1988), 683–710.

    MathSciNet  Google Scholar 

  • Ascher U.: 1. Solving boundary value problems with a spline collocation — code. J. Comput. Phys., 34 (1980), 401–413.

    MathSciNet  MATH  Google Scholar 

  • Ascher U.: 2. Collocation for two — point boundary value problems revisited. SLAM J. Numer. Anal., 23 (1986), 596–609.

    MathSciNet  MATH  Google Scholar 

  • Ascher U.; Cristiansen J.; Russell R.D.: 1. A collocation solver for mixed order systems of boundary value problems. Math. Comput., 33 (1979), 659–679.

    MATH  Google Scholar 

  • Ascher U.; Cristiansen J.; Russell R.D.: 2. Collocation software for boundary value ODES. ACM Trans. Math. Software, 7 (1981), 209–229.

    MATH  Google Scholar 

  • Ascher U.; Preuss S.; Russell R.D.: On spline basis selection for solving differential equations. SLAM J. Numer. Anal., 20 (1983), 121–142.

    MATH  Google Scholar 

  • Asker B.: The spline curve, a smooth interpolating function used in numerical design of ship — lines. BIT, 2 (1962), 76–82.

    MATH  Google Scholar 

  • Asmuss S.V.: 1. Interpolation and smoothing of integral means by parabolic splines. (russian). Topological spaces and their mappings (russian), Hatv. Gos. Univ. Riga, (1989), 13–15.

    Google Scholar 

  • Asmuss S.V.: 2. Spline functions of two variables in the solution of some interpolation problems. (russian). Mathematics I, Latv. Univ. Riga, (1990), 7–28.

    Google Scholar 

  • Asmuss S.V.: 3. Sharp error estimates for approximation by two — dimensional splines. (russian). Mathematics 11–26, Latv. Univ. Riga, 562, (1991).

    Google Scholar 

  • Asmuss S.V.: 4. An extremal property of spline — functions in two variables. (russian). Mathematics 111–126 Latv. Univ. Riga, 576, (1992).

    Google Scholar 

  • Asmuss S.V.: 5. Error estimates of the approximation by smoothing splines. Mathematics 167–187, Latvia Univ. Zinat Raksi 595, Riga, 1994.

    Google Scholar 

  • Astor P.H.; Duris C.S.: Discrete L Splines. Numer. Math., 22 (1974), 393–402.

    MathSciNet  MATH  Google Scholar 

  • Aquire-Ramirez G.: Application of cubic splines to a moving boundary problem. Mech. Res.Communic., 6 (1979), 87–91.

    Google Scholar 

  • Atkinson K.E.: 1. On the order of convergence of natural cubic spline interpolation. SLAM J. Numer. Anal., 5 (1968), 89–101.

    MATH  Google Scholar 

  • Atkinson K.E.: 2. The numerical solution of a non-linear boundary integral equation on smooth surfaces. IMA, J. on Numer. Anal., 14 (1994), 461–463.

    MATH  Google Scholar 

  • Atkinson K.E.: 3. A survey of numerical methods for solving nonlinear integral equations. J. Integral Eqs. and Applics. 4 (1992), No.1, 15–46.

    MATH  Google Scholar 

  • Atkinson K.E.; Graham I.; Sloan I.: Piecewise continuous collocation for integral equations. SIAM J. Numer. Anal., 20 (1983), 172–186.

    MathSciNet  MATH  Google Scholar 

  • Atkinson K.E.; Potra F.: The discrete Galerkin method for nonlinear integral equations. J. of Integral Eqs. and Applies. 1 (1988), No.1, 17–54.

    MathSciNet  MATH  Google Scholar 

  • Atteia M.: 1. Généralization de la définition et des propriétés de ”spline fonctions”. C.R. Acad. Sci. Paris, 260 (1965), 3550–3553.

    MathSciNet  MATH  Google Scholar 

  • Atteia M.: 2. ”Spline fonctions” généralisées. C.R. Acad. Sci. Paris, 261 (1965), 2149–2152.

    MathSciNet  MATH  Google Scholar 

  • Atteia M.: 3. Existence et determination des fonctions ”spline” à plusieurs variables. C.R. Acad. Sci. Paris, 262 (1966), 575–578.

    MathSciNet  MATH  Google Scholar 

  • Atteia M.: 4. Sur les fonctions — spline généralisées. Actes du 5e Congrès de l’AFIRO (Lille 1966), Assoc. Franc d’Inform. et de Rech. Opérat., Paris, (1967), 113–116.

    Google Scholar 

  • Atteia M.: 5. Fonctions ”spline” avec constraintes linéaires de type inégalité. Actes du 6e Congrès de l’AFIRO (Nancy 1967). Assoc. Franc. d’Inform. et de Rech. Operat., Paris, (1967), 42–54.

    Google Scholar 

  • Atteia M.: 6. Fonctions ”spline” definies sur un ensemble convexe. Numer. Math., 12 (1968), 192–210.

    MathSciNet  MATH  Google Scholar 

  • Atteia M.: 7. Fonctions ”spline” et noyaux reproduisonts d’Aronszajn — Bergman. Rev. Franc. Informat. Recherche Operat., 4 (1970), 31–43.

    MathSciNet  MATH  Google Scholar 

  • Atteia M.: 8. Fonctions ”spline” dans le champ complexe. C.R. Acad. Sci. Paris, 273 (1971), 678–681.

    MathSciNet  MATH  Google Scholar 

  • Atteia M.: 9. Functions ”spline” et méthode d’élément finis. Rev. Fr. Automat. Informat. Rech. Operat. Anal. Numer., 9 (1975), 13–40.

    MathSciNet  MATH  Google Scholar 

  • Atteia M.: 10. Spline functions and Fourier series. Rev. Mah. Appl., 11 (1990), No.6, 77–100.

    MathSciNet  MATH  Google Scholar 

  • Atteia M.; Benbourhim M.N.: Spline elastic manifolds. Math. Meth. Comput. Aided. Geom. Des. Pap Int. Conf. Oslo, 1988, 45–50 (1989).

    Google Scholar 

  • Atteia M.; Fage C.; Gaches J.: Etude et convergence de fonctions ”spline” complexe. RAIRO Anal. Numer., 18 (1984), No.3, 219–236.

    MathSciNet  MATH  Google Scholar 

  • Au C.K.; Yuen M.M.F.: Unified approch to NURBS curve shape modification. Computer-Aided Design, 27 (1995), No.2, 85–93.

    MATH  Google Scholar 

  • Aubin J.P.: 1. Behaviour of the error of the approximate solution of boundary value problems for linear elliptic operators by Galerkin and finite difference methods. Ann. Scuola Norm. Pisa, 21 (1967), 599–637.

    MathSciNet  MATH  Google Scholar 

  • Aubin J.P.: 2. Interpolation et approximation optimales et ”spline” fonctions. J. Math. Anal., 24 (1968), 1–24.

    MathSciNet  MATH  Google Scholar 

  • Aubin J.P.: 3. Best approximation of linear operators in Hilbert spaces. SLAM, J. Numer. Anal., 5 (1968), 518–521.

    MathSciNet  MATH  Google Scholar 

  • Aubin J.P.: 4. Remarks about the construction of optimal subspaces of approximants of a Hilbert spaces. J. Approx. Theory, 4 (1971), 21–36.

    MathSciNet  MATH  Google Scholar 

  • Auerbach S.; Gmelig Meyling R.H.J.; Neamtu Marian, Schaeben H.: Approximation and geometric modeling with simplex B — splines associated with irregular triangles. Comput. Aided Geom. Design, 8 (1991), No.1, 67–87.

    MathSciNet  MATH  Google Scholar 

  • Aumann G.: 1. Approximation by step functions. Proc. Amer. Math. Soc., 14 (1963), 477–482.

    MathSciNet  MATH  Google Scholar 

  • Aumann G.: 2. Corner cutting curves and a new characterization of Bézier and B-spline curves. CAGD, 14 (1997), No.5, 449–474.

    MathSciNet  MATH  Google Scholar 

  • Avakian A.M.: Točnîe konstantî progreşnosti pri pribijenii localnîmi paraboličeskimi splanami. Monogen funeţii i otobrajenia. Inst. Mat. Kiev, (1982), 114–121.

    Google Scholar 

  • Avdeyenko V.A.; Maiyukov A.A.: A quadrature formula for the Fourier integral based on the use of cubic spline. U.S.S.R. Comput Math. and Math. Physics, 29 (1989), No.3, 101–103.

    Google Scholar 

  • Avila P.G.; Taylor G.D.: Adaptive L 1L 2curve fitting. Intern. J. Numer. Methods Eng., 14 (1979), No.6, 871–903.

    MATH  Google Scholar 

  • Ayad A.; Holail F.S.; Ramadan Z.: A spline approximation of an arbitrary order for the solution of system of second order differential equations. Studia Univ. Babeş. — Bolyai, Math. 35 (1990), No.1, 49–59.

    MathSciNet  MATH  Google Scholar 

  • Ayunts S.A.: 1. The fundamental theorem of algebra for convolution perfect K — splines and optimal K — interpolation. (russian). Izv. Acad. Nauk Armenii Mat., 26 (1991), No.3, 262–267.

    MathSciNet  Google Scholar 

  • Ayunts S.A.: 2. Chebyshev and Zolotarev convolution perfect K-splines and optimal K-extrapolation. (russian), Mat. Zametki, 57 (1995), No.2, 171–180.

    MathSciNet  Google Scholar 

  • Azarin V.S.; Barmin V.I.: Ob approximaţii kusocino — lineinîlni funkţianii. Teoria funcţii, funcţion, analiz. i ih priloj (Harkov), 25 (1976), 5–14.

    MathSciNet  MATH  Google Scholar 

  • Babenko V.F.: 1. Existence of perfect splines and mono splines with given zeros. (russian). Investigations in current problems in summation and approximation of functions and their applications (russian), 6–9, Dnepropetrovsk Gos. Univ., (1987).

    Google Scholar 

  • Babenko V.F.: 2. O nailuchshih ravnomernîe priblijeniah splainami pri nalicii ogranichenîi na ih proizvodnîie. Matern. Zamet., 50 (1991), No.6, 24–30.

    MathSciNet  Google Scholar 

  • Babenko V.F.: 3. On the best L 1approximations by splines with constraints on their derivatives. (russian). Math. Zametki, 51 (1992), No.5, 12–19.

    MathSciNet  Google Scholar 

  • Babenko V.F.: 4. Best L 1-approximation of the classes W 1 r by splines from W 1 r. (russian), Ukrain. Mat. Zh., 46 (1994), No.10, 1410–1413.

    MathSciNet  MATH  Google Scholar 

  • Babenko V.F.; Ligun F.: 1. Ob interpoljaţii mnogogranîmi funcţiomi. Mat. Zamet., 18 (1975), No.6, 803–814.

    MathSciNet  MATH  Google Scholar 

  • Babenko V.F.; Ligun F.: 2. The order of the best unilateral approximation by polynomial and splines in the L pmetric. (russian). Mat. Zamet., 19 (1976), 323–329.

    MathSciNet  MATH  Google Scholar 

  • Babenko V.F.; Ligun F.: 3. Some extremal properties of polynomials and splines. (russian). Model. Mekh., 52 (1991), No.5, 5–13.

    MathSciNet  Google Scholar 

  • Babenko V.F.; Ligun F.: 4. Generalization of some extremal propriétés of splines. (russian), Ukrain. Math. Zh., 47 (1995), No.3, 403–407.

    MathSciNet  MATH  Google Scholar 

  • Babenko V.F.; Pichugov S.A.: Inequalities of Bernstein type for polynomial splines in L 2. Ukrain. Math. Journal, 43 (1991), No.3, 385–387.

    MathSciNet  MATH  Google Scholar 

  • Babenko V.F.; Polyakov O.V.: On asymetric approximations by splines of classes of differentible functions in the space L 1 [-1, +1].(russian) Optimization of Approx. Methods. (russian), Akad. Nauk. Ukrainy, Inst. Kiev, (1992), 27–34.

    Google Scholar 

  • Babuska I.: 1. Approximation by hill functions. Comment. Math. Univ. Carolina, 11 (1970), 787–811.

    MathSciNet  MATH  Google Scholar 

  • Babuska I.: 2. The finite element method for infinite domaines. Math. Comput., 26 (1972), 1–11.

    MathSciNet  MATH  Google Scholar 

  • Babuska I.; Osbon J.: Analysis of finite element methods for second order boundary value problems using mesh dependent norms. Numer. Math., 34 (1980), 41–62.

    MathSciNet  MATH  Google Scholar 

  • Bacchelli-Montefusco L.; Casciola G.: Analysis of methods for the numerical evaluation of ”basic L splines”. Calcolo, 20 (1983), 239–259.

    MathSciNet  MATH  Google Scholar 

  • Bacopoulos A.; Marsden M.: On a map from splines into a positive cone with applications I, II. Aequationes Math., 7 (1971), 122–124. II. Aequationes Math., 8 (1972), 221–228.

    MathSciNet  Google Scholar 

  • Baddoux N.; Brunner H.: Continuous Volterra — Runge — Rutta methods for integral equations with pure delay. Computing, 50 (1993), No.3, 213–227.

    MathSciNet  Google Scholar 

  • Badea C.: On a Korovkin — Type theorem for simultaneous approximation. J. Approx. Theory, 62 (1990), No.2, 223–234.

    MathSciNet  MATH  Google Scholar 

  • Badea E.A.; Pissanetzky S.: Accurate cubic spline interpolation of magnetization table. COMPEL, 12 (1993), No.1, 49–58.

    MATH  Google Scholar 

  • Bader G.; Ascher U.: A new basis implementation for a mixed order boundary value ODE solver. SIAM J. Sci. Statist. Comput., 8 (1987), 483–500.

    MathSciNet  MATH  Google Scholar 

  • Bader G.; Kunkel P.: Continuation and collocation for parameter — dependent boundary value problems. SIAM J. Sci. Statist. Comput., 10 (1989), 72–88.

    MathSciNet  MATH  Google Scholar 

  • Bajaj C.L.: The combinatorics of real algebraic splines over a simplicial complex. In the math. of numer. analysis (Park City, UT, 1995), 49–58, Lectures in Appl. Math. 32 AMS, 1996.

    Google Scholar 

  • Bajaj C.L.; Xu Guoliang: 1. Rational spline approximation of real algebraic curves and surfaces. Advances in comput. Maths. (New Delhi 1993), 73–85, Ser. Approx. Decompos 4, World Sci. Publ. River Edge, N.J. 1994.

    Google Scholar 

  • Bajaj C.L.; Xu Guoliang: 2. NURBS approximations of surface/surface intersection curves. Adv. Comput. Math., 2 (1994), No.1, 1–21.

    MathSciNet  MATH  Google Scholar 

  • Bajaj C.L.; Xu Guoliang: 3. Spline approximations for real algebraic surfaces. J. Symbolic Comput. 23 (1997), No.2–3, 315–333.

    MathSciNet  MATH  Google Scholar 

  • Bajenskii Ju. M.; Slastin Ju. V.: Kljucevîe metody v teorii splainov. Trudy Mosk. Aviaţ. Inst., 331 (1975), 54–57.

    Google Scholar 

  • Bakiev R.R.: 1. A method of the solution of the Cauchy problem with the help of cubic splines. (russian). Vopr. Vychisl. Prikl. Mat., 66 (1981), 72–84.

    MATH  Google Scholar 

  • Bakiev R.R.: 2. Méthode de resolution approchée du problème de Cauchy à l’aide des fonctions ”splines” cubiques. (russian). Dokl. Akad. Nauk. Uz. SSR, 7 (1982), 9–11.

    MathSciNet  Google Scholar 

  • Bakiev R.R.: 3. Lebesgue constants of interpolated L — splines. (russian). Voprosy Vychisl.i Prikl. Mat. (Tashkent), 82 (1987), 114–118.

    MathSciNet  MATH  Google Scholar 

  • Baklanova Olga E.; Vasilenko VI. A.: 1. Data compression with ∑π — approximation based on splines. Appl. Math., Praha 38 (1993), No.6, 405–410.

    MATH  Google Scholar 

  • Baklanova Olga E.; Vasilenko VI. A.: 2. Data compression with ∑π — approximations based on splines. Bull. Nov. Comp. Center, Numer. Anal., 2 (1993), 11–17.

    Google Scholar 

  • Ball A.A.: The improved bicubic patch — natural surface counterpart of the parametric cubic segment. IMA J. Numer. Anal., 3 (1983), 373–380.

    MathSciNet  MATH  Google Scholar 

  • Ball A.A.; Storry D.J.T.: 1. Recursively generated B — spline surfaces. CAD 84 Proceeding Butterworths, (1984), 112–119.

    Google Scholar 

  • Ball A.A.; Storry D.J.T.: 2. A matrix approach to the analysis of recursively generated B — spline surfaces. Comput. Aided. Design., 18 (1986), 437–442.

    Google Scholar 

  • Ball A.A.; Storry D.J.T.: 3. Conditions for tangent plane continuity over recursively generated B — spline surfaces. ACM Trans. Graphics, 7 (1988), No.2, 83–102.

    MATH  Google Scholar 

  • Bamberger L.; Hämmerlin G.: Spline — blended substitution kernels of optimal convergence. In Treatment of Integral Eqs by Numer. Methods, Baker C.T.H., Miller G.F. eds, Academic Press, (1982), 47–57.

    Google Scholar 

  • Banks H.T.; Burns J.A.; Chiff E.M.: Spline — based approximation methods for control and identification of hereditary systems. Lect. Notes Contr. Inform. Sci., 14 (1979), 314–320.

    Google Scholar 

  • Banks H.T.; Kappel F.: Spline approximations for functional differential equations. J. Differential Eqs., 34 (1979), 496–522.

    MathSciNet  MATH  Google Scholar 

  • Banks H.T.; Rosen I.G.: Spline approximations for linear nonautonomous delay systems. J. Math. Anal. Appl., 96 (1983), No.1, 226–268.

    MathSciNet  MATH  Google Scholar 

  • Banks H.T.; Rosen I.G.; Ito K.: A spline based technique for computing Riccati operators and feedback controls in regulator problems for delay equations. SIAM J. Sci. Stat. Comput., 5 (1984), 830–855.

    MathSciNet  MATH  Google Scholar 

  • Banks M.J.; Cohen E.: Realtime B-spline curves from interactively sketehed data. Computer Graphics, 24 (1990), No.2, 99–107.

    Google Scholar 

  • Bao Ming Tang; Chang Dao Rong: 1. A convergence theorem for cubic spline with a uniform mesh. (chinese). Knowledge Practice Math., 3 (1979), 40–54.

    Google Scholar 

  • Bao Ming Tang; Chang Dao Rong: 2. Simple hyperbolic splines on a finite interval. (chinese). Math. Numer. Sinica, 3 (1981), 57–65.

    MathSciNet  MATH  Google Scholar 

  • Bao Ming Tang; Chang Dao Rong: 3. Convergence theorems for cubic spline which satisfy a general two — point boundary conditions. (chinese). Math. Practice Theory, 1 (1983), 12–19.

    Google Scholar 

  • Bao Ming Tang; Chang Dao Rong: 4. The convergence of the third derivatives of a simple hyperbolic splines. Math. Numer. Sinica, 6 (1984), No.2, 121–137.

    MathSciNet  Google Scholar 

  • Bao Xue Song; Chen Hua Sheng; Liu Xiu Fang: The numerical convergence in solving to point boundary value problems with spline functions. (chinese). Nanjing Daxue Xuebao, 1 (1982), 49–54.

    Google Scholar 

  • Bardis L.; Patrikalakis N.M.: Approximate conversation of rational B — splines patches. Comput. Aided. Geom. Des., 6 (1989), 189–204.

    MathSciNet  MATH  Google Scholar 

  • Bardis L.; Vafiadou M.: Ship-hull geometry representation with B-spline surfaces patches. Computer-Aided Design, 24 (1992), No.4, 217–222.

    Google Scholar 

  • Barinov V.A.: Approximation of experimental data by a spline according to the method of least squares. (russian). Učebn. Zan. CAGI, 5 (1975), 128–152.

    MathSciNet  Google Scholar 

  • Barnhill R.E.: 1. Smooth interpolation over triangles. Comput. Aided. Geom. Design., R.E. Barnhill and R.F. Riesenfeld (eds), Academic Press, New York, (1974), 45–70.

    Google Scholar 

  • Barnhill R.E.: 2. A survey of the representation and design of surface. IEEE Comput. Graphics. Appl., 3(7), (1983), 9–16.

    Google Scholar 

  • Barnhill R.E.: 3. Surfaces in computer aided geometric design. CAGD, 1 (1984), No.1–3, 213–222.

    MathSciNet  Google Scholar 

  • Barnhill R.E.: 4. Surfaces in computer aided geometric design: A survey with new results. Comp. Aided Geom. Design., 2 (1985), 1–17.

    MathSciNet  MATH  Google Scholar 

  • Barnhill R.E.; Birkhoff G.; Gordon W.J.: Smooth interpolation in triangle. J. Approx. Theory, 8 (1973), 114–128.

    MathSciNet  MATH  Google Scholar 

  • Barnhill R.E.; Dube R.P.; Little F.F.: Properties of Shepards surfaces. Rocky Mt. J. Math., 13 (1983), 365–382.

    MathSciNet  MATH  Google Scholar 

  • Barnhill R.E.; Farin G.: 1 quintic interpolation over triangles: two explicit representation. J. Num. Meth. Engin., 17 (1981), 1763–1778.

    MATH  Google Scholar 

  • Barnhill R.E.; Gregory J.A.: 1. Compatible smooth interpolation in triangles. J. Approx. Th., 15 (1975), 214–225.

    MathSciNet  MATH  Google Scholar 

  • Barnhill R.E.; Gregory J.A.: 2. Polynomial interpolation to boundary data on triangles. Math. Comput., 29 (1975), 726–735.

    MathSciNet  MATH  Google Scholar 

  • Barnhill R.E.; Mansfield L.: Error bounds for smooth interpolation in triangle. J. Approx. Theory, 11 (1974), 306–318.

    MathSciNet  MATH  Google Scholar 

  • Barnhill R.E.; Stead S.: Multistage trivariate surfaces. Rocky Mt. J. Math., 14 (1984), 103–118.

    MathSciNet  MATH  Google Scholar 

  • Barnhill R.E.; Whelan T.: A geometric interpolation of convexity conditions for surfaces. Computer Aided Geom. Design, 1 (1984), 285–287.

    MATH  Google Scholar 

  • Barnhill R.E.; Ou H.S.: Surfaces defined on surfaces. Comput. Aided Geom. Design (special issue), 7 (1990), No.1–4., 323–336.

    MathSciNet  MATH  Google Scholar 

  • Barnhill R.E.; Wixon J.A.: An error analysis for the bivariate interpolation of analitic functions. SIAM J. Numer. Anal., 6 (1969), 450–457.

    MathSciNet  MATH  Google Scholar 

  • Barnhill R.E.; Worsey A.J.: Smooth interpolation over hypercubes. CAGD, 1 (1984), No.2, 101–115.

    MATH  Google Scholar 

  • Baronio A.; Zama F.: A domain decomposition technique for spline image restoration on distributed memory systems. Parallel Comput. 22 (1996), No.1, 101–110.

    MathSciNet  MATH  Google Scholar 

  • Barrar R.B.; Loeb H.L.: 1. Existence of best spline approximation with free knots. J. Math. Anal. Appl., 31 (1970), 383–390.

    MathSciNet  MATH  Google Scholar 

  • Barrar R.B.; Loeb H.L.: 2. Analytic extended monosplines. Numer. Math., 22 (1974), 119–125.

    MathSciNet  MATH  Google Scholar 

  • Barrar R.B.; Loeb H.L.: 3. Spline functions with free knots as the limit of Varisolvent families. J. Approx. Theory, 12 (1974), 70–77.

    MathSciNet  MATH  Google Scholar 

  • Barrar R.B.; Loeb H.L.: 4. Multiple zeros and application to optimal linear functional. Numer. Math., 25 (1976), 251–262.

    MathSciNet  MATH  Google Scholar 

  • Barrar R.B.; Loeb H.L.: 5. On nonlinear characterization problem for monosplines. Approx. Theory, 18 (1976), 220–240.

    MathSciNet  MATH  Google Scholar 

  • Barrar R.B.; Loeb H.L.: 6. On monosplines with odd multiplicity of least norm. J.d’Anal. Math., 33 (1978), 12–38.

    MathSciNet  MATH  Google Scholar 

  • Barrar R.B.; Loeb H.L.: 7. Fundamental theorem of algebra for monospline and related results. SIAM J. Numer. Anal., 17 (1980), 874–882.

    MathSciNet  MATH  Google Scholar 

  • Barrar R.B.; Loeb H.L.: 8. The fundamental theorem of algebra and the interpolating envelope for totally positive perfect spline. J. Approx. Theory, 34 (1982), 167–186.

    MathSciNet  MATH  Google Scholar 

  • Barrar R.B.; Loeb H.L.: 9. Some remarks on the exact controlled approximation order of bivariate splines on a diagonal mesh. J. Approx. Theory, 42 (1984), 257–265.

    MathSciNet  MATH  Google Scholar 

  • Barrar R.B.; Loeb H.L.: 10. Optimal monosplines with a maximal number of zeros. SIAM J. Math. Anal., 15 (1984), 1196–1204.

    MathSciNet  MATH  Google Scholar 

  • Barrar R.B.; Loeb H.L.: 11. The strong uniqueness theorem for monosplines. J. Approx. Theory, 46 (1986), 157–169.

    MathSciNet  MATH  Google Scholar 

  • Barrar R.B.; Loeb H.L.: 12. The optimal L 1 problem for generalized polynomial monosplines and a related problem. J. Approx. Theory, 59 (1989), No.2, 170–201.

    MathSciNet  MATH  Google Scholar 

  • Barrar R.B.; Loeb H.L.; Werner H.: On the uniqueness of the best uniform extended totally positive monospline. J. Approx. Theory, 28 (1980), 20–29.

    MathSciNet  MATH  Google Scholar 

  • Barrar R.B.; Loeb H.L.; Ziegler Z.: Multiple nodes splines with boundary conditions, the fundamental theorem of algebra for monosplines and Gaussian quadrature formula for splines. J. Math. Anal. and Appl., 129 (1988), No.1, 90–102.

    MathSciNet  MATH  Google Scholar 

  • Barrodale I.; Kuwahara L.; Poeckert R.; Skea D.: Side — scan sonar image processing using thin plate splines and control point maching.Numer. Algorithms, 5 (1993), No.1–4.

    Google Scholar 

  • Barrodale I.; Young A.: A note on numerical procedures for approximation by spline functions. Comput. J., 9 (1966), 318–320.

    MathSciNet  MATH  Google Scholar 

  • Barrov D.L.; Chui C.K.; Smith P.W.; Ward J.D.: Unicity of best mean approximation by second order splines with variable knots. Math. Comput., 32 (1978), 1131–1143.

    Google Scholar 

  • Barrov D.L.; Smith P.V.: 1. Asymptotic properties of best L 2 [0, 1] approximation by splines with variable knots. Quarterly Applied. Math., 36 (1978), 293–304.

    Google Scholar 

  • Barrov D.L.; Smith P.V.: 2. Efficient L 2approximation by splines. Numer. Math., 33 (1979), 101–114.

    MathSciNet  Google Scholar 

  • Barry P.J.: 1. De Boor — Fix functionals and polar form. Comput. Aided Geom. Design, 7 (1990), No.5, 425–430.

    MathSciNet  MATH  Google Scholar 

  • Barry P.J.: 2. De Boor — Fix dual functionals and algorithms for Tchebycheffian B-spline curves. Constr. Approx., 12 (1996), No.3, 385–408.

    MathSciNet  MATH  Google Scholar 

  • Barry P.J.: 3. Properties of functions in an auxiliary spline spaces. Aequationes Math., 52 (1996), No.1–2, 72–80.

    Google Scholar 

  • Barry P.J.; Beatty J.C.; Goldman R.N.: Unimodal properties of B — spline and Bernstein — basis functions. Comput. Aided Des., 24 (1992), No.12, 627–636.

    MATH  Google Scholar 

  • Barry P.J.; Goldman R.N.: 1. A recursive proof of a B — spline identity for degree elevation. Comput. Aided Geom. Design., 5 (1988), No.2, 173–175.

    MathSciNet  MATH  Google Scholar 

  • Barry P.J.; Goldman R.N.: 2. A recursive evaluation algorithm for a class of Catmull — Rom splines. Computer Graphics, 22 (1988), No.4, 199–204.

    Google Scholar 

  • Barry P.J.; Goldman R.N.; DeRose T.D.; Tony D.: B — splines, Polya curves, and duality. J. Approx. Theory, 65 (1991), No.1, 3–21.

    MathSciNet  MATH  Google Scholar 

  • Barry P.J.; Nira Dyn; Goldman R.N.; Micchelli C.A.: Identities for piecewise polynomial spaces determined by connection matrices. Aequationes Math., 42 (1991), 123–136.

    MathSciNet  MATH  Google Scholar 

  • Barry P.J.; Goldman R.L.; Micchelli C.A.: Knot insertion algorithms for piecewise polynomial spaces determined by connection matrices. Adv. Comput. Math. 1 (1993), No.2, 139–171.

    MathSciNet  MATH  Google Scholar 

  • Barry P.J.; Su Dongli: Extending B-spline tools and algorithms to geometrically continnous splines: A study of similarities and differences. CAGD, 12 (1995), No.6, 581–600.

    MathSciNet  MATH  Google Scholar 

  • Barry P.J.; Wnag W.; Cheng F.: Reduced — knots NURBS representation of rational G 1 -composite Bezier curves. Comput-Aided Design, 26 (1994), No.5

    Google Scholar 

  • Barry P.J.; Zhu Rui Beng: Another kind insertation algorithm for B — spline curves. Comput. Aided. Geom. Design, 9 (1992), No.3, 175–183.

    MathSciNet  MATH  Google Scholar 

  • Barsky B.A.: 1. End conditions and boundary conditions for uniform B — spline curve and surface representations. Computers in Industry, 3 (1982), 17–29.

    Google Scholar 

  • Barsky B.A.: 2. Exponential and polynomial methods for applying tension to an interpolating spline curves. Computer Vision, Graphics and Image Processing, 27 (1984), 1–18.

    MATH  Google Scholar 

  • Barsky B.A.: 3. Rational Beta-splines for representing curves and surfaces. IEEE Comput Graphics Appl., Nov. 1993, 24–32.

    Google Scholar 

  • Barsky B.A.; Beatty J.C.: 1. Local control of basis and tension in Beta — splines. ACM Trans. Graphics, 2 (1983), 109–134.

    MATH  Google Scholar 

  • Barsky B.A.; Beatty J.C.: 2. Local control of bias and tension of beta — splines. Computer Graphics, 3 (1983), 193–218.

    Google Scholar 

  • Barsky B.A.; Greendberg D.P.: 1. Determining a set of B — spline control vertices to generate an interpolating surfaces. Computer Graphics Image Proc., 14 (1980), 203–226.

    Google Scholar 

  • Barsky B.A.; Greendberg D.P.: 2. Interactive surface representation system using a B — spline formulation with interpolation capability. Computer Aided Design, 14 (1982), 187–194.

    Google Scholar 

  • Barsky B.A.; Spencer Th.W.: TRANSPLINE — A system for representanting curves using transformations among four spline formulations. The Computer Journal, 24 (1981), No.3, 271–277.

    MathSciNet  MATH  Google Scholar 

  • Barsky B.A.; Rose De T.D.: 1. The β2 — spline: a special case of the B — spline curve and surface representation. IEEE Comput Graphics Appl., 5(9), (1985), 46–58.

    Google Scholar 

  • Barsky B.A.; Rose De T.D.: 2. Geometric continuity of parametric curves: constructions of geometrically continuous splines. IEEE Comput Graph. Appl., (1990), 60–68.

    Google Scholar 

  • Barsky B.A.; Thomas S.: Transpline — a system for representing curves using transformation among four spline formulations. The Computer J., 24 (1981), No.3, 271–277.

    MathSciNet  MATH  Google Scholar 

  • Bartels R.; Beatty J.: A technique for the direct manipulation of spline curves. Proc. Graphics Interface 89, Morgan Kaufmann, USA (1989), 33–39.

    Google Scholar 

  • Bartels R.; Hardock R.: Curve-to-curve associations in spline-based inbetweening and sweeping. Computer Graphics, 23 (1989), No.3, 167–174.

    Google Scholar 

  • Bartelt M.W.: Weak Chebyscheff sets and splines. J. Approx. Theory, 14 (1975), 30–37.

    MathSciNet  MATH  Google Scholar 

  • Barth W.; Stürzlinger W.: Efficient ray tracing for Bezier and B-spline surfaces. Comput. and Graphics, 17 (1993), No.4, 423–430.

    Google Scholar 

  • Bashmakova I.B.: Approximation by Hermitian splines of functions, in the class W 5 H a K. (russian). Numer. Methods in Problems of Math. Modelling. Leningrad Inzh — Stroitel Inst. Leningrad, 110, 7–10.

    Google Scholar 

  • Bastien R.; Dubuc S.: Monospline à oscillation minimale. Ann. Sci. Math. Québec, 6 (1982), No.2, 123–141.

    MathSciNet  MATH  Google Scholar 

  • Baszenski G.; Schumaker L.L.: 1. Tensor products of abstract smoothing splines. Alfred Haar Memorial Conf J. Szabados and K. Tandary (eds), North — Holland, Amsterdam, (1986), 181–192.

    Google Scholar 

  • Baszenski G.; Schumaker L.L.: 2. On a method for fitting an unknown junction based on mean — value measurements. SIAM J. Numer. Anal., 24 (1987), No.3, 725–736.

    MathSciNet  MATH  Google Scholar 

  • Battaglia F.: Analisi di superfici di utilita mediante funzioni di tipo spline biliniare. Calcolo, 15 (1978), 233–248.

    MathSciNet  MATH  Google Scholar 

  • Battle Guy: Cardinal spline interpolation and the block spin construction of wavelets. Wavelet Anal. Appl. 2 (1992), 73–90.

    MathSciNet  Google Scholar 

  • Baum A.M.: 1. An algebraich approch to simple hyperbolic splines on the real line. J. Approx. Theory, 17 (1976), 189–199.

    MathSciNet  MATH  Google Scholar 

  • Baum A.M.: 2. Double hyperbolic splines on the real line. J. Approx. Theory, 18 (1976), 174–188.

    MathSciNet  MATH  Google Scholar 

  • Baumeister J.: 1. Über die Extremaleigenschaft nichtlinearer interpolierender Splines. Numer. Math., 25 (1976), 433–445.

    MathSciNet  MATH  Google Scholar 

  • Baumeister J.: 2. Variationsprobleme in Orliczräumen und Splines. Manuscripta Math., 20 (1977), 29–49.

    MathSciNet  MATH  Google Scholar 

  • Baumeister J.; Schumaker L.L.: Nonlinear classes of splines and variational problems. J. Approx. Theory, 18 (1976), 63–73.

    MathSciNet  MATH  Google Scholar 

  • Bazarhanov D.B.: 1. The optimal quadrature formulas for impropre integrals in some classes of differentiable functions. (russian). Matem. Zamet., 49 (1991), No.6, 132–134.

    Google Scholar 

  • Bazarhanov D.B.: 2. Approximation of Cauchy potentials of Borel measures by splines with free nodes. (russian). Izv. Akad. Nauk Kazakh. SSR, ser. Fiz. Mat., (1991), No.1, 18–20.

    Google Scholar 

  • Bazarhanov D.B.: 3. Approximation of some classes of smooth periodic functions of several variables by interpolation splines in a uniform grid. (russian) Mat. Zametki, 57 (1995), No.6, 917–919.

    Google Scholar 

  • Bazarhanov D.B.: 4. Multivariate periodic spline interpolation on uniform grid. East J.Approx. 2 (1996), No.3, 381–392.

    MathSciNet  Google Scholar 

  • Bär Gart: Hermitesche und Spline — Interpolation empirischer Kurven und Flächen mit geometrischen Interpolationsbedingungen. Rostock. Math. Kolloq., 6 (1977), 5–22.

    Google Scholar 

  • Beatson R.K.: 1. Convex approximation by splines. SLAM J. Math. Anal., 12 (1981), 549–559.

    MathSciNet  MATH  Google Scholar 

  • Beatson R.K.: 2. Restricted range approximation by splines and variational inequalities. SIAM J. Numer. Anal., 19 (1982), 372–380.

    MathSciNet  MATH  Google Scholar 

  • Beatson R.K.: 3. Monoton and convex approximation by splines, error estimates and a curve fitting algorithm. SIAM J. Numer. Anal., 19 (1982), 1278–1285.

    MathSciNet  MATH  Google Scholar 

  • Beatson R.K.: 4. On the convergence of some cubic spline interpolation schemes. SIAM J. Numer. Anal., 23 (1986), No.4, 903–912.

    MathSciNet  MATH  Google Scholar 

  • Beatson R.K.; Chacko E.: Which cubic spline should one use?. SIAM J. Sci.Statist. Comput., 13 (1992), No.4, 1009–1024.

    MathSciNet  MATH  Google Scholar 

  • Beatson R.K.; Dyn Nira: Multiquadratic B-splines. J. Approx. Theory, 87 (1996), No.1, 1–24.

    MathSciNet  MATH  Google Scholar 

  • Beatson R.K.; Goodsell G.; Powell M.J.D.: On multigrid techniques for thin plate spline interpolation in two dimensions. In: Renegas J. (ed.): The Mathematics of Numerical Analysis, AMS,Lect. Appl. Math., 32 (1996), 77–97.

    Google Scholar 

  • Beatson R.K.; Light W.A.: 1. Quasi — interpolation by thin — plate splines on a square. Constr.Approx., 9 (1993), No.4, 407–433.

    MathSciNet  MATH  Google Scholar 

  • Beatson R.K.; Light W.A.: 2. Fast evaluation of radial basis functions: methods for two-dimensional polyharmonic splines. IMA J.Numer.Anal., 17 (1997), No.3, 343–372.

    MathSciNet  MATH  Google Scholar 

  • Beatson R.K.; Powell M.J.D.: An iterative method for thin plate spline interpolation that employs approximations to Lagrange functions. Numer. Anal. 1993. Pitman Res. Notes Math. Ser. 303 (1994), 17–39.

    Google Scholar 

  • Beatson R.K.; Wolkowicz H.: Post — Processing piecewise cubics for monotonicity. SIAM J. Numer. Anal., 26 (1989), No.2, 480–502.

    MathSciNet  MATH  Google Scholar 

  • Beatson R.K.; Ziegler Z.: Monotonicity preserving surface interpolation. SIAM J. Numer. Anal., 22 (1985), No.2, 401–411.

    MathSciNet  MATH  Google Scholar 

  • Bechtloff J.: Erzeugung von Bewegunsfunktionen mittels Splinefunktionen und ihre Anwendungen anf Bewegungsgesetze für Kurvengetriebe. Ing.-Arch., 60 (1990), No.8, 518–528.

    Google Scholar 

  • Beckert U.; Rieck H.: Darstellungen von Magnetisierungskurven durch kubische Spline-Funktionen. Z. Elek. Inform und Energietech., 10 (1980), 69–73.

    Google Scholar 

  • Bedau K.D.: Darstellung und Fortschreibung von Einkommensschichtungen unter Verwendung von Spline — Funktionen. Vierteljahrshefte zur Wirtschaftsforschung (1969), 406–425.

    Google Scholar 

  • Begiaşhvilli G.A.; Revişhvilli L.V.: Cislenîi metod reguljarizovanii otenki spektralnoi plotnosti s pomoşciu kubiceskih splainov. Soobşh. Acad. Nauk. Gr. SSR., 96 (1979), No.2, 313–316.

    Google Scholar 

  • Begiaşhvilli G.A.; Medabde M.A.: A regulated method of solving Fredholm first kind integral equations by means of cubic splines. (russian). Bull. Akad. Sci. Georgian SSR, 94 (1979), 41–44.

    Google Scholar 

  • Behforooz G.H.: 1. An overview of spline functions. (persian). Report on the Fitteenth. National Conf. on Math. (Shiraz, 1984), 51–59. Anjuman — i Riyazi — yi Iran, Tehran, (1986).

    Google Scholar 

  • Behforooz G.H.: 2. Quadratic spline. Appl. Math. Lett., 1 (1988), No.2, 177–180.

    MathSciNet  MATH  Google Scholar 

  • Behforooz G.H.: 3. Another approach to the quintic spline. Appl. Math. Lett., 1 (1988), No.4, 335–338.

    MathSciNet  MATH  Google Scholar 

  • Behforooz G.H.: 4. Quadratic spline — on — spline. Appl. Math. Lett., 1(3), (1988), 217–218.

    MathSciNet  MATH  Google Scholar 

  • Behforooz G.H.: 5. End conditions for cubic spline interpolation derived from integration. Appl. Math. and Comput., 29 (1989), No.3, 231–244.

    MathSciNet  MATH  Google Scholar 

  • Behforooz G.H.: 6. Manifold Subbotin spline. Appl. Math. and Comput., 40 (1990), No.3, 225–231.

    MathSciNet  MATH  Google Scholar 

  • Behforooz G.H.: 7. Approximation of Cauchy principal value integrals by piecewise Hermite quartic polynomials by splines. Appl. Math. Lett., 5 (1992), No.1, 75–78.

    MathSciNet  MATH  Google Scholar 

  • Behforooz G.H.: 8. The not-a-knot piecewise interpolatory cubic polynomial. Appl. Math. Comput., 52 (1992), No.1, 29–35.

    MathSciNet  MATH  Google Scholar 

  • Behforooz G.H.: 9. A new approach to spline functions. Appl. Numer. Math., 13 (1993), No.4, 271–276.

    MathSciNet  MATH  Google Scholar 

  • Behforooz G.H.: 10. Consistency relations of the spline functions derived from a Pascal-like triangle. Appl. Maths. and Comput., 74 (1996), 293–297.

    MathSciNet  MATH  Google Scholar 

  • Behforooz G.H.: 11. A comparison of the E(3) and not-a-knot cubic splines. Appl. Maths. and Comput., 72 (1995), 219–223.

    MathSciNet  MATH  Google Scholar 

  • Behforooz G.H.: 12. The use of spline-on-spline for the approximation of Cauchy principal value integrals. Appl. Math. Comput. 80 (1996), No.1, 23–32.

    MathSciNet  MATH  Google Scholar 

  • Behforooz G.H.; Papamichael N.: 1. Improved order of approximation derived from interpolatory cubic spline. BIT, 19 (1979), 19–26.

    MathSciNet  MATH  Google Scholar 

  • Behforooz G.H.; Papamichael N.: 2. End conditions for cubic splines interpolations. J. Inst. Math. and Appl., 23 (1979), 355–366.

    MathSciNet  MATH  Google Scholar 

  • Behforooz G.H.; Papamichael N.: 3. End conditions for interpolatory cubic splines with unequally spaced knots. J. Comput. and Appl. Math., 6 (1980), 59–65.

    MathSciNet  MATH  Google Scholar 

  • Behforooz G.H.; Papamichael N.: 4. End conditions for interpolatory quintic spline. IMA J. Numer. Anal., 1 (1981), 81–93.

    MathSciNet  MATH  Google Scholar 

  • Behforooz G.H.; Papamichael N.: 5. Overconvergence properties of quintic interpolatory splines. J. Comput. Appl. Math., 24 (1988), No.3, 337–347.

    MathSciNet  MATH  Google Scholar 

  • Behforooz G.H.; Papamichael N.; Worsey A.J.: A class of piecewise cubic interpolatory polynomials. J. Inst. Math. Appl. London, 25 (1980), 53–65.

    MathSciNet  MATH  Google Scholar 

  • Bellen A.: 1. Approximation spline nel metodo di collocazione per il calcolo degli autovalori di problemi liniari. Rend. Inst. Mat. Univ. Trieste, 8 (1976), 195–208.

    MathSciNet  Google Scholar 

  • Bellen A.: 2. An extended collocation method. Calcolo, 17 (1980), 385–402.

    MathSciNet  Google Scholar 

  • Bellen A.: 3. Extended projection method. (Italian). Boll. Un. Mat. Ital Suppl., 1 (1980), 239–255.

    MathSciNet  MATH  Google Scholar 

  • Bellen A.; Zennaro M.: A collocation method for boundary value problems of differential equations with functional arguments. Computing, 32 (1984), 307–318.

    MathSciNet  MATH  Google Scholar 

  • Bellman R.; Kashef B.G.; Vasudevan R.: 1. Spline via dynamic programming. J. Math. Anal. Appl., 38 (1972), 471–479.

    MathSciNet  MATH  Google Scholar 

  • Bellman R.; Kashef B.G.; Vasudevan R.: 2. A note on mean square spline approximation. J. Math. Anal. Appl., 42 (1973), 427–430.

    MathSciNet  MATH  Google Scholar 

  • Bellman R.; Kashef B.G.; Vasudevan R.: 3. Dynamic programming and bicubic spline interpolation. J. Math. Anal. Appl., 44 (1973), 160–174.

    MathSciNet  MATH  Google Scholar 

  • Bellman R.; Kashef B.G.; Vasudevan R.: 4. Mean square spline approximation. J. Math. Anal. Appl., 45 (1974), 47–53.

    MathSciNet  MATH  Google Scholar 

  • Bellman R.; Kashef B.G.; Vasudevan R.; Lee E.S.: Differential quadrature and splines. Computers Math. Appl. (G.B.), 1 (1975), 371–376.

    MathSciNet  MATH  Google Scholar 

  • Bellman R.; Roth R.: 1. Curve fitting by segmented straight lines. J. Amer. Statist. Assoc., 64 (1969), 1079–1084.

    MathSciNet  Google Scholar 

  • Bellman R.; Roth R.: 2. The use of splines with unknown and points in the identification of systems. J. Math. Anal. Appl., 34 (1971), 26–33.

    MathSciNet  MATH  Google Scholar 

  • Belotserkovski I.M.; Belotserkovski B.M.: 1. On the construction of a smooth continuation of the first order. (russian). Otbor i peredacha. Inf. Resp. Mezhved. Sb., 34 (1972), 49–56.

    Google Scholar 

  • Belotserkovski I.M.; Belotserkovski B.M.: 2. Piecewise approximation of nonlinear characteristics using smooth contiuations of the first order. (russian). Otbor i peredacha Inf. Resp. Mezlived. Sb., 34 (1972), 56–61.

    Google Scholar 

  • Belousov A.V.: Discrete cubic B — splines. (russian) Vychisl. Sistemy., No.115 (1986), 72–84.

    Google Scholar 

  • Belov Yu. A.: On the algorithm of piecewise polynomial approximation. (russian). Vyčisl. Prikl. Mat. (Kiev), 14 (1971), 77–83.

    Google Scholar 

  • Bely V.I.; Strelkovskaya I.V.: Approximation of functions by analytical complex splines in the regions with quasi — conformai boundary. (russian). Ukrainsk. Mat. J., 40 (1988), 563–568.

    Google Scholar 

  • Ben-Artzi A.; Ron A.: Translates of exponential box splines and their related spaces. Trans. Amer. Math. Soc., 309 (1988), 683–710.

    MathSciNet  MATH  Google Scholar 

  • Benbourhim Mohammed-Najib: Spline approximant in Hilbertian spaces of C(⊗). Numer. Math., 49 (1986), 291–303.

    MathSciNet  MATH  Google Scholar 

  • Benbourhim N.M.; Gaches J.: T fsplines et approximation par T fprolongement. Studia Math. 106 (1993), No.3, 203–211.

    MathSciNet  MATH  Google Scholar 

  • Ber M.G.: Natural discrete splines and the graduation problem. Vestn. Leningr. Univ. Math., 23 (1990), 1–4.

    MathSciNet  Google Scholar 

  • Bereguliak A.I.; Popov B.A.: Cubiceskie splainî s zadannoi oshibkoi. Algoritmî i programî dlja vychisl. Funcţii. (Kiev), 5 (1979), 53–63.

    Google Scholar 

  • Berens H.; Nürnberger G.: Nonuniqueness and selections in spline approximation. Constr. Approx., 6 (1990), 181–193.

    MathSciNet  MATH  Google Scholar 

  • Berezovskiy A.I.; Hlabîstov V.V.: 1. Ob oţenkah ahodimosti dlia odnogo interpolationogo splaina tipa Schoenberga. V. Zb. Optimiz. Vyčisl. (Kiev), (1975), 20–24.

    Google Scholar 

  • Berezovskiy A.I.; Hlabîstov V.V.: 2. Ob odnom sposobe interpolirovania paraboliceskimi splainami nekatotorovo vida. Dokl. Akad. Nauk USSR., A 7 (1976), No.7, 579–582.

    Google Scholar 

  • Berezovskiy A.I.; Hlabîstov V.V.: 3. O vostonovlenii funkţii dvuh peremennîh localnîmi paraboliceskimi splainami. Chysl. Met. i Tehnol. A.N. USSR Just — Kibernet. Kiev, (1990), 52–56.

    Google Scholar 

  • Berezovskiy A.I.; Kravet N.A.: Ob agnous ekonomiceskom algorithme postroenia interpolationih paraboliceskih splainov nekatorovo vida. Preprint. I.K. Akad. Nauk. USSR, 18 (1977), 11–16.

    Google Scholar 

  • Berezovskiy A.I.; Ivanov N.A.: Ob optimalnoi po tocinosti ravnomernoi splainovoi approximatţii Izv. Vyčial. Uçebu. Zaved. Matematika, 10(185) (1977), 14–24.

    Google Scholar 

  • Berger S.A.; Webster W.C.; Tapia R.A.; Atkins D.A.: Mathematical ship lofting. J. Ship Research., 10 (1966), 203–222.

    Google Scholar 

  • Berger Tor; Strömberg J.O.: Exact reconstruction algorithms for the discret wavelet transform using spline waveletes. Appl. Comput. Harmon. Anal., 2 (1995), No.4, 392–397.

    MathSciNet  MATH  Google Scholar 

  • Bermejo R.: Analysis of an algorithm for the Galerkin — characteristic method. Numer. Math., 60 (1991), No.2, 163–194.

    MathSciNet  MATH  Google Scholar 

  • Bernadou M.: C 1 — curved finite elements and applications to plate and shcle problems. J. Comput. Appl. Math. 50 (1994), 133–144.

    MathSciNet  MATH  Google Scholar 

  • Berthold Dretmar: Multidridstieategien für Spline — Galerkin — Verfahren zur Lösung Cauchyscher singulär Integralgleichungen. Wiss. Z. Tech. Univ. Karl — Marx-Stadt, 31 (1989), No.2, 166–173.

    MathSciNet  MATH  Google Scholar 

  • Besse Philippe: Approximation spline de l’analyse en composantes principales d’un variable aléatoire hilbertienne. Ann. Fac. Sci. Toulouse, V, Sér. Math., 12 (1991), No.3, 329–349.

    MathSciNet  Google Scholar 

  • Bezhaev A. Yu.: 1. Convergence of spline — interpolations with boundary conditions in a bounded domain. (russian). The finite element method in certain problems of numerical analysis. Akad. Nauk. SSSR. Novosibirsk, (1984), 4–20.

    Google Scholar 

  • Bezhaev A. Yu.: 2. Approximation of surfaces by traces of D m — splines. (russian). Var. meths. in probl. mim. anal. Collect Sci. Works, Novosibirsk, (1986), 3–16.

    Google Scholar 

  • Bezhaev A. Yu.: 3. Splines on manifolds. Soviet J. Numer. Anal. Math. Modelling, 3 (1988), No.4, 287–300.

    MathSciNet  MATH  Google Scholar 

  • Bezhaev A. Yu.: 4. Generating mappings and vector spline functions. (russian). Preprint. 830, Akad. Nauk. SSSR Sibirsk-Otdel. Vychisl. Tzentr. Novosibirsk, (1989).

    Google Scholar 

  • Bezhaev A. Yu.: 5. Approximation of linear functionals and multidimensional spline interpolation. Soviet. Math. Dokl., 40 (1990), No.1, 221–224.

    MathSciNet  Google Scholar 

  • Bezhaev A. Yu.: 6. Reproducing mappings and vector spline — functions. Soviet J. Numer. Anal. Math. Modelling, 5 (1990), No.2, 91–109.

    MathSciNet  MATH  Google Scholar 

  • Bezhaev A. Yu.: 7. Reproducing mappings of Hilbert spaces and the characterization of operator splines. (russian). Model Mekh., 5 (1991), No.1, 3–16.

    MathSciNet  Google Scholar 

  • Bezhaev A. Yu.; Rozhenko A.I.: 1. Variational splines in tensor products of spaces. (russian). Preprint 853, Akad. Nauk. SSSR, Sibirsk. Otdel. Vychisl. Zentr. Novosibirsk, (1989).

    Google Scholar 

  • Bezhaev A. Yu.; Rozhenko A.I.: 2. Variational splines in tensor products of spaces. Soviet J. Numer. Anal. Math. Modelling, 5 (1990), No.4–5, 345–358.

    MathSciNet  MATH  Google Scholar 

  • Bezhaev A. Yu; Vasilenko V.A.: 1. Splines in Hilbert spaces and their finite element approximations. Soviet J. Numer. Anal. Math. Modelling, 2 (1987), No.3, 191–202.

    MathSciNet  MATH  Google Scholar 

  • Bezhaev A. Yu; Vasilenko V.A.: 2. Variational spline theory. Bull. Novosibirsk Comput. Center Special Issue 3, 1993, NCC Publishers, Novosibirsk.

    Google Scholar 

  • Bezvershenko I.I.: A method for constructing a spline — solution for some classes of ordinary differential equations. (russian). Differentialnye Uravneniya, 19 (1983), No.11, 1988–1991.

    MathSciNet  MATH  Google Scholar 

  • Bhatt A.; Dikshit H.P.; Ojha A.: shape preserving GC 2 -rational cubic splines. Advances in Comput. Maths. (New Delhi 1993), 87–98, Ser. Aprox. Decompos, 4 (1994), World Sci. Publ., River Edge, N.J. 1994.

    Google Scholar 

  • Bhatta Sukanta Kumar; Sastri K.S.: 1. A sixt order spline procedure for a class of nonlinear boundary value problems. Internat. J. Comp. Math., 40(1 + 2), (1991).

    Google Scholar 

  • Bhatta Sukanta Kumar; Sastri K.S.: 2. Symetric spline procedures for boundary value problems with mixed boundary conditions. J. Comput. Appl. Math., 45 (1993), No.3, 237–250.

    MathSciNet  MATH  Google Scholar 

  • Bhattacharyya B.K.: 1. Bicubic spline interpolation as a method for treatment of potential field data. Geophysics, 34 (1969), 402–423.

    Google Scholar 

  • Bhattacharyya B.K.: 2. A spline finite element method for the solution of the clamped shallow cylindrical shell problem. ZAMM, 65 (1985), 545–550.

    MATH  Google Scholar 

  • Bhattacharyya B.K.; Kala V.: 1. On lacunary spline interpolation. J. Math. Phys. Sci., 16 (1982), 275–282.

    MathSciNet  MATH  Google Scholar 

  • Bhattacharyya B.K.; Kala V.: 2. On lacunary interpolation by eighth degree splines (0,1; 0,2, 3) case. J. Math. Phys. Sci., 23 (1989), No.3, 245–255.

    MathSciNet  MATH  Google Scholar 

  • Bialecki B.: 1. An alternating direction implicit method for orthogonal spline collocation linear systems. Numer. Math., 59 (1991), 413–429.

    MathSciNet  MATH  Google Scholar 

  • Bialecki B.: 2. A fast domain decomposition Poisson solver on a rectangle for Hermite bicubic orthogonal spline collocation. SIAM J. Numer. Anal., 30 (1993), No.2, 425–434.

    MathSciNet  MATH  Google Scholar 

  • Bialecki B.: 3. Preconditioned Richardson and minimal residual iterative methods for piecewise Hermite bicubic orthogonal spline collocation equations. SIAM J. Sci. Comput., 15 (1994), 668–680.

    MathSciNet  MATH  Google Scholar 

  • Bialecki B.: 4. Cyclic reduction and FACR methods for piecewise Hermite bicubic orthogonal spline collocation. Numer. Algorithms, 8 (1994), No. 2, 167–184.

    MathSciNet  MATH  Google Scholar 

  • Bialecki B.; Cai Xiao-Chnan: H 1 — norm error bounds for piecewise Hermite bicubic orthogonal spline collocation schemes for elliptic boundary value problems. SIAM J. Numer. Anal., 31 (1994), Nr.4, 1128–1146.

    MathSciNet  MATH  Google Scholar 

  • Bialecki B.; Cai X.C.; Dryja M.; Fairweather G.: An additive Scwarz algorithm for piecewise Hermite bicubic orthogonal spline collocation. Quateroni A (ed), Proceeds Sixth Intern. Conf. on Domain Decompositive Como, June 15–19, 1992, Previdece, Contemporary Math. 157 (1994), 237–244.

    Google Scholar 

  • Bialecky B.; Dillery D.Scott: Fourier analysis of Schwarz alternating methods for piecewise Hermite Bicubic orthogonal spline collocation. BIT, 33 (1993), No.4, 634–646.

    MathSciNet  Google Scholar 

  • Bialecky B.; Dryja M.: Multilevel additive and multiplicative methods for orthogonal spline collocation problems. Numer. Math., 77 (1997), No.1, 35–58.

    MathSciNet  Google Scholar 

  • Bialecki B.; Fairweather G.: 1. Matrix decomposition algorithms for separable elliptic boundary value problems in two space dimensions. J. Comput. Appl. Math., 46 (1993), 369–386.

    MathSciNet  MATH  Google Scholar 

  • Bialecki B.; Fairweather G.: 2. Matrix decomposition algorithms in orthogonal spline collocation for separable elliptic boundary value problems. SIAM J. Sci. Computing, 16 (1995), No. 2, 330–349.

    MathSciNet  MATH  Google Scholar 

  • Bialecki B. Fairweather G.; Bennett K.R.: Fast direct solvers for precewise Hermite bicubic orthogonal spline collocation equations. SIAM J. Numer. Anal., 29 (1992), No.1, 156–173.

    MathSciNet  MATH  Google Scholar 

  • Bialecki B. Fairweather G.; Romington K.A.: Fourier methods for piecewise Hermite bicubic orthogonal spline collocation. East — West J. Numer. Math. 2 (1994), No.1, 1–20.

    MathSciNet  MATH  Google Scholar 

  • Bialecki B.; Fernandes R.I.: Orthogonal spline collocation Laplace — modified and alternating — direction methods for parabolic problems on rectangles. Math. of Comput., 60 (1993) No.202, 545–573.

    MathSciNet  MATH  Google Scholar 

  • Bialecki B.; Remington K.A.: Fourier matrix decomposition methods for the least squares solution of singular Neumann and periodic Hermite bicubic collocation problems. SIAM J. Sci. Computing, 16 (1995), No.2, 431–451.

    MathSciNet  MATH  Google Scholar 

  • Bian S.H.: Application of the collocation method to the solution of the timee dependent neutron diffusion equation. Transport Theory and Statistical Physics, 12 (1983), 285–306.

    MATH  Google Scholar 

  • Bickley W.C.: 1. Piecewise cubic interpolation and two — point boundary problems. Comput. J., 11 (1968), 206–208.

    MathSciNet  MATH  Google Scholar 

  • Bickley W.C.: 2. Piecewise cubic interpolation and two — point boundary problems. Comput. J., 12 (1969), 105–106.

    MathSciNet  Google Scholar 

  • Biedrouska Malgorzata; Mochnacki Bohdan.: 1. The application of collocation method and spline functions to linear and non — linear problems of non — stationary heat conduction. Bull. Acad. Sci. Tech. Sci., 32 (1984), 297–316.

    MATH  Google Scholar 

  • Biedrouska Malgorzata; Mochnacki Bohdan.: 2. Numerical solution of heat conduction problems by means of spline functions. (polish). Mech. Komput., 4 (1981), 419–425.

    MATH  Google Scholar 

  • Bien Ai-Ping; Cheng Fuhna: Alternate spline. A generalized B — spline. J. Approx. Theory, 51 (1987), 138–139.

    MathSciNet  MATH  Google Scholar 

  • Bihfurüz G.H.: An overviw on spline functions. 5th Conf. in Math. (Persian), Iran, Teheran, (1986).

    Google Scholar 

  • Billera L.J.: Homology of smooth splines: generic triangulation and a conjecture of Strang. Trans. Amer. Math. Soc., 310 (1988), 325–340.

    MathSciNet  MATH  Google Scholar 

  • Billera L.J.; Haas R.: The dimension of basis of divergence — free splines; a homological approach. Approx. Theory Appl., 7 (1991), No.1, 91–99.

    MathSciNet  MATH  Google Scholar 

  • Billera L.J.; Rose L.L.: Dimension sériels for multivariate splines. Discrete and Comput. Geometry, 6 (1991), No.2, 107–128.

    MathSciNet  MATH  Google Scholar 

  • Binev P.G.: Superconvergence in spline interpolation. Comptes. R. Acad. Bulgare Sci., 37 (1984), No.12, 1613–1616.

    MathSciNet  MATH  Google Scholar 

  • Binev P.G.; Jetter K.: Cardinal interpolation with shifted three — directional box splines. Proc. Roy. Soc. Edinburg Sect. A, 122 (1992), No.3–4, 205–220.

    MathSciNet  MATH  Google Scholar 

  • Bini D.; Capovani M.: A class of cubic splines obtained through minimum conditions. Math. Comput., 46 (1986), No.173, 191–202.

    MathSciNet  MATH  Google Scholar 

  • Birkhoff G.: 1. Local spline approximation by moments. J. Math. Mech., 16 (1967), 987–990.

    MathSciNet  MATH  Google Scholar 

  • Birkhoff G.: 2. Tricubic polynomial interpolation. Proc. Nat. Acad. Sci. U.S.A., 68 (1971), 1162–1164.

    MathSciNet  MATH  Google Scholar 

  • Birkhoff G.: 3. The numerical solution of elliptic equations. CBMS Regional Conf. Series. Appl. Math. No. 1, SIAM, Philadelphia, 71 (1971), 55–71.

    MATH  Google Scholar 

  • Birkhoff G.; Boor C. de: Error bounds for spline interpolation. J. Math. Mech., 13 (1964), 827–835.

    MathSciNet  MATH  Google Scholar 

  • Birkhoff G.; Boor C. de; Swartz B.; Wendroff B.: Rayleigh — Ritz approximation by piecewise cubic polynomials. SIAM J. Numer. Anal., 3 (1966), 188–203.

    MathSciNet  MATH  Google Scholar 

  • Birkhoff G.; Cavendish I.C.; Gordon W.I.: Multivariate approximation by locally blended univariate interpolants. Proc. Nat. Acad. Sci. USA., 71 (1974), 3423–3425.

    MathSciNet  MATH  Google Scholar 

  • Birkhoff G.; Garabedian H.L.: Smooth surface interpolation. J. Math. and Phys., 39 (1960), 258–268.

    MathSciNet  Google Scholar 

  • Birkhoff G.; Gordon W.J.: The draftsman’s and related equations. J. Approx. Theory, 1 (1968), 199–208.

    MathSciNet  MATH  Google Scholar 

  • Birkhoff G.; Mansfield L.: Compatible triangular finite elements. J. Math. Anal. Appl., 47 (1974), 531–553.

    MathSciNet  MATH  Google Scholar 

  • Birkhoff G.; Priver A.S.: 1. Hermite interpolation errors for derivatives. J. Math. and Phys., 46 (1967), 440–447.

    MathSciNet  MATH  Google Scholar 

  • Birkhoff G.; Priver A.S.: 2. Optimal smoothing of Gaussian periodic data. Indiana Univ. Math. J., 21 (1971), 103–113.

    MathSciNet  MATH  Google Scholar 

  • Birkhoff G.; Schultz M.H.; Varga R.S.: Piecewise Hermite interpolation in one and two variables with applications to partial differential equations. Numer. Math., 11 (1968), 232–256.

    MathSciNet  MATH  Google Scholar 

  • Birman M.S.; Solomjak M.Z.: 1. Approximation of the functions of the classes W p a by piecewise polynomial functions. (russian). Dokl. Akad. Nauk SSSR, 171 (1966), 1015–1018.

    MathSciNet  Google Scholar 

  • Birman M.S.; Solomjak M.Z.: 2. Piecewise — polynomial approximations of functions of the classes W p a. (russian). Mat. Sb., 73 (1967), 331–355.

    MathSciNet  Google Scholar 

  • Björkenstam U.C.; Kjellander J.A.P.: 1. Cubic curve fitting using variable segment stiffness for computer — aided design. CIME (suppliment), 2 (1983), No.3, 61–66.

    Google Scholar 

  • Björkenstam U.C.; Kjellander J.A.P.: 2. General cubic curve fitting algorithm using stiffness coefficients. Comput — Aided Des., 19 (1987), No.3, 58–64.

    MATH  Google Scholar 

  • Blaga P.: 1. Asupra funcţiilor spline Hermite de două variabile. Studia Univ Babeş.-Bolyai Series Math., 23 (1978), 30–36.

    MathSciNet  MATH  Google Scholar 

  • Blaga P.: 2. A method to obtain some optimal cubature formulas. Approx. and Optimization. Proc. Colloq. Cluj — Napoca, (1984), 35–43.

    Google Scholar 

  • Blaga P.: 3. On a bivariate integral spline operator. Studa Univ. Babeş — Bolyai, Mathematica, 4 (1987), 10–20.

    Google Scholar 

  • Blaga P.: 4. Probabilistic considerations on B — splines functions. Studia Univ. Babeş-Bolyai, Math., 32 (1987), No.2, 10–13.

    MathSciNet  MATH  Google Scholar 

  • Blaga P.: 5. Some results on the integral spline approximation. Preprint No.9, Univ. of Cluj, Faculty of Mathematics, (1987), 37–48.

    Google Scholar 

  • Blaga P.: 6. Reducing of variance by spline functions in Monte Carlo integration. Studia Univ. Babeş — Bolyai, Mathematica, 4 (1989), 69–78.

    MathSciNet  Google Scholar 

  • Blaga P.: 7. Spline approximation with preservation of moments. Anal. Numér. Théor. Approx., 19 (1990), No.2, 111–121.

    MathSciNet  MATH  Google Scholar 

  • Blaga P.: 8. Spline approximation with preservation of moments and one point interpolation. Mathematica, 34 (1992), 23–32.

    MathSciNet  MATH  Google Scholar 

  • Blaga P.: 9. Spline approximation based on some high degree of exactness quadrature formulas. Analele Univ. Oradea, 2 (1992), Fasc. Matematica, 27–34.

    Google Scholar 

  • Blaga P.: 10. Some even-degree spline interpolation. Studia Univ. Babeş-Bolyai Math., 37 (1992), No. 1, 65–72.

    MathSciNet  MATH  Google Scholar 

  • Blaga P.: 11. Some Hermite — Birkhoff interpolation. Bull. Stiinţ. Univ. Baia Mare, Ser B 9, (1993), 39–44.

    MATH  Google Scholar 

  • Blaga P.; Coman G.: 1. On some bivariate spline operators. Anal. Numér. Theor. Approx. Cluj — Napoca, 8 (1979), 143–153.

    MathSciNet  MATH  Google Scholar 

  • Blaga P.; Coman G.: 2. Multivariate interpolation formulas of Birkhoff type. Studia Univ. Babeş — Bolyai, Series Math., 2 (1981), 14–22.

    MathSciNet  Google Scholar 

  • Blaga P.; Coman G.: 3. On a bivariate linear approximation. Seminar of Numer. and Statistical Calculus, Preprint No.4, (1985), Univ. of Cluj — Napoca, 3–22.

    Google Scholar 

  • Blaga P.; Coman G.: 4. A method to obtain some optimal cubature formulas. Proceed. Colloq. Approx. and Optimization, Cluj — Napoca, October 25–27 (1984), Univ. of Cluj — Napoca, (1985), 35–43.

    Google Scholar 

  • Blaga P.; Coman G.: 5. An integral spline operator. Preprint ”Babeş — Bolyai” Univ. Fac. Math. Res. Sem., 7 (1986), 41–50.

    MATH  Google Scholar 

  • Blair J.J.: 1. Error bounds for the solution of nonlinear two-point boundary value problems by Galerkin method. Numer. Math., 19 (1972), 94–109.

    MathSciNet  Google Scholar 

  • Blair J.J.: 2. Higher order approximations to the boundary conditions for the finite element method. Math. Comput., 30 (1976), 250–262.

    MathSciNet  MATH  Google Scholar 

  • Blank C.; Schlick C.: X-spline model designed for the end-user. Computer Graphics Proc. SIGGRAPH 95, 1995, 377–386.

    Google Scholar 

  • Blank Luise: 1. Stability of collocation for weakly singular Volterra equations. IMA J. Numer. Anal., 15 (1995), No.3, 357–375.

    MathSciNet  MATH  Google Scholar 

  • Blank Luise: 2. Stability results for collocation methods for Volterra integral equations. Appl. Math. Comput., 79 (1996), No.2–3, 267–288.

    MathSciNet  MATH  Google Scholar 

  • Blass P.; Dodzink J.; Ford T.; Kolibal J.: A C spline construction. Ulam Q., 3 (1996), No.2, 11–19.

    MATH  Google Scholar 

  • Blatov I.A.; Strîghili V.V.: 1. Shodimosti metoda splain — kollokatia na optimalmîh setkah dlja singuliarno vozmuşcenih kraevîh zadaci. Diff. Uravnenîa, 24 (1988), No.11, 1977–1987.

    MATH  Google Scholar 

  • Blatov I.A.; Strîghili V.V.: 2. The spline — collocation method on adaptive meshes for singularly perturbed boundary value problems. (russian). Dokl. Akad. Nauk. SSSR, 304 (1989), No.4, 785–788.

    Google Scholar 

  • Blatov I.A.; Strîghili V.V.: 3. Convergence of spline collocation method for singularly perturbed boundary value problems on locally uniform grids. (russian). Differebtsialnîe Uravneniya, 26 (1990), No.7, 1191–1197.

    Google Scholar 

  • Blatov I.A.; Strîghili V.V.: 4. Forth order accuracy collocation method for solving singularly perturbed boundary value problems. Sib. Math. J., 34 (1993), No. 1, 10–24.

    MATH  Google Scholar 

  • Blatter J.; Schumaker L.: Continuous selections and maximal alternators for spline approximations. J. Approx. Theory, 38 (1983), No.1, 71–80.

    MathSciNet  MATH  Google Scholar 

  • Bleyer A.; Preuss W.: 1. Spline approximations for solutions of differential equations with retarded arguments. Acta Math. Acad. Sci. Hung., 39 (1982), 315–322.

    MathSciNet  MATH  Google Scholar 

  • Bleyer A.; Preuss W.: 2. Conversation on numerical methods for special delay equations of first and second orders. Mat. Struct. Vyfčisl. Mat. Mat. Modelirovan, Sofia, Tom 2 (1984), 108–112.

    MathSciNet  Google Scholar 

  • Bleyer A.; Sallam S.M.: Interpolation by cubic splines. Periol. Poiytechn. Elee. Eng., 22 (1978), 91–103.

    Google Scholar 

  • Blînskaia A.A.; Lifsiţ U.B.; Terminov V.A.: Priblijenie teorij splainov s zadace sglaji-vania funcţij. Ucenîe zometki Taghi., 5 (1974), 128–131.

    Google Scholar 

  • Blom J.G.; Brunner H.: 1. The numerical solution of nonlinear Volterra integral equations of the second kind by collocation and iterated collocation methods. SIAM J. Sci. Stat. Comput., 8 (1987), No.5, 806–830.

    MathSciNet  MATH  Google Scholar 

  • Blom J.G.; Brunner H.: 2. Algorithm XXX: Discretized collocation and iterated collocation for nonlinear Volterra integral equations of the second kind. ACM Trans. Math. Software.

    Google Scholar 

  • Bloor M.I.G.; Wilson M.J.: Representing PDE surfaces in terms of B-splines. Comput. Aided Des., 22 (1990), No.6, 324–330.

    MATH  Google Scholar 

  • Blue J.L.: Spline functions methods for nonlinear boundary value problems. Comm. ACM, 12 (1969), 327–330.

    MathSciNet  MATH  Google Scholar 

  • Blum M.: Optimal smoothing of piecewise continuous functions. I.E.E.E. Trans. Information Theory IT-18 (1972), 298–300.

    Google Scholar 

  • Bock T.: 1. Numerical inversion of the Abel integral function using least — squares splines. Ann. Physik, 34 (1977), 335–340.

    MathSciNet  Google Scholar 

  • Bock T.: 2. A subroutine for approximation by cubic splines in the least squares sens. Computer Phys. Communic., 16 (1979), 113–118.

    Google Scholar 

  • Bogdan M.; Ledwina T.: Testing uniformity via Log-spline modelling. Statistics, 28 (1996), 131–157.

    MathSciNet  MATH  Google Scholar 

  • Boglaev Yu. P.; Karpenko A.P.; Shumaeva S.N.: Parametric coordonation of some spline — interpolation algorithms with the architecture of multiprocessor computer systems. (russian). Avtomat. i Telemekh. (1990), No.4, 160–176.

    Google Scholar 

  • Böhm W.: 1. Darstellung und Korrektor symmetrischer Kurven und Flächen auf E.D.V. — Anlagen. Computing, 17 (1976), 78–85.

    Google Scholar 

  • Böhm W.: 2. Parameterdarstellung kubischer und bikubischer Splines. Computing, 17 (1976), 87–92.

    MathSciNet  MATH  Google Scholar 

  • Böhm W.: 3. Über die Konstruktion von B — Spline — Kurven. Computing, 18 (1977), 161–166.

    MathSciNet  MATH  Google Scholar 

  • Böhm W.: 4. Cubic B — spline curves and surface in computer aided geometric design. Computing, 19 (1977), 29–34.

    MathSciNet  MATH  Google Scholar 

  • Böhm W.: 5. Inserting new knots into B — spline curves. Computer Aided Design, 12 (1980), 50–62.

    Google Scholar 

  • Böhm W.: 6. Generating the Bézier points of B — spline curves and surfaces. Comput. Aided Design, 13 (1981), 365–366.

    Google Scholar 

  • Böhm W.: 7. On cubics, a survey. Comput. Graph. and Image Proccessing, 19 (1982), 201–226.

    MATH  Google Scholar 

  • Böhm W.: 8. Subdividing multivariate splines. Computer Aided Design, 15 (1983), 345–352.

    Google Scholar 

  • Böhm W.: 9. Calculating with box splines. Comput. Aided. Geom. Design, 1 (1984), 149–162.

    MATH  Google Scholar 

  • Böhm W.: 10. Efficient evaluation of splines. Computing, 33 (1984), 171–177.

    MathSciNet  MATH  Google Scholar 

  • Böhm W.: 11. On the efficiency of knot insertion alghorithms. Comput. Aided Geom. Des., 2 (1985), No.1–3, 141–143.

    MATH  Google Scholar 

  • Böhm W.: 12. Triangular spline algorithms. Comput. Aided Geom. Des., 2 (1985), No.1–3, 61–67.

    MATH  Google Scholar 

  • Böhm W.: 13. Curvature continuous curves and surfaces. Comput. Aided. Geom. Design, 2 (1985), 313–323.

    MathSciNet  MATH  Google Scholar 

  • Böhm W.: 14. Multivariate spline methods in C.A.G.D. Comput. Aided Des., 18 (1986), No.2, 102–104.

    Google Scholar 

  • Böhm W.: 15. Rational geometric splines. Comput. Aided. Geom., 4 (1987), 66–77.

    Google Scholar 

  • Böhm W.; Farin C.; Kahmann I.: A survey of curve and surface methods in CAGD. Computer. Aided. Geom. Design, 1 (1984), 1–60.

    MATH  Google Scholar 

  • Böhm W.; Prautzsch H.; Arner P.: On triangular splines. Constr. Approximat., 3 (1987), No.2, 157–167.

    MATH  Google Scholar 

  • Böhmer K.: 1. Über die stetige Abhängigkeit von Interpolations — und Ausgleichssplines. ZAMM, 54 (1974), 211–212.

    Google Scholar 

  • Böhmer K.: 2. Polynom — und Spline interpolation. (ein Farbfilm). Ser. Int. Anal. Num. I.S.S.N. CHE, 6 (1981), 26–29. (Workshop an num. meth. of approx. theory, Oberwolfach, 1981).

    Google Scholar 

  • Böhmer K.; Coman Gh.: 1. Smooth interpolation schems on triangles with error bounds. Mathematica (Cluj), 18 (1976), 15–27.

    MathSciNet  Google Scholar 

  • Böhmer K.; Coman Gh.: 2. Blending interpolation schems on triangle with error bounds in Constructive Functions of Several Variables. Lect. Notes 571, Springer, Berlin, (1977), 14–37.

    Google Scholar 

  • Böhmer K.; Coman Gh.: 3. On some approximation schemes on triangles. Mathematica (Cluj), 22 (1980), 231–235.

    MathSciNet  Google Scholar 

  • Boikov I.V.: An approximation of analytical functions by local spline. Approx. Theory Appl., 12 (1996), No.3, 59–67.

    MathSciNet  MATH  Google Scholar 

  • Bojanic R.; Roulier J.: Approximation of convex functions by convex splines and convexity preserving continuous linear operators. Rev. Anal. Numer. Theorie Approximation, 3 (1974), 143–150.

    MathSciNet  Google Scholar 

  • Bojanov B.D.: 1. Existence of extended monosplines of least deviation. C.R.Acad. Bulgare Sci., 30 (1977), 985–988.

    Google Scholar 

  • Bojanov B.D.: 2. Perfect splines of least uniform deviations. Analysis Mathematica, 6 (1980), 185–197.

    MathSciNet  MATH  Google Scholar 

  • Bojanov B.D.: 3. Perfect splines on meast uniform deviation. Analysis Math., 6 (1980), No.3, 185–197.

    MathSciNet  MATH  Google Scholar 

  • Bojanov B.D.: 4. Uniqueness of the optimal nodes of quadrature formulas. Math. Comput., 36 (1981), 525–546.

    MathSciNet  MATH  Google Scholar 

  • Bojanov B.D.: 5. B — splines with Birkhoff knots. C. Rendu Acad. Bulgare Sci., 40 (1987) No.2, 11–14.

    MathSciNet  Google Scholar 

  • Bojanov B.D.: 6. σ — perfect splines and their applications to optimal recovery problems. J. Complexity, 3 (1987), 429–450.

    MathSciNet  MATH  Google Scholar 

  • Bojanov B.D.: 7. B — splines with Birkhoff knots. Constructive Approx., 4 (1988), No.2, 147–156.

    MathSciNet  Google Scholar 

  • Bojanov B.D.: 8. Interpolation by periodic splines with Birkhoff knots. Numer. Math., 65 (1993), No.1, 63–75.

    MathSciNet  MATH  Google Scholar 

  • Bojanov B.D.: 9. Characterization of the smoothest interpolant. SIAM J. Math. Anal., 25 (1994), No.6, 1642–1655.

    MathSciNet  MATH  Google Scholar 

  • Bojanov B.D.; Huang Daren.: 1. Periodic monosplines and perfect splines of least norm. Constructive Approximation, 3 (1987), 363–375.

    MathSciNet  MATH  Google Scholar 

  • Bojanov B.D.; Huang Daren.: 2. Comparison of optimal quadrature formulas. Numer. Math., 56 (1990), 817–825.

    MathSciNet  MATH  Google Scholar 

  • Bojarincev Ju. E.; Korsukov V. M: Orthogonal systems of splines. (russian). Differential and Integral Equations. Irkutsk Gos. Univ. Irkutsk, 311 (1976), 3–9.

    MathSciNet  Google Scholar 

  • Bona J.K.; Dougalis V.A.; Karakashian O.A., McKinney W.R.: 1. Conservative, high-order numerical schemes for the generalized Korteweg-de Vrie equation. Philos.Trans. Roy. Soc. London Ser. A, 351 (1995), No. 1695, 107–164.

    MathSciNet  MATH  Google Scholar 

  • Bona J.K.; Dougalis V.A.; Karakashian O.A., McKinney W.R.: 2. The effect of dissipation on solutions of a generalized Korteweg-de Vries equation. J. Comput. Appl. Math. 74 (1996), No.5, 127–154.

    MathSciNet  MATH  Google Scholar 

  • Boneva L.I.; Kendall D.G.; Stefanov I.: Spline transformations: three new diagnostic aids for the statistical data — analys. J. Royal Stat. Soc. Ser. B., 33 (1971), 1–70.

    MathSciNet  MATH  Google Scholar 

  • Boor C de: 1. Bicubic spline interpolation. J. Math. and Phys., 41 (1962), 212–218.

    MathSciNet  MATH  Google Scholar 

  • Boor C de: 2. Best approximation properties of spline functions of odd degree. J. Math. Mech., 12 (1963), 747–750.

    MathSciNet  MATH  Google Scholar 

  • Boor C de: 3. On local spline approximation by moments. J. Math. Mech., 17 (1968), 729–735.

    MathSciNet  MATH  Google Scholar 

  • Boor C de: 4. On the convergence of odd — degree spline interpolation. J. Approx. Theory, 1 (1968), 452–465.

    MATH  Google Scholar 

  • Boor C de: 5. On uniform approximation by splines. J. Approx. Theory, 1 (1968), 219–235.

    MATH  Google Scholar 

  • Boor C de: 6. A note on local spline approximation by moments. J. of Math. and Mech., 17 (1968), 729–736.

    MATH  Google Scholar 

  • Boor C de: 7. On calculating with B — splines. J. Approx. Theory, 6 (1972), 50–62.

    MATH  Google Scholar 

  • Boor C de: 8. Bounding the error in spline interpolation. SLAM Review, 16 (1974), 531–544.

    MATH  Google Scholar 

  • Boor C de: 9. A remark concerning perfect spline. Bull. Amer. Math. Soc., 80 (1974), 724–727.

    MathSciNet  MATH  Google Scholar 

  • Boor C de: 10. On bounding spline interpolation. J. Approx. Theory, 14 (1975), 191–203.

    MATH  Google Scholar 

  • Boor C de: 11. On cubic spline functions that vanish at all knots. Advances in Math., 20 (1976), 1–17.

    MathSciNet  MATH  Google Scholar 

  • Boor C de: 12. Quadratic spline interpolation and the sharpness of Lebesgue’s inequality. J. Approx. Theory, 17 (1976), 348–358.

    MATH  Google Scholar 

  • Boor C de: 13. Total positivity of the spline collocation matrix. Indiana Univ. Math. J., 25 (1976), 541–551.

    MathSciNet  MATH  Google Scholar 

  • Boor C de: 14. A bound on the L norm of L 2approximation by splines in terms of a global mesh ratio. Math. Comput., 30 (1976), 765–771.

    MATH  Google Scholar 

  • Boor C de: 15. Odd — degree spline interpolation at a biinfinite knot sequence. Lect. Notes in Math., 556 (1976), 30–53.

    Google Scholar 

  • Boor C de: 16. On the ordinal spline interpolant to e int. SIAM Math. Anal., 7 (1976), 930–941.

    MATH  Google Scholar 

  • Boor C de: 17. On ”best” interpolation. J. Approx. Theory, 16 (1976), 28–42.

    MATH  Google Scholar 

  • Boor C de: 18. On the cardinal spline interpolant to e int. SIAM J. Math. Anal. 7 (1976), 930–941.

    MathSciNet  MATH  Google Scholar 

  • Boor C de: 19. Subroutine package for calculating with B — splines. SLAM J. Numer. Anal., 14 (1977), 441–472.

    MATH  Google Scholar 

  • Boor C de: 20. Efficient computer manipulation of tensor products. ACM Trans. Math. Software, 5 (1979), 173–182.

    MathSciNet  MATH  Google Scholar 

  • Boor C de: 21. Convergence of abstract splines. J. Approx. Theory, 31 (1981), 80–89.

    MathSciNet  MATH  Google Scholar 

  • Boor C de: 22. Topics in multivariate approximation theory in Topics in Numer Anal. P. Turner (ed). Lecture Notes 965, Springer, Berlin, (1982), 39–78.

    Google Scholar 

  • Boor C de: 23. B — form basics. In Geom. Modelling, G. Farin (ed). SIAM, Philadelphia, (1987), 131–148.

    Google Scholar 

  • Boor C de: 24. The polynomials in the linear span of integer translates of a compactly supported function. Constr. Approx., 3 (1987), 199–208.

    MathSciNet  MATH  Google Scholar 

  • Boor C de: 25. The condition of the B — spline basis for polynomials. SIAM J. Numer. Anal., 25 (1988), No.1, 148–152.

    MathSciNet  MATH  Google Scholar 

  • Boor C de: 26. The exact condition of the B — spline basis may be hard to determine. J. Approx. Theory, 60 (1990), 344–359.

    MathSciNet  MATH  Google Scholar 

  • Boor C de: 27. Multivariate piecewise polynomials. Acta Numerica 1993, 65–109. Cambridge Univ. Press. 1993.

    Google Scholar 

  • Boor C de: 28. What is a multivariate spline? In Proc. First Intern. Conf. Industr. Applied Math. Paris 1987, McKenna and Ft. Temam eds. 90–101.

    Google Scholar 

  • Boor C de: 29. On the evaluation of box splines. Numer. Algorithms 5 (1993), No.1–4, 5–23.

    MATH  Google Scholar 

  • Boor C de: 30. On splines and their minimum properties. J. Math. Mech., 15 (1966), 953–969.

    MathSciNet  MATH  Google Scholar 

  • Boor C de: 31. The multiplicity of a spline zero. Ann. Numer. Math., 4 (1997), No.1–4, 229–238.

    MathSciNet  MATH  Google Scholar 

  • Boor C. de; Daniel I.W.: Splines with nonnegative B — splines coefficients. Math. Cornput., 28 (1974), 565–568.

    MATH  Google Scholar 

  • Boor C. de; De Vore R.: 1. Approximation by smooth multivariate splines. Trans. Amer. Math. Soc., 276 (1983), 775–788.

    MathSciNet  MATH  Google Scholar 

  • Boor C. de; De Vore R.: 2. A geometric proof of total positivity for spline interpolation. Math. Comput., 45 (1985), No.172, 497–504.

    MATH  Google Scholar 

  • Boor C. de; Dyn Nira; Ron A.: On two polynomial spaces associated with a box spline. Pacific. J. Math. 147 (1991), No.2, 249–267.

    MathSciNet  MATH  Google Scholar 

  • Boor C. de; De Vore R.; Ron A.: On the construction of multivariate (pre) wavelets. Constr. Approx., 9 (1993), No.2–3, 123–166.

    MathSciNet  MATH  Google Scholar 

  • Boor C. de; Fix G.D.: Spline approximation by quasiinterpolants. J. Approx. Theory, 8 (1973), 19–45.

    MATH  Google Scholar 

  • Boor C. de; Höllig Klaus: 1. Recurrence relations for multivariate B — splines. Proc. Amer. Math. Soc., 85 (1982), 397–400.

    MathSciNet  MATH  Google Scholar 

  • Boor C. de; Höllig Klaus: 2. B — splines from parallelepipeds. J. d’Analyse Math., 42 (1982/83), 90–115.

    Google Scholar 

  • Boor C. de; Höllig Klaus: 3. Approximation order from bivariate C 1 — cubics; A counter — example. Proc. Am. Math. Soc., 87 (1983), 649–655.

    MATH  Google Scholar 

  • Boor C. de; Höllig Klaus: 4. Bivariate box splines and smooth pp functions on a three direction mesh. J. Comput. Appl. Math., 9 (1983), 13–28.

    MathSciNet  MATH  Google Scholar 

  • Boor C. de; Höllig Klaus: 5. Minimal support for bivariate splines. Approx. Theory Appl., 3 (1987), No.4, 11–23.

    MathSciNet  MATH  Google Scholar 

  • Boor C. de; Höllig Klaus: 6. Approximation power of smooth bivariate pp functions. Math. Z., 197 (1988), No.3, 343–363.

    MathSciNet  MATH  Google Scholar 

  • Boor C. de; Höllig Klaus: 7. Box — spline tilings. The Amer. Math. Monthly, 98 (1991), No.9, 793–802.

    MATH  Google Scholar 

  • Boor Carl de; Höllig Klaus; Riemenschneider S.: 1. Bivariate cardinal interpolation by splines on a three direction mesh. Illinois J. of Math., 29 (1985), No.4, 533–566.

    MATH  Google Scholar 

  • Boor Carl de; Höllig Klaus; Riemenschneider S.: 2. Convergence of bivariate cardinal interpolation. Constr. Approx., 1 (1985), 183–193.

    MathSciNet  MATH  Google Scholar 

  • Boor Carl de; Höllig Klaus; Riemenschneider S.: 3. Convergence of cardinal series. Proc. of AMS, 98 (1986), No.3, 457–460.

    MATH  Google Scholar 

  • Boor Carl de; Höllig Klaus; Riemenschneider S.: 4. Some qualitative properties of bivariate Euler — Frobenius polynomials. J. Approx. Theory, 50 (1987), 8–17.

    MathSciNet  MATH  Google Scholar 

  • Boor C. de; Hölling Klaus; Sabin Malcom: 1. High accuracy geometric Hermite interpolation. C.A.G.D., 4 (1987), 269–278.

    MATH  Google Scholar 

  • Boor C. de; Hölling Klaus; Sabin Malcom: 2. What is a multivariate spline? ICIAM 87, Proceed. First Internat. Conf. on Industr. and Appl. Maths. (Paris, 1987), 90–101, SIAM, Philadelphia, PA, 1988.

    Google Scholar 

  • Boor C. de; Lynch R.E.: On splines and their minimum properties. J. Math. Mech., 15 (1966), 953–969.

    MathSciNet  MATH  Google Scholar 

  • Boor C. de; Pinkus A.: Backward error analysis for total positive linear systems. Numer. Math., 27 (1977), 485–490.

    MATH  Google Scholar 

  • Boor C. de; Rice J.R.: An adaptive algorithm for multivariate approximation giving optimal convergence rate. J. Approx. Theory, 25 (1979), 337–359.

    MathSciNet  MATH  Google Scholar 

  • Boor C. de; Ron A.: 1. On polynomial ideals of finite codimension with applications to box spline theory. J. Math. Anal. Appl., 158 (1991), No.1, 168–193.

    MathSciNet  MATH  Google Scholar 

  • Boor C. de; Ron A.: 2. Fourier analysis of the approximation power of principal shift — invariant spaces. Constr. Approx., 8 (1992), 427–462.

    MathSciNet  MATH  Google Scholar 

  • Boor C. de; Schoenberg I.J.: Cardinal interpolation and spline functions VIII. The Budan — Fourier theorem for splines and applications. Lect. Notes. Math., 501 (1976), 1–79.

    Google Scholar 

  • Boor C. de; Swartz B.: 1. Collocation at Gaussian points. SIAM J. Numer. Anal., 10 (1973), 582–606.

    MathSciNet  MATH  Google Scholar 

  • Boor C. de; Swartz B.: 2. Piecewise monoton interpolation. J. Approx. Theory, 21 (1977), 411–416.

    MATH  Google Scholar 

  • Boor C. de; Swartz B.: 3. Comments on the comparison of global methods for linear two — point boundary value problems. Math. Comput., 31 (1977), 916–921.

    MATH  Google Scholar 

  • Boor C. de; Swartz B.: 4. Collocation approximation to eigenvalue of an ordinary differential equations. The principle of the thing. Math. Comput., 35 (1980), 679–694.

    MATH  Google Scholar 

  • Boor C. de; Swartz B.: 5. Local piecewise polynomial projection methods for ordinary differential equations which give high order convergence. Math. Comput., 36 (1981), 20–33.

    Google Scholar 

  • Boor C. de; Swartz B.: 6. Collocation approximation to eigenvalues of an ordinary differential equation. Numerical illustration. Math. Comput., 36 (1981), 1–19.

    MATH  Google Scholar 

  • Borek R.; Bierowska A.; Bierowski M.: An algorithm for the quasi — optimal distribution of knots of the Hermite spline. Wiss. Beitr. Ingineurhochsch. Zwikau, 14 (1988), No.5, 93–99.

    MATH  Google Scholar 

  • Borzov V.V.: On some applications of piecewise polynomial approximation of functions of anisotropic classes W p r. (russian), Dokl. Akad. Nauk. SSSR, 198 (1971), 499–501.

    MathSciNet  Google Scholar 

  • Bos L.P.; Grabenstetter J.E.; Salkauskas K.: Pseudo-tensor product interpolation and blending with families of univariate schemes. CAGD, 13 (1996), No. 5, 429–440.

    MathSciNet  MATH  Google Scholar 

  • Bos L.P.; Holland D.: Network splines. Results Math., 30 (1996), No.3–4, 228–258.

    MathSciNet  MATH  Google Scholar 

  • Bos L.P.; Salkauss K.: 1. On the matrix and the cubic spline continuity equations. J. Approx. Theory, 51 (1987), 81–88.

    MathSciNet  MATH  Google Scholar 

  • Bos L.P.; Salkauss K.: 2. Comment on the representation of splines as a Boolean Sums. J. Approx. Theory, 53 (1988), 155–162.

    MathSciNet  MATH  Google Scholar 

  • Bos L.P.; Salkauss K.: 3. Limits of weighted splines based on piecewise constant weight functions. Rocky Mountain J. Math., 23 (1993), No.2, 483–493.

    MathSciNet  MATH  Google Scholar 

  • Bosarge Jr. W. E.; Johnson O.G.: 1. Error bounds of higher order accuracy for the state regulater problem via piecewise polynomial approximations. SIAM J. Control, (1971), 15–28.

    Google Scholar 

  • Bosarge Jr. W. E.; Johnson O.G.: 2. Numerical properties of the Ritz — Trafftz algorithm for optimal control. Comm. ACM, 14 (1971), 402–406.

    MathSciNet  MATH  Google Scholar 

  • Bosarge Jr. W. E.; Johnson O.G.; Smith C.L.: 1. A direct méthode approximation to the linear parabolic regulator problem over multivariate spline bases. SIAM J. Numer. Anal., 10 (1973), 35–49.

    MathSciNet  MATH  Google Scholar 

  • Bosarge Jr. W. E.; Johnson O.G.; Smith C.L.: 2. Numerical properties of a multivariate Ritz — Trafftz method. IBMJ. Res. Develop., 16 (1972), 393–400.

    MATH  Google Scholar 

  • Bosworth. K.W.; Liall Upmann: 1. An L 1 smoothing spline algorithm with cross validation. Numer. Algorithms, 5 (1993), No.1–4, 407–417.

    MathSciNet  MATH  Google Scholar 

  • Bosworth. K.W.; Liall Upmann: 2. LOWLAD: A locally weighted L 1-smoothing spline algorithm with cross validated choise of smoothing parameters. Numer. Algorithms, 9 (1995), No.1–2, 85–106.

    MathSciNet  MATH  Google Scholar 

  • Böttcher C.; Strayer M.: Spline methods for conservation equations. Computational Acoustics, Vol. 2, (Cambridge, MA 1991), 317–338, North — Holland, Amsterdam, 1993.

    Google Scholar 

  • Böther H.H.: Mehrdimensionale Spline — Interpolation und arbeitungsfreie Fehlerabschätzungen bei nichtlinearen parabolischen Differenzenverfahren. ZAMM, 59 (1979), 381–386.

    MATH  Google Scholar 

  • Bozzini M.; Lenarduzzi L.: 1. Una tecnica Monte — Carlo per l’interpolazione multivariabile medianti funzioni splines. Calcolo, 12 (1975), 201–210.

    MathSciNet  MATH  Google Scholar 

  • Bozzini M.; Lenarduzzi L.: 2. Alcuni teoremi sulle splines di regolarizzatione di tipo naturale in una e piu dimensioni. Atti Sem. Mat. Fiz. Univ. Modena, 25 (1977), 285–294.

    MathSciNet  MATH  Google Scholar 

  • Bownds J.M.; Wood Bruce: A smoothed projection method for singular nonlinear Volterra equations. J. Approx. Theory, 25 (1970), 120–141.

    MathSciNet  Google Scholar 

  • Brädeanu Doina: Descrierea metodei elementului finit cu funţii spline pe o problema bilocală simplă. Studia Univ. B.B., 29 (1984), 53–60.

    Google Scholar 

  • Braess D.: 1. Chebysheff approximation by spline functions with free knots. Numer. Math., 17 (1971), 357–366.

    MathSciNet  MATH  Google Scholar 

  • Braess D.: 2. Rationale Interpolation, Normalität und Monosplines. Numer. Math., 22 (1974), No.3, 219–232.

    MathSciNet  MATH  Google Scholar 

  • Braess D.: 3. On the nonuniqueness of monosplines with least L 2norm. J. Approx. Theory, 12 (1974), 91–93.

    MathSciNet  MATH  Google Scholar 

  • Braess D.: 4. On the degree of approximation by spline functions with free knots. Aeq. Math., 12 (1975), 80–81.

    MathSciNet  MATH  Google Scholar 

  • Braess D.; Dyn N.: 1. On the uniqueness of monosplines and perfect splines of least L 1and L 2norm. J. d’Analyse Math., 41 (1982), 217–233.

    MathSciNet  MATH  Google Scholar 

  • Braess D.; Dyn N.: 2. On the uniqueness of generalized monosplines of least L pnorm. Constr. Approx., 2 (1986), No.1, 79–99.

    MathSciNet  Google Scholar 

  • Braess D.; Nürnberger G.: Nonuniqueness of best L papproximation for generalized convex functions by splines with free knots. Numer. Funct. Anal. and Optimiz., 4 (1981), 199–209.

    Google Scholar 

  • Braess D.; Werner H.: 1. Tschebyscheff — Approximation mit einer Klasse rationaller Spline funktionene, I, II,. I. J. Approx. Theory, 10 (1974), 1–5, II. J. Approx. Theory, 10 (1974), 379–399.

    MathSciNet  Google Scholar 

  • Braess D.; Werner H.: 2. Interpolation and integration of initial value problems of ordinary differential equations by regular splines. SIAM J. Numer. Anal., 12 (1975), 255–271.

    MathSciNet  Google Scholar 

  • Bramble J.H.; Dupont T.; Thomée V.: Projection methods for Dirichlet’s problem in approximating polynomial domains with boundary value corrections. Math. Comput., 26 (1972), 869–879.

    MATH  Google Scholar 

  • Bramble J.H.; Hilbert S.R.: 1. Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation. SIAM, J. Numer. Anal., 7 (1970), 112–124.

    MathSciNet  MATH  Google Scholar 

  • Bramble J.H.; Hilbert S.R.: 2. Bounds for a class of linear functionals with applications to Hermite interpolation. Numer. Math., 16 (1971), 362–369.

    MathSciNet  MATH  Google Scholar 

  • Bramble J.H.; Schatz A.H.: 1. Rayleigh — Ritz — Galerkin methods for Dirichlet’s problem using subspaces without boundary conditions. Com. Pure Appl. Math., 23 (1970), 653–675.

    MathSciNet  MATH  Google Scholar 

  • Bramble J.H.; Schatz A.H.: 2. Least square methods for 2m th order elliptic boundary value problems. Math. Comput., 25 (1971), 1–32.

    MathSciNet  MATH  Google Scholar 

  • Bramble J.H.; Schatz A.H.: 3. Estimates for spline projections. RAIRO Anal. Numer., 10 (1976), 3–37.

    MathSciNet  Google Scholar 

  • Bramble J.H.; Schatz A.H.: 4. Higher order local accuracy by averaging in the finite element method. Math. Comput., 31 (1977), 94–111.

    MathSciNet  MATH  Google Scholar 

  • Bramble J.H.; Thomée V.: Semidiscrete — Least squares methods for a parabolic boundary value problem. Math. Comput., 26 (1972), 633–648.

    MATH  Google Scholar 

  • Brannigan M.; Eyre D.: 1. Splines and the Galerkin method for solving the integral equations of scattering theory. J. Math. Phys., 24 (1983), 1548–1554.

    MathSciNet  MATH  Google Scholar 

  • Brannigan M.; Eyre D.: 2. Splines and the projection collocation method for solving integral equations in scattering theory. J. Math. Phys., 24 (1983), 177–183.

    MathSciNet  MATH  Google Scholar 

  • Brass H.: On the quality of algorithms based on spline interpolation. Numer. Algorithms, 13 (1977), No.3–4, 159–177.

    MathSciNet  Google Scholar 

  • Brauchli H.J.; Oden J.T.: Conjugate approximation functions in finite element analysis. Quart. Appl. Math., 29 (1971), 65–90.

    MathSciNet  MATH  Google Scholar 

  • Bressoud T.C.: Fun with splines. ”Pentagon”, 42 (1983), 85–98.

    Google Scholar 

  • Bronsvoort W.F.; Waarts J.J.: A method for converting the surface of a generalized cylinder into a B-spline surface. Comput. and Graphics, 16 (1992), No.2, 175–178.

    Google Scholar 

  • Brown R.C.: Adjoint domains and generalized splines. Czechoslovak Math. J., 25(100), (1975), 1–14.

    MathSciNet  Google Scholar 

  • Brown J.M.; Bloor M.I.G.; Bloor M.S.; Wilson M.J.: Generating B — spline approximation of PDE surfaces. Math. Engineering in Industry No.2, 5 (1995), 97–112.

    MathSciNet  MATH  Google Scholar 

  • Brudnyî Yu. A.: 1. Piecewise polynomial approximation and local approximations, (russian). Dokl. Akad. Nauk SSSR, 201 (1971), 16–18.

    MathSciNet  Google Scholar 

  • Brudnyî Yu. A.: 2. Spline approximation and functions of bounded variation. (russian). Dokl. Akad. Nauk. SSSR, 215 (1974), 511–513.

    MathSciNet  Google Scholar 

  • Brudnyî Yu. A.: 3. Piecewise polynomial approximation embedding theorem and rational approximation. Lect. Notes. Math., 556 (1976), 73–98.

    Google Scholar 

  • Brudnyî Yu. A.: 4. Adaptive approximation of functions with singularities. Trans. Mosc. Math. Soc., 19941994, 123–186.

    MATH  Google Scholar 

  • Brundnyi Yu. A.; Gopengauz I.E.: 1. Approximation by piecewise polynomial functions. (russian). Dokl. Akad. Nauk. SSSR, 141 (1961), 1283–1296.

    MathSciNet  Google Scholar 

  • Brundnyi Yu. A.; Gopengauz I.E.: 2. Approximation by piecewise polynomial functions. (russian). Izv. Akad. Nauk. SSSR Ser. Math., 27 (1963), 723–726.

    Google Scholar 

  • Brundnyi Yu. A.; Irodova I.P.: 1. Nonlinear spline approximation and B — spaces. (russian). In Proc. Internat. Conf. Approx. Theory, Kiev, 1983, Trudy Mat. Inst. Steklov, ”Nauka”, Moscow., (1987), 71–75

    Google Scholar 

  • Brundnyi Yu. A.; Irodova I.P.: 2. Nonlinear spline approximation of functions of several variables and B — spaces. (russian). Algebra i Analiz., 4 (1992), No.4, 45–79.

    Google Scholar 

  • Brunet Pere: 1. Surface design by means of splines functions. (in catalan). Questio 5 (1981).

    Google Scholar 

  • Brunet Pere: 2. On surface representation from irregulary distributed data points. RAIRO, Technique et Inf., 2 (1983), No.2, 103–110.

    MATH  Google Scholar 

  • Brunet Pere: 3. Increassing the smoothness of bicubic spline surfaces. Comput. Aided. Geom. Des., 2 (1985), No.1–3, 157–165.

    MATH  Google Scholar 

  • Brunner H.: 1. The solution of nonlinear Volterra integral equations by piecewise polynomials. Proc. Manitoba Conf. Numer. Math., (1971), 65–78.

    Google Scholar 

  • Brunner H.: 2. The solution of Volterra integral equations of the first kind by piecewise polynomials. J. Inst. Math. Appl., 12 (1973), 295–302.

    MathSciNet  MATH  Google Scholar 

  • Brunner H.: 3. On the numerical solution of nonlinear Volterra integro — differential equations. BIT, 13 (1973), 381–390.

    MathSciNet  MATH  Google Scholar 

  • Brunner H.: 4. Global solution of the generalized Abel integral equation by implicit interpolation. Math. Comput., 28 (1974), 61–67.

    MathSciNet  MATH  Google Scholar 

  • Brunner H.: 5. Discretization of Volterra integral equations of the first kind. I. Math. Comput., 31 (1977), 708–716. II. Numer. Math., 30 (1978), 117–136.

    MathSciNet  MATH  Google Scholar 

  • Brunner H.: 6. Superconvergence of collocation methods for Volterra integral equations of the first kind. Computing, 21 (1979), 151–157.

    MathSciNet  MATH  Google Scholar 

  • Brunner H.: 7. Nonpolynomial spline collocation for Volterra integral equations with weakly singular kernels. SIAM J. Numer. Anal., 20 (1980), 1106–1119.

    MathSciNet  Google Scholar 

  • Brunner H.: 8. On collocation approximations for Volterra equations with weakly singular kernels. In Treatment of Integral Eqs. by Numer. Methods, CTH Baker and G.F. Miller eds., Academic Press, (1982), 409–420.

    Google Scholar 

  • Brunner H.: 9. A survey of recent advances in the numerical treatment of Volterra integral and integrodifferential equations. J. Comput. Appl. Math. 8 (1982), No.3, 213–219.

    MathSciNet  MATH  Google Scholar 

  • Brunner H.: 10. Implicit Runge — Kutta methods of optimal order for Volterra integro-differential equations. Math. Comput., 42 (1984), 95–109.

    MathSciNet  MATH  Google Scholar 

  • Brunner H.: 11. Iterated collocation methods and theirs discretizations for Volterra integral equations. SIAM J. Numer. Anal., 21 (1984), No.6, 1132–1145.

    MathSciNet  MATH  Google Scholar 

  • Brunner H.: 12. The numerical solution of weakly singular Volterra integral equation by collocation of graded meshes. Math. Comput., 45 (1985), No.172, 417–437.

    MathSciNet  MATH  Google Scholar 

  • Brunner H.: 13. Polynomial spline collocation methods for Volterra integro — differential equations with weakly singular kernels. IMA Journal Numer. Anal., 6 (1986), 221–239.

    MathSciNet  MATH  Google Scholar 

  • Brunner H.: 14. High order methods for the numerical solution of Volterra integro-differential equations. J. Comput.Appl. Math., 15 (1986), 301–309.

    MathSciNet  MATH  Google Scholar 

  • Brunner H.: 15. Collocation methods for one-dimensional Fredholm and Volterra integral equations. In the State of the Art in Numer. Anal. (Ed. A. Iserlis and M.J.D. Powell), Clorendon Press, Oxford (1987), 563–600.

    Google Scholar 

  • Brunner H.: 16. Implicit Runge-Kutta-Nystrom methods for general second order Volterra integro-differential equations. Comput. Math. Applic, 14 (1987), No.7, 549–559.

    MathSciNet  MATH  Google Scholar 

  • Brunner H.: 17. The approximate solution of initial value problems for general Volterra integro-differential equations. Computing, 40 (1988), 125–139.

    MathSciNet  MATH  Google Scholar 

  • Brunner H.: 18. The numerical solution of initial value problems for integro-differential equations. In Numerical Analysis, 1987, (Ed. D.F. Griffiths and G.A. Watson), pp. 18–38, Longman, Harlow (1988).

    Google Scholar 

  • Brunner H.: 19. The approximate solution of nonlinear Volterra integro-differential equations with infinite delay. Diff. Eqs. and Applics., Proc. Int. Conf., Columbus, OH. (USA), 1988, vol.I, (1989), 97–103.

    MathSciNet  Google Scholar 

  • Brunner H.: 20. Collocation methods for nonlinear Volterra integro-differential equations with infinite delay. Math.Comput., 53 (1989), No.188, 571–587.

    MathSciNet  MATH  Google Scholar 

  • Brunner H.: 21. The numerical treatment of Volterra integro-differential equations with unbounded delay. J. Comput. Appl. Math., 28 (1989), 5–23.

    MathSciNet  MATH  Google Scholar 

  • Brunner H.: 22. On the numerical solution of nonlinear Volterra-Fredholm integral equations by collocation methods. SIAM J. Numer. Anal., 27 (1990), No.4, 987–1000.

    MathSciNet  MATH  Google Scholar 

  • Brunner H.: 23. On implicitly linear and iterated collocation methods for Hammerstein integral equations. J. of Integral Eqs. and Applications, 3 (1991), No.4, 475–488.

    MathSciNet  MATH  Google Scholar 

  • Brunner H.: 24. On discrete superconvergence properties of spline collocation methods for nonlinear Volterra integral equations. J.Comput.Math., 10 (1992), No.4, 348–357.

    MathSciNet  MATH  Google Scholar 

  • Brunner H.: 25. Implicitly linear collocation methods for nonlinear Volterra equations. Appl. Numer. Math., 9 (1992), No.3–5, 235–247.

    MathSciNet  MATH  Google Scholar 

  • Brunner H.: 26. The numerical treatment of ordinary and partial Volterra integro-differential equations. in Bainov D (ed) et al., Proceed. of the first internat. colloquium on numer. anal. Plovdiv, Bulgaria, Aug. 13–17, 1992, Utrecht: VSP, (1993), 13–26.

    Google Scholar 

  • Brunner H.: 27. Iterated collocation methods for Volterra integral equations with delay arguments. Math. of Computation, 62 (1994), nr.206, 581–599.

    MathSciNet  MATH  Google Scholar 

  • Brunner H.: 28. Collocation and continuous implicit Runge-Kutta methods for a class of delay Volterra integral equations. J. Comput. Appl. Math. 53 (1994), 61–72.

    MathSciNet  MATH  Google Scholar 

  • Brunner H.: 29. On the discretization of differential and Volterra integral equations with variable delay. BIT, 37 (1997), No.1, 1–12.

    MathSciNet  MATH  Google Scholar 

  • Brunner H.; Crisci M.R.; Russo E.; Vecchio: A family of methods for Abel integral equations of the second kind. J. Comput. Appl. Math., 34 (1991), No.2, 211–219.

    MathSciNet  MATH  Google Scholar 

  • Brunner H.; Evans M.D.: Piecewise polynomial collocation for Volterra type integral equations of the second kind. J. Inst. Math. Appl., 20 (1977), 415–425.

    MathSciNet  MATH  Google Scholar 

  • Brunner H.; Kauthen J.P.: The numerical solution of two-dimensional Volterra integral equations by collocation and iterated collocation. IMA J. Numer. Anal., 9 (1989), 47–59.

    MathSciNet  MATH  Google Scholar 

  • Brunner H.; Lambert J.D.: Stability of numerical methods for Volterra integro-differential equations. Computing, 12 (1974), 75–89.

    MathSciNet  MATH  Google Scholar 

  • Brunner H.; Lin Q.; Yan N.: The iterative correction method for Volterra integral equation. BIT, 36 (1996), No.2, 221–228.

    MathSciNet  MATH  Google Scholar 

  • Brunner H.; Norsett S.P.: Superconvergence of collocation methods for Volterra and Abel integral equations of the second kind. Numer. Math., 36 (1981), 347–358.

    MathSciNet  MATH  Google Scholar 

  • Brunner H.; Tang T.: Polynomial spline collocation methods for the nonlinear Basset equation. Comput. Math. Appl., 18 (1989), No.5, 449–457.

    MathSciNet  MATH  Google Scholar 

  • Brunner H.; Yatsenko Yu. P.: spline collocation method for nonliner Volterra integral equations with unknown delay. J. Comput. Appl. Math., 71 (1996), No.1, 67–81.

    MathSciNet  MATH  Google Scholar 

  • Brunnett G.D.: Properties of minimal — energy splines. In Curve and surface design, Philadelphia PA, SIAM Geometric Design Publications, (1992), 3–22.

    Google Scholar 

  • Brunnett G.D.; Kiefer J.: Interpolation with minimal — energy splines. Computer-Aided Des. 26 (1994), No.2, 137–144.

    MATH  Google Scholar 

  • Brunnett G.D.; Wendt J.: A univariate method for plan elastic curves. CAGD, 14 (1997), No.3, 273–292.

    MathSciNet  MATH  Google Scholar 

  • Brzahovic D.; Liakopoulos A.; Hong L.: Spline models for boundary detection: description, formulation and performance evaluation. Graph. Models and Image Processing, 53 (1991), No.4, 392–402.

    Google Scholar 

  • Buchanan J.E.; Thomas D.H.: On least-squares fitting of two — dimensional data with a special structure. SIAM J. Numer. Anal., 5 (1968), 252–257.

    MathSciNet  MATH  Google Scholar 

  • Buckley M.J.: Fast computation of a discretized thin-plate smoothing spline for image data. Biometrika 81 (1994), No.2, 247–258.

    MathSciNet  MATH  Google Scholar 

  • Buhmann M.D.; Micchelli C.A.: Spline prewavelets for non-uniform knots. Numer. Math., 61 (1992), Nr.4, 455–474.

    MathSciNet  MATH  Google Scholar 

  • Buikis Andris: 1. Interpolation of integral means of a piecewise — smooth function by a parabolic spline. (russian). Latv. Mat. Ezhegodnik, 29 (1985), 194–197.

    MathSciNet  MATH  Google Scholar 

  • Buikis Andris: 2. Computation of coefficients of an integral parabolic spline. (russian). Latv. Mat. Ezheg., 30 (1986), 228–232.

    MathSciNet  MATH  Google Scholar 

  • Buikis Andris: 3. Rational splines that are interpolative in the mean and their properties. (russian). Latv. Math. Ezhegodnik, 32 (1988), 173–182.

    MathSciNet  MATH  Google Scholar 

  • Buikis Andris: 4. Spline that interpolate in the mean for reducing the dimension of differential equations. (russian). Latv. Mat. Ezhegodnik, No.33 (1989), 187–191.

    MathSciNet  MATH  Google Scholar 

  • Bujalska A.; Smarzewski R.: Quadratic X-splines. IMA J. Numer. Anal., 2 (1982), 37–47.

    MathSciNet  MATH  Google Scholar 

  • Bunch K.J.; Grow R.W.: A compact cubic spline algorithm for converging to function minimums. Appl. Math. Comput., 56 (1993), No.1, 29–34.

    MathSciNet  MATH  Google Scholar 

  • Burchard H.: 1. Spline (with optimal points) are better. J. Applicable Math., 1 (1973/74), 309–319.

    MathSciNet  Google Scholar 

  • Burchard H.: 2. Extremal positive splines with applications to interpolations and approximation by generalized convex functions. Bull. Amer. Math. Soc., 79 (1974), 959–963.

    MathSciNet  Google Scholar 

  • Burchard H.: 3. Of the degree of convergence of piecewise polynomial approximation on optimal meshes. Trans. Amer. Math. Soc., 234 (1977), 531–559.

    MathSciNet  MATH  Google Scholar 

  • Burchard H.; Hale D.E.: Piecewise polynomial approximation on optimal meshes. J. Approx. Theory, 14 (1975), 128–147.

    MathSciNet  MATH  Google Scholar 

  • Burkett J.; Varma A.K.: Lacunary spline interpolation. Rend. Circ. Mat. Palermo (2), Suppl., No. 33, (1993), 219–228.

    Google Scholar 

  • Burkowski F.J.; Hoskins W.D.: The application of splines to the computation of solutions of functional differential equations. Proc. Soc. Louisiana Conf.on Combinat., Graph Theory and Computing, Louisiana State Univ. Baton Rouge, (1971), 173–186.

    Google Scholar 

  • Burkowski F.J.; Master Mc.G.E.: Quintic splines and the numerical solution of differential-difference equations. Proc 3rd Southest Conf. Combinat. Graph Theory Computing, Florida Atlantic Univ. Boca Raton, (1972), 325–344.

    Google Scholar 

  • Burmeister W.; Hess W.; Schmidt J.W.: Convex spline interpolants with minimal curvature. Computing, 35 (1985), 219–229.

    MathSciNet  MATH  Google Scholar 

  • Burova I.G.: Ob approximaţii kompleksnîmi splainami. Vestnik Leningrad. Univ., 2 (1986), 3–8.

    MathSciNet  Google Scholar 

  • Burova I.G.; Demjanovici Jn.K.: O postroenii aglajenîh splainov s minimalnîh nositelem. Vestnik Leningradskovo Univ., 13 (1983), 10–15

    Google Scholar 

  • Buse A.; Lim L.: Cubic splines of a special case restricted least squares. J. Amer. Statist. Assoc., 72 (1977), 64–68.

    MATH  Google Scholar 

  • Busenberg S.N.; Fisher D.: Spline quadrature formulas. J. Approx. Theory, 42 (1984), 212–238.

    MathSciNet  MATH  Google Scholar 

  • Buslaev A.P.; Yashina M.V.: Numerical methods in problems of best approximation by splines and of nonlinear spectral analysis. (russian). Comput. Math. Math. Phys. 33 (1993), No.10, 1287–1297.

    MathSciNet  Google Scholar 

  • But. E.N.: Splain-identificaţii teplovîh potokov. Inj.-fiz-gurn., 33 (1987), No.6, 1086–1089.

    Google Scholar 

  • Butler G.J.; Richard F.B.: On L psaturation theorem for splines. Canad. J. Math., 24 (1972), 957–966.

    MathSciNet  MATH  Google Scholar 

  • Butterfield K.R.: The computation of all the derivatives of a B-spline basis. J. Inst. Math. Appl., 17 (1976), 15–25.

    MathSciNet  MATH  Google Scholar 

  • Butzer P.L.; Oberdörster W.: Linear functionals defined on various spaces of continuous functions. J. Approx. Theory, 13 (1975), 451–469.

    MATH  Google Scholar 

  • Butzer P.L.; Engels W.; Ries S.; Stens R.L.: The Shanon sampling series and the reconstructions of signals in terms of linear, quadratic and cubic splines. SIAM J. Appl. Math., 46 (1986), No.2, 299–323.

    MathSciNet  MATH  Google Scholar 

  • Butzer P.L.; Schmidt M.; Stark E.L.: Observations on the History of Central B-splines. Archive for History of Exact Science, 39 (1988), 137–156.

    MathSciNet  MATH  Google Scholar 

  • Byrne G.D.; Chi D.N.H.: Linear multistep formulas based on g — splines. SIAM J. Numer. Anal. 9 (1972), No.2, 316–324.

    MathSciNet  MATH  Google Scholar 

  • Byrnes J.S.; Shisha O.: The order of magnitude of unbounded functions and their degree of approximation by piecewise interpolating polynomials. J. Approx. Theory, 30 (1980), No.1, 53–58.

    MathSciNet  MATH  Google Scholar 

  • Cabral J.J.S.P.; Wrobel L.C.: 1. Unconfined flow through porons media using B-spline boudary elements. J. Hidraulic Eng. ASCE, 117 (1991), 1479–1495.

    Google Scholar 

  • Cabral J.J.S.P.; Wrobel L.C.: 2. Applications of B-spline boundary elements to groundwater flow problems. In L.C. Wrobel and CA Brebia (eds): Comput. modelling of free and moving boundary problems, Comput. Mech. Publications, Berlin-New york, 1991, 21–36.

    Google Scholar 

  • Cabral J.J.S.P.; Wrobel L.C.: 3. Numerical analysis of saltwater intrusion using b-spline boundary elements. Internat. J. Numer. Meths. in Fluids, 16 (1993), No.11, 989–1005.

    MATH  Google Scholar 

  • Cabral J.J.S.P.; Wrobel L.C.; Brebbia C.A.: 1. BEM using B-splines Boundary elements in mechanical and electrical engineering. Proc. Int. Boundary Elem. Symp. Nice/Fr., (1990), 467–481.

    Google Scholar 

  • Cabral J.J.S.P.; Wrobel L.C.; Brebbia C.A.: 2. A BEM formulation using B-splines: I uniform blending functions. Eng. Anal., 7 (1990), 136–144

    Google Scholar 

  • Cabral J.J.S.P.; Wrobel L.C.; Brebbia C.A.: II multiple knots and non-uniform blending functions. Eng. Anal., 8 (1991), 51–55.

    Google Scholar 

  • Caffney P.W.: The calculation of indefinite integrals of B — splines. J. Inst. Math. Appl., 17 (1976), 37–41.

    MathSciNet  Google Scholar 

  • Caldwell J.: 1. Application of cubic splines to the nonlinear Burger’s Equation. Proc. Numer. Meth. for nonlin. Problems, 3 (1986), 253–261.

    MathSciNet  Google Scholar 

  • Caldwell J.: 2. Use of cubic splines in the numerical solution of model nonlinear PDE. Southeast Asian Bull. Math., 20 (1996), No.3, 39–46.

    MathSciNet  MATH  Google Scholar 

  • Calio F.; Marchetti E.; Rabinowitz P.: On the numerical solution of the generalized Prandtl equation using variation — diminishing splines. J. Comput. Appl. Maths., 60 (1995), No. 3., 309–330.

    MathSciNet  Google Scholar 

  • Call E.S.; Judd F.F.: Surface fitting by separation. J. Approx. Theory, 12 (1974), 283–290.

    MathSciNet  MATH  Google Scholar 

  • Callender E.D.: Single step methods and low order splines for solutions of ordinary differential equations. SIAM J. Numer. Anal., 8 (1971), 61–66.

    MathSciNet  MATH  Google Scholar 

  • Camarindha M.; Silva Leite F.; Couch P.: Spline of class C t on non-Euclidean spaces. IMA J. Math. Control Inform., 12 (1995), No. 4, 399–410.

    MathSciNet  Google Scholar 

  • Cantoni A.: 1. Optimal curve fitting with piecewise-linear functions. I.E.E.E. Trans. Computers C-20, (1971), 59–67.

    Google Scholar 

  • Cantoni A.: 2. Curve fitting with piecewise-linear functions. Proc. I.R.E.E. Australia, 33 (1972), 417–423.

    Google Scholar 

  • Cao Jia Ding: 1. Kantorovich type operators and integral Schoenberg splines. (chinese). Kexue Tonbao, 27 (1982), No.7, 385–388.

    Google Scholar 

  • Cao Jia Ding: 2. Ob operatorah tipa Kantorovicha i integralnîh splainah Schoenberga. Acta Math. Hung., 42 (1983), 189–203.

    Google Scholar 

  • Cao Jia Ding: 3. Operators of Kantorovich type and integral Schoenberg splines. (russian), Kexue Tonbao, 28 (1983), No.1, 5–9.

    Google Scholar 

  • Cao Jia Ding: 4. Some results of integral Schoenberg splines. (chinese). Ziran Zazhi-Nature Journal, (1983), No.7, 558.

    Google Scholar 

  • Cao Jia Ding: 5. Some results on integral Schoenberg splines. (chinese). J. Math. (Wuhan), 8 (1988), No.4, 319–326.

    MathSciNet  Google Scholar 

  • Caprili M.; Cella A.; Gheri G.: Spline interpolation techniques for variational methods. Internat. J. Num. Meth. Eng., 6 (1973), 565–576.

    MATH  Google Scholar 

  • Carasso C.: 1. Obtention d’une fonction spline d’interpolation d’ordre k par une méthode d’intégration locale. Procédures Algol en Anal. Num. I, 288–291. Centre Nat. Rech. Sci. Paris, 1967.

    Google Scholar 

  • Carasso C.: 2. Méthode pour l’obtention de fonctions spline d’interpolation d’ordre deux. Procédures Algol en Anal. Num. I, 292–294, Centre Nat. Rech. Sci. Paris, 1967.

    Google Scholar 

  • Carasso C.: 3. Obtention d’une fonction lisse passant par des points donnés et ayant en ces points des dérivées (fonction spline d’Hermite). Procédures Algol en Anal. Num. I, 295–299, Centre Nat. Rech. Sci. Paris, 1967.

    Google Scholar 

  • Carasso C.: 4. Obtention de la dérivée d’une fonction donnée par points. Procédures Algol en Anal. Num. I, 300–301, Centre Nat. Rech. Sci. Paris, 1967.

    Google Scholar 

  • Carasso C.: 5. Construction numérique de fonctions-spline. Actes de 5-e Congrès de l’AFIRO (Lille, 1966), 506–509, Assoc. Franc. d’Inform. et de Rech. Opérat. Paris, 1967.

    Google Scholar 

  • Carasso C.: 6. Méthode générale de construction de fonctions spline. Rev. Française Informat. Rech. Opérationelle, 5 (1967), 119–127.

    MathSciNet  Google Scholar 

  • Carasso C.; Laurent P.J.: On the numerical construction and the practical use of interpolating spline functions. Information Processing 68 (Proc. IFIP Congress, Edinburg, 1968) ed. by A.J.N. Morell, Vol I. Math. Software, 86–89, North — Holland, Publ. Co. Amsterdam, (1969).

    Google Scholar 

  • Carey G.F.; Finlayson B.A.: Orthogonal collocation on finite elements. Chem. Eng. Sci., 30 (1975), 587–596.

    Google Scholar 

  • Carey G.F.; Humphrey D.; Wheeler M.F.: Galerkin and collocaton — Galerkin methods with superconvergence and optimal fluxes. Internat. J. Numer. Methods Engrg., 17 (1981), 939–950.

    MathSciNet  MATH  Google Scholar 

  • Carl S.; Grossmann C.: Iterative spline bounds for systems of boundary value problems. Splines in numer. Analysis (Weissing, 1989), 19–30. Math. Res. 52, Akademie — Verlag, Berlin, 1989.

    Google Scholar 

  • Carlson B.C.: B — splines, hpergeometric functions and Dirichlet averages. J. Approx. Theory, 67 (1991), No.3, 311–325.

    MathSciNet  MATH  Google Scholar 

  • Carlson R.E.; Fritsch F.N.: 1. Monotone piecewise bicubic interpolation. SLAM J. Numer. Anal., 22 (1985), No.2, 386–400.

    MathSciNet  MATH  Google Scholar 

  • Carlson R.E.; Fritsch F.N.: 2. An algorithm for monotone piecewise bicubic interpolation. SIAM J. Numer. Anal., 26 (1989), 230–238.

    MathSciNet  MATH  Google Scholar 

  • Carlson R.E.: Hall C.A.: 1. On piecewise polynomial interpolation in rectangular polygons. J. Approx. Theory, 4 (1971), 37–53.

    MATH  Google Scholar 

  • Carlson R.E.: Hall C.A.: 2. Ritz Approximations to two — dimensional boundary value problems. Numer. Mth., 18 (1971), 171–181.

    Google Scholar 

  • Carlson R.E.: Hall C.A.: 3. Bicubic spline interpolation in rectangular polygons. J. Approx. Theory, 6 (1972), 366–377.

    MATH  Google Scholar 

  • Carlson R.E.: Hall C.A.: 4. Bicubic spline interpolation in L — shaped domains. 3. Approx. Theory, 8 (1973), 62–68.

    MATH  Google Scholar 

  • Carlson R.E.: Hall C.A.: 5. Error bounds for bicubic spline interpolation. J. Approx. Theory, 7 (1973), 41–47.

    MATH  Google Scholar 

  • Carmody T.J.: Diagnostics for multivariate smoothing splines. J. Stat. Plann. Inference, 19 (1988), No.2, 171–186.

    MathSciNet  MATH  Google Scholar 

  • Carnicev J.M.; Pena J.M.: 1. A Marsden type identify for periodic trigonometric splines. J. Approx. Theory, 75 (1993), No.3, 248–265.

    MathSciNet  Google Scholar 

  • Carnicev J.M.; Pena J.M.: 2. Total positive bases for shape reserving curve design and optimality of B — splines. CAGD, 11 (1994), No.6, 633–654.

    Google Scholar 

  • Carrol M.P.: The use of piecewise polynomial interpolation to generate best L 1 approximates. Apll. Anal., 8 (1979), No.4, 291–299.

    Google Scholar 

  • Carrol M.P.; Braess D.: On uniqueness of L 1approximation for certain families of spline functions. J. Approx. Theory, 12 (1974), 362–364.

    Google Scholar 

  • Casciola G.: 1. B — splines via recurrence relations. Calcolo, 26 (1989), No.2–4, 289–302.

    MathSciNet  MATH  Google Scholar 

  • Casciola G.: 2. A recurrence relation for rational B-splines. CAGD, 14 (1997), 103–110.

    MathSciNet  MATH  Google Scholar 

  • Casciola G.; Morigi S.: Reparametrisation of NURBS curves. Int. J. Shape Model, 2 (1996), No.2–3, 2–3.

    Google Scholar 

  • Catmull E.; Clark J.: Recursively generated B-splines surfaces on arbitrary topological meshes. Comput. Aided Design, (1978), 350–355.

    Google Scholar 

  • Catmull E.; Rom R.: A class of local interpolating splines. CAGD 1974, 317–326.

    Google Scholar 

  • Cavaretta A.S.: 1. On cardinal perfect splines of least supnorm on the real axis. 3. Approx. Theory, 8 (1973), 285–303.

    MathSciNet  MATH  Google Scholar 

  • Cavaretta A.S.: 2. Oscillatory and zero properties for perfect splines and monosplines. 3. Anal. Math. Israel, 28 (1975), 41–59.

    MATH  Google Scholar 

  • Cavaretta A.S.; Newman D.J.: Periodic interpolating splines and their limits. Indag. Math., 40 (1978), 515–526.

    MathSciNet  MATH  Google Scholar 

  • Cavaretta A.S.; Sharma A.; Tzimbalario J.: Convergence of a class of interpolatory splines for holomorphic functions. J. Approx. Theory, 46 (1986), No.4, 374–384.

    MathSciNet  MATH  Google Scholar 

  • Cavendish J.C.; Price H.S.; Varga R.S.: 1. Numerical methods of higher order accuracy for diffusion — convection equations. Soc. Petroleum Engrs. AIME J., 8 (1968), 293–303.

    Google Scholar 

  • Cavendish J.C.; Price H.S.; Varga R.S.: 2. Galerkin methods for the numerical solution of boundary value problems. Soc. Petroleum Engrs. AIME J., 9 (1969), 204–220.

    Google Scholar 

  • Cavendish J.C.; Gordon W.J.; Hall C.A.: Ritz-Galerkin approximations in blending functions spaces. Numer. Math., 26 (1976), 155–178.

    MathSciNet  MATH  Google Scholar 

  • Cavendish J.C.; Hall C.A.: L-convergence of collocation and Galerkin approximations to linear two-point parabolic problems. Aequationes Math., 11 (1974), 230–249.

    MathSciNet  MATH  Google Scholar 

  • Cendes J.Z.; Wong S.H.: C 1 — quadratic interpolation over arbitrary point sets. IEEE Computer Graphics and Applications, (1987), 8–16.

    Google Scholar 

  • Cerutti J.H.; Parter S.V.: Collocation method for parabolic partial differential equations in one space dimension. Numer. Math., 26 (1976), 227–254.

    MathSciNet  MATH  Google Scholar 

  • le Cessie S.; Balder E.J.: A note on monotone interpolation and smoothing splines. Numer. Funct. Anal. Optim. 15 (1994), No. 1–2, 47–54.

    MathSciNet  MATH  Google Scholar 

  • Chakrabarti Aruns: Quadratic spline interpolation on a Jordan curve. Proc. Japan. Acad. Ser. A. Math. Sci., 61 (1985), No.7, 239–241.

    MathSciNet  MATH  Google Scholar 

  • Chakrabarti A.: Discrete cubic spline introduction. Indian J. Pure Appl. Math., 18 (1987), 6–11.

    MathSciNet  MATH  Google Scholar 

  • Chamayou J.M.F.: Bicubic spline function approximation of the solution of the fastneutron transport equation. Computer Phys. Communic., 10 (1975), 282–291.

    MATH  Google Scholar 

  • Champion R.; Lenard C.T.; Mills T.M.: An introduction to abstract splines. Math. Sci. 21 (1996), No.1, 8–26.

    MathSciNet  MATH  Google Scholar 

  • Chan Paula P.: Singular splines. Numer. Math., 20 (1973), 342–349.

    MATH  Google Scholar 

  • Chandler G.A.; Sloan I.H.: Spline qualocation methods for boundary integral equations. Numer. Math., 58 (1990), 537–567.

    MathSciNet  MATH  Google Scholar 

  • Chang Maoli: The behavior of polylarmonic cardinal splines as their degree fends to infinity. J. Approx. Theory, 76 (1994), No.3, 287–302.

    MathSciNet  MATH  Google Scholar 

  • Chang Z.X.: 1. The mathematical foundation of Bézier’s curves and surfaces. (chinese). Internat. Aviation, No. 1–6 (1979).

    Google Scholar 

  • Chang Z.X.: 2. Vectorial splines. Interpolation type operators and surface fitting by vectorial splines. (chinese). Xian Tiao-toug Daxue Xuebao, 16 (1982), 41–52.

    Google Scholar 

  • Charushnikov V.D.: Spline and questions of optimal approximation. (russian). Diff. and Integral Eqs (russian). Nizhegorod Gos. Univ. Nizhnii Novgorod, (1991), 146–151.

    Google Scholar 

  • Chatterjee A.; Dikshit H.P.: 1. Complex cubic spline interpolations. Acta Math. Acad. Sci. Hungaricae, 36(3–4) (1980), 243–249.

    MathSciNet  MATH  Google Scholar 

  • Chatterjee A.; Dikshit H.P.: 2. Convergence of class of a cubic interpolatory splines. Proc. Amer. Math. Soc., 82 (1981), 411–416.

    MathSciNet  MATH  Google Scholar 

  • Chatterjee A.; Dikshit H.P.: 3. On error bounds for cubic spline interpolation. J. Orissa Math. Soc., 1 (1982), 1–11.

    MathSciNet  MATH  Google Scholar 

  • Chawla T.C.; Chan S.H.: 1. Solution of radiation problems with collocation methods using B-splines as approximating functions. Int. J. Heat Mass Transfer, 22 (1979), 1657–1667.

    MATH  Google Scholar 

  • Chawla T.C.; Chan S.H.: 2. Spline collocation solution of combined radiation-convection in thermally developing flows with scattering. Numer. Heat Transfer, 3 (1980), 47–65.

    Google Scholar 

  • Chawla T.C.; Leaf G.; Chen W.: A collocation method using B-splines for one dimensional heat or mass-transfer-controlled moving boundary problems. Nucl. Eng. Des., 35 (1975), 163–180.

    Google Scholar 

  • Chawla T.C.; Leaf G.; Chen W.; Grolmes M.A.: II. The application of the collocation method using Hermite cubic splines to nonlinear transient one-dimensional heat conduction problem. Trans. ASME, J. Heat Transfer, 97 (1975), 562–569. I. Trans. Amer. Nucl. Soc., 19 (1974), 162–163.

    Google Scholar 

  • Chawla T.C.; Minkowycz W.J.; Leaf C.: Spline collocation solution of integral equations occuring in radiative transfer and laminar boundary-Layer problems. Numer. Heat Transfer, 3 (1980), 133–148.

    Google Scholar 

  • Chawla M.M.; Subramanian R.: 1. A new fourth-order cubic spline method for nonlinear two-point boundary value problems. Intern. J. Computer Math., 22 (1987), 321–341.

    MATH  Google Scholar 

  • Chawla M.M.; Subramanian R.: 2. A new fourth-order cubic spline method for second-order nonlinear two-point boundaryvalue problems. J. Comput. Appl. Math., 23 (1988), No.1, 1–10.

    MathSciNet  MATH  Google Scholar 

  • Chawla M.M.; Subramanian R.: 3. High accuracy quintic spline solution of fourth order two-point boundary value problems. Intern. J. Comput. Math., 31 (1989), 87–94.

    MATH  Google Scholar 

  • Chawla M.M.; Subramanian R.; Sathi H.L.: A fourth-order spline method for singular two-point boundary value problems. J. Comput. and Appl. Math., 21 (1988), No.2, 189–202.

    MathSciNet  MATH  Google Scholar 

  • Chen Dao Qi.: Approximating function derivatives by multiple spline — on — spline interpolations. (chinese). J. Numer. Methods Comput. Appl., 9 (1988), No.3, 183–188.

    MathSciNet  Google Scholar 

  • Chen Debao: 1. Extended families of cardinal spline wavelets. Appl. and Comput. Harmonic Analysis, 1 (1994), 194–208.

    MATH  Google Scholar 

  • Chen Debao: 2. Spline wavelets of small support. SIAM J. Math. Anal. 26 (1995), No. 2, 500–517.

    MathSciNet  MATH  Google Scholar 

  • Chen Di Rong: 1. Perfect splines with boundary conditions of least norm. J. Appox. Theory 77 (1994), No.2, 191–201.

    Google Scholar 

  • Chen Di Rong: 2. Best one-sided approximation of convolution classes by cardinal splines. Approx. Theory Appl., 10 (1994), No.4, 110–117.

    MathSciNet  Google Scholar 

  • Chen Di Rong: 3. On the cardianal spline interpolation corresponding to infinite order differential operators. Acta Math. Sin. New Ser., 10 (1994), No.3, 315–324.

    Google Scholar 

  • Chen Di Rong: 4. Perfect splines determined bu cyclic variations-diminishing kernels and uniqueness of optimal smapling points. (chinese), Acta Math. Sinica, 38 (1995), No.3, 329–335.

    MathSciNet  Google Scholar 

  • Chen Guan Rong: 1. Spline functions methods for calculations in probability and statistics. (chinese). Yingyong Shuxue yu Jisuan Shuxue, 6 (1981), 6–12.

    Google Scholar 

  • Chen Guan Rong: 2. A spline method for smoothing data with noise. (chinese). Math. Practice Theory, (1982), No.2, 24–33.

    Google Scholar 

  • Chen G.; Chui C.K.; Lai M.J.: Construction of real-time spline quasiinterpolation schemes. Approx. Theory Appl., 4 (1988), 61–75.

    MathSciNet  MATH  Google Scholar 

  • Chen Han Lin: 1. The order of error bounds for cubic spline functions. (chinese). Acta Math. Appl. Sinica, 1 (1978), 42–58.

    MathSciNet  Google Scholar 

  • Chen Han Lin: 2. Complex spline functions. Sci. Sinica, 24 (1981), 160–169.

    MathSciNet  Google Scholar 

  • Chen Han Lin: 3. Quasiinterpolant splines on the unit circle. J. Approx. Theory, 38 (1983), 312–318.

    MathSciNet  MATH  Google Scholar 

  • Chen Han Lin: 4. The zeros of rational splines and complex splines. J. Approx. Theory, 39 (1983), 308–319.

    MathSciNet  MATH  Google Scholar 

  • Chen Han Lin: 5. Interpolation by splines on finite and infinite planar sets. Math. and Comput. Div. Numer. Math. Univ. Trondheim, 2 (1982), and Chin. Ann. Math. B, 5 (1984), 375–390.

    Google Scholar 

  • Chen Han Lin: 6. The zeros of g-splines and interpolation by g-splines with mixed boundary condition. Approx. Theory Appl., 1 (1985), No.2, 1–14.

    MathSciNet  Google Scholar 

  • Chen Han Lin: 7. Interpolation and approximation on the unit disc by complex harmonic splines. J. Approx. Theory, 43 (1985), 112–143.

    MathSciNet  Google Scholar 

  • Chen Han Lin: 8. Some extremal problems. Approx. Theory Appl., 2 (1986), No.2, 11–25.

    MathSciNet  Google Scholar 

  • Chen Han Lin: 9. Properties of complex harmonic splines. Numer. Funct. Anal. and Optimiz., 13 (1992), 233–242.

    Google Scholar 

  • Chen Han Lin: 10. Wavelets from trigonometric spline approch. Approx. Theory and its Applications, 12 (1996), No. 2, 99–110.

    MathSciNet  Google Scholar 

  • Chen H.L.; Chui C.K.: On a generalized Euler spline and its application to the study of convergence in cardinal interpolation and solutions of certain extremal problems. Acta Math., 61 (1993), No.3–4, 219–234.

    MathSciNet  MATH  Google Scholar 

  • Chen Han Lin; Hu Yingsheng: 1. On the fundamental function for cardinal L-spline interpolation. Approx. Theory Appl., 2 (1986), No.1, 1–18.

    MATH  Google Scholar 

  • Chen Han Lin; Hu Yingsheng: 2. The Bell-shaped property of the fundamental function for cardinal L-spline interpolation. Approx. Theory and its Appl., 3 (1987), No.4, 24–31.

    Google Scholar 

  • Chen H.L.; Hu Y.S.; Micchelli C.A.: On the fundamental function for cardinal L-splines interpolation. Approx. Theory and its Appl., 2 (1986), 1–17.

    Google Scholar 

  • Chen H.L.; Hvaring Tron: Approximation of complex harmonic functions by complex harmonic splines. Math. of Comput., 42 (1984), No.165, 151–164.

    MATH  Google Scholar 

  • Chen Shan Wo: 1. Tension spline collocation solutions of second order linear ordinary differential equations. (chinese)., Math. Practice Theory, (1986), No.4, 49–59.

    Google Scholar 

  • Chen Shan Wo: 2. A class of second degree exponential splines. (chinese). Math. Pract. Theory, 2 (1986), 45–50.

    Google Scholar 

  • Chen Tian Ping: 1. Spline functions. (chinese). Acta Math. Appl. Sinica, 3 (1980), 41–49.

    MathSciNet  MATH  Google Scholar 

  • Chen Tian Ping: 2. On lacunary interpolation splines of C 3 — class. (chinese). Fudan J. Nat. Sci., 19 (1980), 395–403.

    Google Scholar 

  • Chen Tian Ping: 3. On lacunary interpolation spline of C 2 — class. (chinese). Xexue Tongbao, 25 (1980), 13–16.

    Google Scholar 

  • Chen Tian Ping: 4. On Varna’s lacunary interpolation by splines. (chinese). Chinese Ann. Math., 1 (1980), 75–82.

    MathSciNet  Google Scholar 

  • Chen Tian Ping: 5. On lacunary interpolation spline. (chinese). Sci. Sinica, 24 (1981), 600–617.

    Google Scholar 

  • Chen Tian Ping: 6. On lacunary splines. Scientia Sinica, 24 (1981), 606–617.

    MathSciNet  Google Scholar 

  • Chen Tian Ping: 7. On some kinds of lacunary interpolation spline. Acta Math. Appl. Sin., 4 (1981), 253–257.

    MATH  Google Scholar 

  • Chen Tian Ping: 8. On the error bounds of splines. (chinese). Fudan Daxue Xuebao, 20 (1981), 15–22.

    Google Scholar 

  • Chen Tian Ping: 9. A class of quintic lacunary interpolation splines with nonuniform mesh. (chinese). Chinese Ann. Math., 2 (1981), 311–318.

    MathSciNet  Google Scholar 

  • Chen Tian Ping: 10. Error estimates and asymptotic expansion for Hermite Splines. (chinese). Fudan Xuebao, 4 (1982), 423–432.

    Google Scholar 

  • Chen Tian Ping: 11. On some lacunary interpolation splines. (chinese). J. Math. Res. Exposition, 2 (1982), No.3, 53–60.

    MathSciNet  Google Scholar 

  • Chen Tian Ping: 12. A class of lacunary interpolating splines of high degree. Kexue Tangbao, Foreign. Lang. Ed., 28 (1983), 145–150.

    Google Scholar 

  • Chen Tian Ping: 13. Structural properties of functions described by splines.(chinese). Chinese Ann. Math. Ser. A., 4 (1983), 379–383.

    Google Scholar 

  • Chen Tian Ping: 14. Spline in L pspaces. Scientia Sinica (Series A), 24 (1983), 135–137.

    Google Scholar 

  • Chen Tian Ping: 15. Asymptotic expansion for splines. Scientia Sinica (Series A), 26 (1983), No.9, 919–930.

    MathSciNet  Google Scholar 

  • Chen Tian Ping: 16. Asymptotic error expansions for spline interpolants. Sci. Sinica, 5 (1983), 389–399.

    Google Scholar 

  • Chen Tian Ping: 17. The remainder term of Tchebyshev interpolation and its application to T-splines. (chinese). Math. Numer. Sin., 7 (1985), No.4, 405–409.

    Google Scholar 

  • Chen Tian Ping: 18. Convergence and asymptotic expansions of spline functions. (chinese). Kexue Tongbao, 30 (1985), No.18, 1361–1364.

    MathSciNet  Google Scholar 

  • Chen Tian Ping: 19. On trigonometric splines. J. Math. Res. Exposition, No.2, (1986), 56–62.

    Google Scholar 

  • Chen Tian Ping: 20. Asymptotic expansion for splines. Approx. Theory Appls., 2 (1986), No.2, 1–10.

    Google Scholar 

  • Chen Tian Ping: 21. Asymptotic expansions for complex spline and for even degree (real) polynomial spline. (chinese). J. Math. (Wuhan), 7 (1987), 32–41.

    MathSciNet  Google Scholar 

  • Chen Tian Ping: 22. Residual term of Chebyshev interpolation and its application in T-spline. (chinese). J. Math. Res. Expo., 8 (1988), No.1, 111–118.

    MathSciNet  Google Scholar 

  • Chen W.H.; Wu C.W.: A spline wavelets element method for frame structure vibration. Comput. Mechanics, 16 (1995), No.1, 11–21.

    MATH  Google Scholar 

  • Chen Xiao Dong, Asano Chooichiro, Li Xian Ping: An improved algorithm of interaction spline fitting. In: Theory and Appl. Comput. Statistics, Proc. 1st Workshop, Fuknuka/Japon, 1991, 87–97.

    Google Scholar 

  • Chen Y.; Beier K-P.; Papageorgeou D.: Direct highlight line modification on NURBS surfaces. CAGD, 14 (1997), No.6, 583–601.

    MATH  Google Scholar 

  • Chen Yong Lin: On condition for nonsingularity of the interpolating matrix of the cubic spline. (chinese). Math. Numer. Sinica, 7 (1985), No.2, 214–220.

    MathSciNet  Google Scholar 

  • Chen Yuan: The minimality of support for bivariate splines on a four directions mesh. (chinese). J. Math. (Wuhan), 9 (1989), No.1, 67–87.

    MathSciNet  MATH  Google Scholar 

  • Chen Yue Hui: A necessary and sufficient condition for the existence and uniqueness of a cubic interpolation spline under general linear end conditions. (chinese). Ziran Kexue Ban, (1988), No.1, 69–77.

    Google Scholar 

  • Chen Z.: 1. Interaction spline models for their convergence rates. Ann. Statist., 19 (1991), 1855–1868.

    MathSciNet  MATH  Google Scholar 

  • Chen Z.: 2. Fitting multivariate regression functions by interaction spline models. J. Roy. Statist. Soc. Ser. B., 55 (1993), 473–491.

    MathSciNet  MATH  Google Scholar 

  • Chen Zehna: A stepwise approach for the purely periodic interaction spline model. Commun Stat. theory Methods, 16 (1987), 877–895.

    MATH  Google Scholar 

  • Cheney E.W.; Schurer F.: 1. A note on the operators arising in spline approximation. J. Approx. Theory, 1 (1968), 94–102.

    MathSciNet  MATH  Google Scholar 

  • Cheney E.W.; Schurer F.: 2. Convergence of cubic spline interpolants. J. Approx. Theory, 3 (1970), 114–116.

    MathSciNet  MATH  Google Scholar 

  • Cheng Chichyand; Zheng Yuan F.: Thin plate surface approximation using Coohs’patches. CAGD, 11 (1994), No.3, 269–287.

    Google Scholar 

  • Cheng F.; Barsky B.A.: Interproximation: interpolation and approximation using cubic spline curves. Comput.-Aided Des., 23 (1991), No.10, 700–706.

    MATH  Google Scholar 

  • Cheng Fuhna; Goshtasby A.: A parallel B-spline surface fitting algorithm. ACM. Trans. Graphics, 8 (1989), No.1, 41–50.

    Google Scholar 

  • Cheng Zhen Xing: 1. Vectorial splines. Interpolation type operators and surface fitting by vectorial splines. (chinese). Xian Jiaotoug Daxue Xuebao, 16 (1982), 41–52.

    Google Scholar 

  • Cheng Zhen Xing: 2. The convex interpolating spline curve. J. Math. Res. Expo., 2 (1983), 51–66.

    Google Scholar 

  • Cheng Zhen Xing: 3. Convexity-preserving interpolating spline curves. (chinese). J. Math. Res. Expositions, 3 (1983), 51–56.

    Google Scholar 

  • Cheng Zhengxing: 2. The convex interpolation spline curve. J. Math. Res. Exposition, 3 (1983), No.2, 51–56.

    MathSciNet  Google Scholar 

  • Cheng Zhengxing: 2. Vectorial splines I-IV (chinese). J. Xi’an Jiaotong Univ., 19 (1985), 33–40.

    MATH  Google Scholar 

  • Cherenach P.: Conditions for cubic spline interpolation on triangular elements. Comput. Math. Appl., 10 (1984), 235–244.

    MathSciNet  Google Scholar 

  • Cherevko I.M.; Yakimov I.V.: A numerical method for solving boundary value problems for integro-differenti al equations with deviating arguments. (russian). Ukr. Mat. Zb., 41 (1989), No.6, 854–860.

    MathSciNet  MATH  Google Scholar 

  • Chernykih N.I.: 1. Approximation by splines with a given density of distribution of the nodes. Approximation of functions and operator. (russian). Tradî Mat. Inst. Steklova, 138 (1975), 147–197.

    Google Scholar 

  • Chernykih N.I.: 2. Approximation by splines with fixed knotes. (russian). Proc. Steklov. Inst. Mat., 138 (1975), 174–199.

    Google Scholar 

  • Chernykih N.I.: 3. Approximation des classes de fonctions différentielles par des fonctions splines dans les espaces pondérés, (russian). Trudî Mat. Inst. Steklova, Moskva, 145 (1980), 161–247.

    Google Scholar 

  • Chernyshev Ju. K.: 1. Approximatii kubiceskih Splainov-paraboliceskimi. Vycisl. Mat. i Kibernet. (Harkov), (1984), No.1, 75–79.

    Google Scholar 

  • Chernyshev Ju. K.: 2. Vîpukloe splain-interpolirovanie parabolami s promejutocinîmi uzlami. Prikl. Mat. i Tehn. Kibern. Harkov, (1987), 23–27.

    Google Scholar 

  • Cheung Y.K.; Fau S.C.: Static analysis of right box girder bridges by spline finite strip methods. Proc. ICE, 75(2) (1983), 311–323.

    Google Scholar 

  • Chi Chang Hui: Curviliniar bicubic spline fit interpolation scheme. Optica Acta, 20 (1973), 979–993.

    MathSciNet  Google Scholar 

  • Chin Ke Lu: 1. Error analysis for interpolating complex cubic splines with deficiency 2. J. Approx. Theory, 36 (1982), 183–196.

    MathSciNet  MATH  Google Scholar 

  • Chin Ke Lu: 2. The approximation of Cauchy-Type Integrale by some kind of interpolatory splines. J. Approx. Theory, 36 (1982), 197–212.

    MathSciNet  MATH  Google Scholar 

  • Chin R.C.Y.; Hedstrom G.W.; Karlson K.E.: A simplified Galerkin Method for hyperbolic equations. Math. Comput., 33 (1979), 647–658.

    MATH  Google Scholar 

  • Chiu Li Hu; Schumacker L.L.: Complete spline smoothing. Numer. Math., 49 (1986), 1–10.

    MathSciNet  MATH  Google Scholar 

  • Cho Sang Mun: On a method of least squares by a linear spline stabilizer. Bull. Korean Math. Soc. 31 (1994), No.1, 149.

    MATH  Google Scholar 

  • Choi Hi Chol: Study on the even — order spline function. (Korean). Suhak, 2 (1988), No.2, 32–38.

    Google Scholar 

  • Choi T.Y.; Kim S.D.; Shin B.C.: Exponential decay of C 1 — quadratic Lagrange spline and its applications. Kyungpook Math. J., 36 (1996), No.2, 313–321.

    MathSciNet  MATH  Google Scholar 

  • Chon F.S.; Sirisena H.R.: Computation of optimal controls for nonlinear distributed-parameter systems using multivariate spline functions. Inter. J. Syst. Sci., 9 (1978), No.12, 1387–1345.

    Google Scholar 

  • Chong Gu: What happens when bootstrapping the smoothing spline. Comm. Statist. Theory Meth., 16 (1987), 3275–3284.

    MATH  Google Scholar 

  • Chou J.J.; Piegle L.A.: Data reduction using cubic rational B-splines. IEEE Comput Graph. Applic., 12 (1992), 60–68.

    Google Scholar 

  • Christara Christina C.: 1. Conjugate gradient methods for splines collocation equations. Proceeds of the fifths DMCC5, April (1990), SC. USA, 550–558.

    Google Scholar 

  • Christara Christina C.: 2. Schur complement preconditioned conjugate gradient methods for spline collocation equations. Proceeds of the 1990 Internat. Conf. on Supercomputing, June (1990), Amstergam, 108–120.

    Google Scholar 

  • Christara Christina C.: 3. Parallel Solvers for Spline Collocation Equations. Cooper Mountain Conf. on Iterative Methods, April (1992), CO, USA.

    Google Scholar 

  • Christara Christina C.: 4. Quadratic spline collocation methods for elliptic partial differential equations. BIT., 34 (1994), Nr.1, 33–61.

    MathSciNet  MATH  Google Scholar 

  • Christara Christina C.: 5. Quadratic spline collocation methods for elliptc partial differential equations. BIT 34 (1994), No. 1, 33–61.

    MathSciNet  MATH  Google Scholar 

  • Christara Christina C.: 6. Parralel solvers for spline collocation equations. Advances in Engineering Software, 27 (1996), No.1/2, 71–89.

    Google Scholar 

  • Christara C.C.; Houstis E.N.: A domain decomposition spline collocation method for elliptic partial differential equations. Proceeds of HCCA 4, Masch (1989), Monterey, CA, USA, 1267–1273.

    Google Scholar 

  • Christara C.C.; Smith Barry: Multi grid and multilevel methods for quadratic spline collocation. BIT, 37 (1997), No.4, 781–803.

    MathSciNet  MATH  Google Scholar 

  • Christiansen J.; Rüssel R.D.: Error analysis for spline collocation méthode with application to knots selection. Math. Comput., 32 (1978), 415–419.

    MATH  Google Scholar 

  • Christie M.A.; Moriarty K.J.M.: A bicubic spline interpolation of unequally spaced data. Comput. Phys. Coram., 17 (1979), 357–364.

    Google Scholar 

  • Chu Kai-Ching: B 3splines for interactive curve and surface fitting. Comput. and Graph., 14 (1990), No.2, 281–288.

    Google Scholar 

  • Chu S.C.: Piecewise polynomials and the partition method for nonlinear differential equations. J. Engrg. Math., 4 (1970), 65–76.

    MathSciNet  MATH  Google Scholar 

  • Chukwu F.N.; Gronski J.M.; Silliman S.D.: Spline solution to extremal problems via optimal control. Boll. Unione Math. Iral, Suppl., vol I (1980), 21–29.

    MathSciNet  Google Scholar 

  • Chui C.K.: 1. Bivariate quadratic splines on crisseross triangulations. Proc. First Army Conf. Appl. Math. Comput., 1 (1984), 877–882.

    Google Scholar 

  • Chui C.K.: 2. B — splines on nonuniform triangulations. Second Arny Conf. Appl. Math. Comp., 2 (1985), 939–942.

    MathSciNet  Google Scholar 

  • Chui C.K.: 3. Wavelets and spline interpolation. In Advanced in numerical analysis (ed. by Will Light), vol II, Oxford Univ. Press, (1992), 1–35.

    Google Scholar 

  • Chui C.K.: 4. Wavelets — with emphasis on spline — wavelets and applications to signal analysis. Approx. Theory, spline functions and applications. (Marateo, 1991), 19–39, NATO Adv. Sci. Just. Ser C Math. Phys. Sci. 356, Kluwer Acad. Publ. 1992.

    Google Scholar 

  • Chui C.K.: 5. On cardinal spline-wavelets. In Wavelets and their application, 419–438, Jones and Bartlett, Boston, MA, (1992).

    Google Scholar 

  • Chui C.K.; Chui H.C.; He Tian Xiao: Shape-preserving interpolation by C 1 quadratic splines. Workshop on Comput. Geom. (Torino, 1992), 21–75, World Sci. Publ. River Edge, N.J. 1993.

    Google Scholar 

  • Chui C.K.; De Villiers J.M.: Application of optimally local interpolation to interpolatory approximants and compactly supported wavelets. Math. Comput., 65 (1996), No. 213, 99–114.

    MATH  Google Scholar 

  • Chui C.K.; Diamond Harvey: 1. A natural formulation of quasi — interpolation by multivariate splines. Proc. Amer. Math. Soc., 99 (1987), No.4, 643–646.

    MathSciNet  MATH  Google Scholar 

  • Chui C.K.; Diamond Harvey: 2. A characterization of multivariate quasi-interpolation formulas and its applications. Numer. Math., 57 (1990), 105–121.

    MathSciNet  MATH  Google Scholar 

  • Chui C.K.; Diamond Harvey: 3. A general framework for local interpolation. Numer. Math., 58 (1991), No.6, 569–581.

    MathSciNet  MATH  Google Scholar 

  • Chui C.K.; Diamond H.; Raphael L.A.: 1. Interpolation by multivariate splines. Math. Comput., 51 (1988), 203–218.

    MathSciNet  MATH  Google Scholar 

  • Chui C.K.; Diamond H.; Raphael L.A.: 2. Shape — preserving quasi — interpolation and interpolation by box spline surfaces. J. Comput. Appl. Math., 25 (1989), No.2, 169–198.

    MathSciNet  MATH  Google Scholar 

  • Chui C.K.; Guan Lü Tai: Multivariate polynomial natural splines for interpolation of scattered data and other applications. Workshop on comput. Geom. (Torino 1992), 77–95, World Sci. Publ. River Edge, N.J. 1993

    Google Scholar 

  • Chui C.K.; He T.X.: 1. On minimal quasi — minimal suported bivariate splines. J. Approx. Theory, 52 (1988), 217–238.

    MathSciNet  MATH  Google Scholar 

  • Chui C.K.; He T.X.: 2. On the dimension of bivariate super spline spaces. Math. Comput., 53 (1989), No.187, 219–234; 55 (1989), No.191, 407–409.

    MathSciNet  MATH  Google Scholar 

  • Chui C.K.; He T.X.: 3. Bivariate C 1 quadratic finite elements and vertex splines. Math. Comput., 54 (1990), No.189, 169–187.

    MathSciNet  MATH  Google Scholar 

  • Chui C.K.; He T.X.: 4. Computation of minimal and quasi — minimal supported bivariate splines. J. Comput. Math., 8 (1990), No.2, 108–117.

    MathSciNet  MATH  Google Scholar 

  • Chui C.K.; He T.X.: 5. Bivariate interpolatory rational splines. Numer. Algorithms, 9 (1995), No.3–4, 277–291.

    MathSciNet  MATH  Google Scholar 

  • Chui C.K.; He T.X.; Wang R.H.: The C 2 quartic spline spaces on a four — directional mesh. Approx. Theory and its Appl., 3 (1987), No.4, 32–36.

    MathSciNet  MATH  Google Scholar 

  • Chui C.K.; Hong Dong: 1. Construction of local C 1 quartic spline elements for optimal order approximation. Math. Comput. 65 (1996), No. 213, 85–98.

    MathSciNet  MATH  Google Scholar 

  • Chui C.K.; Hong Dong: 2. Swapping edges of arbitrary triangulations to achieve the optimal order of approximation. SIAM J. Numer. Anal., 34 (1997), No.4, 1472–1482.

    MathSciNet  MATH  Google Scholar 

  • Chui C.K.; Hong Dong; Jia Rong Qing: Stability of optimal order approximation by bivariate splines over arbitrary triangulations. Trans. Amer. Math. Soc., 347 (1995), No. 9, 3301–3318.

    MathSciNet  MATH  Google Scholar 

  • Chui C.K.; Jetter K.; Ward J.D.: Cardinal interpolation by multivariate splines. Math. of Comput., 48 (1987), 711–724.

    MathSciNet  MATH  Google Scholar 

  • Chui C.K.; Lai M.J.: 1. Computation of box splines and B — splines on triangulations of nonuniform rectangular partitions. Approx. Theory and its Appl., 3 (1987), No.4, 37–62.

    MathSciNet  MATH  Google Scholar 

  • Chui C.K.; Lai M.J.: 2. A multivariate analog of Marsden’s identity and a quasi — interpolation scheme. Constr. Approx., 3 (1987), 111–122.

    MathSciNet  MATH  Google Scholar 

  • Chui C.K.; Lai M.J.: 3. Multivariate vertex splines and finite elements. J. Approx. Theory, 60 (1990), 245–343.

    MathSciNet  MATH  Google Scholar 

  • Chui C.K.; Lai M.J.: 4. On bivariate super vertex splines. Constr. Approx., 6 (1990), No.4, 399–419.

    MathSciNet  MATH  Google Scholar 

  • Chui C.K.; Lai M.J.: 5. Algorithms for generating B-nets and graphically displaying spline surfaces on three — and four — directional meshes. Computer Aided Geom. Design, 8 (1991), No.6, 479–493.

    MathSciNet  MATH  Google Scholar 

  • Chui C.K.; Ron A.: On the convolution of a box spline with a compactly supported distrubution: linear independence for the integer translates. Canadian J. Math., 43 (1991), No.1, 19–33.

    MathSciNet  MATH  Google Scholar 

  • Chui C.K.; Smith P.W.: 1. On H m,p — splines. SIAM. Numer. Anal., 11 (1974), 554–558.

    MathSciNet  MATH  Google Scholar 

  • Chui C.K.; Smith P.W.: 2. Unique best nonlinear approximation in Hilbert spaces. Proc. Amer. Math. Soc., 49 (1975), 66–70.

    MathSciNet  MATH  Google Scholar 

  • Chui C.K.; Smith P.W.: 3. Some nonlinear spline approximation probleme related to N — widthit. J. Approx. Theory, 13 (1975), 421–430.

    MathSciNet  MATH  Google Scholar 

  • Chui C.K.; Smith P.W.: 4. An application of spline approximation with variable knots to optimal estimation of the derivative. SIAM J. Numer. Anal., 11 (1980), 724–736.

    MathSciNet  MATH  Google Scholar 

  • Chui C.K.; Smith P.W.; Ward J.D.: 1. On the range of certain locally determined spline projections. Lect. Notes Math., 536 (1970), 122–135.

    Google Scholar 

  • Chui C.K.; Smith P.W.; Ward J.D.: 2. Limit of H k,p — splines. Bull. Amer. Math. Soc., 81 (1975), 563–565.

    MathSciNet  MATH  Google Scholar 

  • Chui C.K.; Smith P.W.; Ward J.D.: 3. Favard’s solution is the limit of W k,p — splines. Trans. Amer. Math. Soc., 220 (1976), 299–305.

    MathSciNet  MATH  Google Scholar 

  • Chui C.K.; Smith P.W.; Ward J.D.: 4. Preferred N.B.V — splines. J. Math. Anal. Applic, 55 (1976), 18–31.

    MathSciNet  MATH  Google Scholar 

  • Chui C.K.; Smith P.W.; Ward J.D.: 5. On the smoothness of best L 2approximants from nonliinear spline manifolds. Math. Comput., 31 (1977), 17–23.

    MathSciNet  MATH  Google Scholar 

  • Chui C.K.; Smith P.W.; Ward J.D.: 6. Degree of L papproximation by monotone splines. SIAM. J. Math. Anal., 11 (1980), 436–447.

    MathSciNet  MATH  Google Scholar 

  • Chui C.K.; Rozema E.R.; Smith P.W.; Ward J.D.: 1. Simultaneous spline approximation and interpolation preserving norm. Proc Amer. Math. Soc., 54 (1976), 93–100.

    MathSciNet  Google Scholar 

  • Chui C.K.; Rozema E.R.; Smith P.W.; Ward J.D.: 2. On the smoothness of best L 2 approximations from nonlinear spline manifolds. Math. Comput., 31 (1977), 17–23.

    MATH  Google Scholar 

  • Chui C.K.; Rozema E.R.; Smith P.W.; Ward J.D.: 3. Best L 2 local approximation. J. Approx. Theory, 22 (1978), 254–261.

    MATH  Google Scholar 

  • Chui C.K.; Rozema E.R.; Smith P.W.; Ward J.D.: 4. Degree of L p approximation by monotone splines. SIAM J. Math. Anal., 11 (1980), No.3, 426–447.

    MathSciNet  Google Scholar 

  • Chui C.K.; Stöckler J.; Ward J.D.: 1. Invertibility of shifted box spline interpolation operators. SLAM J.Math. Anal., 22 (1991), No.2, 543–553.

    MATH  Google Scholar 

  • Chui C.K.; Stöckler J.; Ward J.D.: 2. Compactly supported box — spline wavelets. Approx. Theory Appl., 8 (1992), No.3, 77–100.

    MathSciNet  MATH  Google Scholar 

  • Chui C.K.; Stöckler J.; Ward J.D.: 3. Singularity of cardinal interpolation with shifted box splines. J. Approx. Theory, 74 (1993), No.2, 123–151.

    MathSciNet  MATH  Google Scholar 

  • Chui C.K.; Wang Tian Zhong: 1. A cardinal spline approach to wavelet. Proc. Amer. Math. Soc., 113 (1991), No.3, 785–793.

    MathSciNet  MATH  Google Scholar 

  • Chui C.K.; Wang Tian Zhong: 2. On compactly supported spline wavelet and a duality principle. Trans. Amer. Math. Soc., 330 (1992), No.2, 903–915.

    MathSciNet  MATH  Google Scholar 

  • Chui C.K.; Wang Tian Zhong: 3. An analysis of cardinal spline — wavelets. J. Approx. Theory, 72 (1993), 54–68.

    MathSciNet  MATH  Google Scholar 

  • Chui C.K.; Wang Tian Zhong: 4. A general framework of compactly supported splines and wavelets. J. Approx. Theory, 71 (1992), No.3, 263–304.

    MathSciNet  MATH  Google Scholar 

  • Chui C.K.; Wang Tian Zhong: 5. Computational and algorithmic aspects of cardinal splines — wavelets. Approx. Theory Appl., 9 (1993), No.1, 53–75.

    MathSciNet  MATH  Google Scholar 

  • Chui C.K.; Wang Tian Zhong: 6. Quasi — interpolation Junctionals on spline spaces. J. Approx. Theory, 76 (1994), No.3, 303–325.

    MathSciNet  MATH  Google Scholar 

  • Chili C.K.; Wang R.H.: 1. A generalization of univariate splines with equally spaced knots to multivariate splines. J. Math. Res. Exp., 2 (1982), 99–104.

    Google Scholar 

  • Chili C.K.; Wang R.H.: 2. Bases of bivariate spline spaces with cross-cut grid partitions. J. Math. Research and Exposition, 2 (1982), 1–4.

    Google Scholar 

  • Chili C.K.; Wang R.H.: 3. Bivariate B — splines on triangulated rectangles. Approx. Theory IV, Academic Press, New York, (1983), 413–418.

    Google Scholar 

  • Chili C.K.; Wang R.H.: 4. Multivariate spline spaces. J. Math. Anal. Appl., 94 (1983), 197–221.

    MathSciNet  Google Scholar 

  • Chili C.K.; Wang R.H.: 5. On smooth multivariate spline functions. Math. Comput. 41 (1983), 131–142.

    Google Scholar 

  • Chili C.K.; Wang R.H.: 6. Multivariate B — spline on triangulated rectangles. J. Math. Anal. Appl., 92 (1983), 533–551.

    MathSciNet  Google Scholar 

  • Chili C.K.; Wang R.H.: 7. Bivariate cubic B — splines relative to cross — put triangulations. Chinese Ann. Math. Ser. B, 4 (1983), No.4, 509–523.

    MathSciNet  Google Scholar 

  • Chili C.K.; Wang R.H.: 8. On a bivariate B — spline basis. Sci. Sin. Ser. A, 27 (1984), 1129–1142.

    Google Scholar 

  • Chili C.K.; Wang R.H.: 9. Spaces of bivariate cubic and quartc splines on type 1 triangulations. J. Math. Anal. Appl., 101 (1984), 540–554.

    MathSciNet  Google Scholar 

  • Chili C.K.; Wang R.H.: 10. Concerning C 1 B — splines on triangulations of nonuniform rectangular partition. Approx. Theor. Appl., 1 (1984), No.1, 11–18.

    Google Scholar 

  • Chili C.K.; Wang R.H.: 11. The C 2 quartic spline spaces on a four — directional mesh. Approx. Theory Appl., 3 (1987), No.4, 32–36.

    MathSciNet  Google Scholar 

  • Chung K.L.; Lin F.C.: A cost — optimal parallel algorithm for B — spline surface fitting. Graphical Models and Image Processing, 53 (1991), No.6, 601–605.

    MATH  Google Scholar 

  • Ciarlet P.G.; Schultz M.H.; Varga R.S.: 1. Numerical methods of high — order accuracy for nonlinear boundary value problems I — V. Numer. Math. I. 9 (1967), 394–430; II. 11 (1968), 331–345; III. 12 (1968), 120–133; IV. 12 (1968), 266–279; V. 15 (1968), 51–77.

    MathSciNet  MATH  Google Scholar 

  • Ciarlet P.G.; Schultz M.H.; Varga R.S.: 2. Numerical methods of high — order accuracy for singular nonlinear boundary value problems. Numer. Math., 15 (1970), 87–99.

    MathSciNet  MATH  Google Scholar 

  • Ciarlet P.G.; Raviart P.A.: 1. General Lagrange and Hermite interpolation in ℝ n with applications to finite element methods. Arch. Rational Mech. Anal., 46 (1972), 177–199.

    MathSciNet  MATH  Google Scholar 

  • Ciarlet P.G.; Raviart P.A.: 2. Interpolation theory over curved elements, with applications to finite element methods. Comput. Meth. in Appl. Mech. and Eng., 1 (1972), 217–249.

    MathSciNet  MATH  Google Scholar 

  • Ciarlini P.: Aplicazione delle funzioni spline lineari e cubiche nell tratamento di dati spermentali. Publ. Inst. Appl. Calcolo Mauro Picone, Ser 3, 182 (1979) 52 p.

    Google Scholar 

  • Ciesielski Z.: 1. A bounded orthonormal system of polygonals. Studia. Math., 31 (1968), 339–346.

    MathSciNet  MATH  Google Scholar 

  • Ciesielski Z.: 2. A construction of basis in C (1)(I 2). Studia Math., 33 (1969), 243–247.

    MathSciNet  MATH  Google Scholar 

  • Ciesielski Z.: 3. Constructive function theory and spline systems. Studia Math., 53 (1975), 277–302.

    MathSciNet  MATH  Google Scholar 

  • Ciesielski Z.: 4. Bases and approximation by splines. Proc. Internat Congress Math. Vancouver, 1974, Vol.2, 47–51. Canadian Math. Congress, Montreal, Que. 1975.

    Google Scholar 

  • Ciesielski Z.: 5. Orlicz spaces, spline systems, and Brownian motion. Constr. Approx., 9 (1993), No.2–3, 191–208.

    MathSciNet  MATH  Google Scholar 

  • Ciesielski Z.: 6. Spline orthogonal systems and fractal functions. Acta Math. Hungar. 68 (1995), No.4, 287–293.

    MathSciNet  MATH  Google Scholar 

  • Ciesielski Z.; Domsta J.: 1. Construction of an orthonormal basic in C m(I d) and W m p(I d). Studia Math., 41 (1972), 211–224.

    MathSciNet  MATH  Google Scholar 

  • Ciesielski Z.; Domsta J.: 2. On the representation of spline functions. (polish). Zeszyty Nauk U.G. Mat., 1 (1972), 27–37.

    Google Scholar 

  • Ciesielski Z.; Domsta J.: 3. Estimates for the spline orthonormal functions and for their derivatives. Studia Math., 44 (1972), 315–320.

    MathSciNet  MATH  Google Scholar 

  • Ciesielski Z.; Domsta J.: 4. The degenerate B — splines as a basis in the spaces of algebraic polynomials. Anales Polonici Math., 46 (1985), 71–79.

    MathSciNet  MATH  Google Scholar 

  • Ciesielski Z.; Figiel T.: 1. Spline approximation and Besov spaces on compact manifold. Studia Math., 75 (1982), 13–36.

    MathSciNet  MATH  Google Scholar 

  • Ciesielski Z.; Figiel T.: 2. Spline basis in clasical function spaces on compact C manifolds. I, II. Studia Math., 76 (1983), 1–58; II. Studia Math. 76 (1983), 95–136.

    MathSciNet  MATH  Google Scholar 

  • Cinquin Ph.: Optimal reconstruction of surfaces using parametric spline functions. Lect. Notes in Pure. Appl. Math., 86 (1983), 187–195.

    MathSciNet  Google Scholar 

  • Clark J.H.: Some properties of B — splines. Proc. of the 2nd USA — Japan. Computer Conference, AFIPS, Montvale, N.J., (1975), 542–545.

    Google Scholar 

  • Clenshaw C.W.; Hayes J.G.: Curve and surface fitting. J. Inst. Math. Appl., 1 (1965), 164–183.

    MathSciNet  MATH  Google Scholar 

  • Clenshaw C.W.; Negus B.: The cubic X — spline and its application to interpolation. J. Inst. Math. Appl., 22 (1978), 109–119.

    MathSciNet  MATH  Google Scholar 

  • Clements J.C.: 1. Convexity — preserving piecewise rational cubic interpolation. SIAM J. Numer. Anal., 27 (1990), No.4, 1016–1023.

    MathSciNet  MATH  Google Scholar 

  • Clements J.C.: 2. A convexity — preserving C 2 parametric rational cubic interpolation. Numer. Math., 63 (1992), 165–171.

    MathSciNet  MATH  Google Scholar 

  • Climaco Jano C.N.; Patricio F.: On a numerical method to approximate the solution to bicriteria problems using a spline functions. Portug. Math., 39 (1985), 289–293.

    Google Scholar 

  • Cline A.K.: 1. Scalar and planar value curve fitting using splines under tension. Comm. A.C.M., 17 (1974), 218–220.

    MathSciNet  MATH  Google Scholar 

  • Cline A.K.: 2. Curve fitting in one and two dimensions using splines under tensions. Coram. A.C.M., 17 (1974), 221–223.

    MathSciNet  Google Scholar 

  • Coatmélec C.: Approximation et interpolation des fonctions différentiebles de plusieurs variables. Ann. Sci. Ecole. Norm. Sup., 83 (1966), 271–341.

    MathSciNet  MATH  Google Scholar 

  • Cogburn R.; Davis H.T.: Periodic splines and spectral estimation. Ann. Stat., 2 (1974), No.6, 1108–1126.

    MathSciNet  MATH  Google Scholar 

  • Cohen A.; Danbechies I.; Feauveau J.C.: Bi-orthogonal basis of compactly supported wavelets. Comm. Pure Appl. Math., 45 (1992), 485–560.

    MathSciNet  MATH  Google Scholar 

  • Cohen E.: A new local basis for designing with tensioned splines. ACM Transactions on Graphics., 6 (1987), 81–122.

    Google Scholar 

  • Cohen E.; Lyche T.; Riesenfeld R.: 1. Discrete B — splines and subdivision techniques in computer — aided geometric design and computer graphics. Comput. Graph. Image Proces., 14 (1980), 87–111.

    Google Scholar 

  • Cohen E.; Lyche T.; Riesenfeld R.: 2. Discrete box splines and refinement algorithms. Computer Aided Geom. Design, 1 (1984), 131–148.

    MATH  Google Scholar 

  • Cohen E.; Lyche T.; Riesenfeld R.: 3. Subdivision algorithms for the generation of box — splines surfaces. Comput. Aided. Geom. Design, 2 (1984), 131–148.

    Google Scholar 

  • Cohen E.; Lyche T.; Riesenfeld R.: 4. Cones and recurrence relations for simplex splines. Constr. Approx., 3 (1987), No.2, 131–141.

    MathSciNet  MATH  Google Scholar 

  • Cohen E.; Lyche T.; Schumaker L.L.: 1. Discrete B — splines and subdivision techniques in computer — aided geometric design and Computer graphics. Computer Graphies and Image Processing, 14 (1980), 87–111.

    Google Scholar 

  • Cohen E.; Lyche T.; Schumaker L.L.: 2. Algorithms for degree raising of splines. ACM Trans. Graphics, 4 (1985), 171–181.

    MATH  Google Scholar 

  • Cohen E.; Lyche T.; Schumaker L.L.: 3. Algorithms for degree raising for splines. J. Approx. Theory, 46 (1986), No.2, 170–181.

    MathSciNet  MATH  Google Scholar 

  • Cohen E.; Riesenfed R.F.: General matrix reprezentations for Bezier and B — spline curves. Computers in Industry, 3 (1982), 9–15.

    Google Scholar 

  • Collatz L.: Einschliessungssatz für die Minimalabweichung bei der Segmentapproximation. Symp. Intern. Appl. Anal. and Phys. Math. (Cagiari-Sassari) (1964), 11–21, Cremonese, Roma, 1965.

    Google Scholar 

  • Collatz L.; Quade W.: Zur Interpolations theorie der reellen periodischen Funktionen. Sitzungesber. Preuss. Akad. Berlin, 30 (1938), 383–429.

    Google Scholar 

  • Coman G.: 1. Aplicaţii ale funcţiilor spline la construirea formulelor optimale de cuadratură. Studii Cerc. Mat., 24 (1972), 329–334.

    MathSciNet  MATH  Google Scholar 

  • Coman G.: 2. Monospline and optimal quadrature formulas. Rev. Roum. Math. Pures et Appl., 17 (1972), 1323–1327.

    MathSciNet  MATH  Google Scholar 

  • Coman G.: 3. Monosplines and optimal quadrature formulae in L p. Rendiconti di Matern., 5 (1972), 567–577.

    MathSciNet  MATH  Google Scholar 

  • Coman G.: 4. Monospline generalizate şi formule optimale de cuadratură. Studii Cerc. Mat., 25 (1973), 295–303.

    MathSciNet  Google Scholar 

  • Coman G.: 5. Two dimensional monosplines and optimal cubature formulas.Studia Univ. Babes, — Bolyai, Cluj, 1 (1973), 41–53.

    MathSciNet  Google Scholar 

  • Coman G.: 6. Minimal monosplines in L 2 and optimal cubature formulae. Math. Rev. Anal. Numer. Theor. Approx,. 7 (1978), 147–155.

    MathSciNet  MATH  Google Scholar 

  • Coman G.; Frenţiu M.: Bivariate spline approximation. Studia Univ. Babeş — Bolyai Cluj, 1 (1974), 59–64.

    Google Scholar 

  • Coman G.; Gînscă I.: Asupra unor monospline bidimensionale de abatere minimă în L 1 şi a unei formule de cubatură optimale. Studii Cerc. Mat., 26 (1974), 367–374.

    MATH  Google Scholar 

  • Coman G.; Iancu C.: Lacunnary interpolation by cubic spline. Studia Univ.Babeş-Bolyai, Mathematica, 40 (1995), No.4, 77–84.

    MathSciNet  MATH  Google Scholar 

  • Conti C.; Morandi R.: Piecewise C 1 — shape — preserving Hermite interpolation. Computing 56 (1996), No.4, 323–341.

    MathSciNet  MATH  Google Scholar 

  • Constable C.G.; Parker R.L.: Smoothing, splines and smoothing splines; their applications in geomagnetism. J. Comput. Phys., 78 (1988), No.2, 493–508.

    MATH  Google Scholar 

  • Cook A.E.; Gibson R.D.: Fifth and sixth order PECE algorithms based on g — splines with improved stability characteristics. J. Comput. and Appl. Math., 3 (1977), 85–87.

    MATH  Google Scholar 

  • Coons S.A.: Surfaces Patches and B — spline curves. Computer Aided Geom. Design. (ed. Barnhill R.E.; Riesenfeld R.F.), Academic Press, (1974), 1–16.

    Google Scholar 

  • Coope D. Ian: Curve interpolation with nonlinear spiral splines. IMA J. Numer. Anal., 13 (1992), 327–241.

    MathSciNet  Google Scholar 

  • Cooper K.D.; Prenter P.M.: Alternating direction collocation for separable elliptic partial differential equations. SIAM J. Numer. Anal., 28 (1991), No.3, 711–727.

    MathSciNet  MATH  Google Scholar 

  • Copley P.; Schumaker L.L.: On pLg — splines. J. Approx. Theory, 23 (1978), 1–28.

    MathSciNet  MATH  Google Scholar 

  • Coquillart Sabine: Computing offsets of B — spline curves. Comput — Aided Des., 19 (1987), No.6, 305–309.

    MATH  Google Scholar 

  • Correc Y.: Interpolation des Lg — splines. 92 pp. CELAR — CCSA — LA 51, France.

    Google Scholar 

  • Correc Y.; Le Méhauté A.J.Y.: Lg — spline and axisymetric thin shells. Rev. Math. Apl., 9 (1987), No.1, 34–54.

    MATH  Google Scholar 

  • Costabel M.; McLean W.: Spline collocation for strongly elliptic equations on the forms. Numer. Math., 62 (1992), 511–538.

    MathSciNet  MATH  Google Scholar 

  • Constable C.G.; Parker R.L.: Smoothing, splines and smoothing splines; their applications in geomagnetism. J. Comput. Phys., 78 (1988), No.2, 493–508.

    MATH  Google Scholar 

  • Costabel M.; Stephan E.P.: On the convergence of collocation methods for boundary integral equations on polygons. Math. Comput., 49 (1987), 461–478.

    MathSciNet  MATH  Google Scholar 

  • Costantini Paolo: 1. Some considerations on the existence of monotone and convex quadratic interpolatory splines. (italian). Boll. Unione. Mat. Ital. VI Ser A, 3 (1984), 257–263.

    MATH  Google Scholar 

  • Costantini Paolo: 2. On monotone and convex spline interpolation. Math. Comput., 46 (1986), No.173, 203–216.

    MATH  Google Scholar 

  • Costantini Paolo: 3. Co — monotone interpolating splines of arbitrary degree a local approach. SIAM J. Sci. and Statist. Comput., 8 (1987), No.6, 1026–1034.

    MathSciNet  MATH  Google Scholar 

  • Costantini Paolo: 4. An algorithm for computing shape — preserving interpolating splines of arbitrary degree. J. Comput. Appl. Math., 22 (1988), 89–136.

    MathSciNet  MATH  Google Scholar 

  • Costantini Paolo: 5. An algorithm for computing shape — preserving interpolating splines of arbitrary degree. J. Comput. Appl. Math., 22 (1988), 89–136.

    MathSciNet  MATH  Google Scholar 

  • Costantini Paolo: 6. Shape-preserving interpolation with variable degree polynomial splines. in: Advanced Course on Fairshape. Teubner Stuttgart, 1996, 87–114.

    Google Scholar 

  • Costantini Paolo; Fontanella Ferrucco: Shape — preserving bivariate interpolation. SIAM J. Numer. Anal., 27 (1990), No.2, 488–506.

    MathSciNet  MATH  Google Scholar 

  • Costantini Paolo; Manni Carla: 1. A local scheme for bivariate co — monotone interpolation. Comput. Aided Geom. Design, 8 (1991), No.5, 371–391.

    MathSciNet  MATH  Google Scholar 

  • Costantini Paolo; Manni Carla: 2. A bicubic shape-preserving blending scheme. CAGD, 13 (1996), No.4, 307–331.

    MATH  Google Scholar 

  • Costantini Paolo; Morandi Rossana: 1. Monotone and convex cubic spline interpolation. Calcolo, 21 (1984), Fasc III, 281–293.

    MathSciNet  MATH  Google Scholar 

  • Costantini Paolo; Morandi Rossana: 2. An algorithm for computing shape — preserving cubic spline interpolation to data. Calcolo, 21 (1984), 295–305.

    MathSciNet  Google Scholar 

  • Cotronei M.: An efficient algorithm for the analysis of signals by polynomial spline — wavelets, (italian). Atti Accad. Peloritana Pericolanti, C.l. Sci. Fiz. Mat. Nat. 70 (1992), No.2, 211–235.

    MathSciNet  MATH  Google Scholar 

  • Coughram W.M.; Grosse E.; Rose D.J.: Variation diminishing splines in simulation. SIAM J. Sci. Stat. Comput., 7 (1986), 696–705.

    Google Scholar 

  • Cox Denis D.: 1. Asymptotice for M type smoothing splines. Ann. Statist., 11 (1983), 530–551.

    MathSciNet  Google Scholar 

  • Cox Denis D.: 2. Multivariate smoothing spline functions. SIAM J. Numer. Anal., 21 (1984), 789–813.

    MathSciNet  Google Scholar 

  • Cox Denis; Koh Eunmee: A smoothing spline based test of model adequancy in polynomial regression. Ann. Inst. Statist. Math., 41 (1989), No.2, 383–400.

    MathSciNet  Google Scholar 

  • Cox D.; Koh E.; Wahba G.; Yandell B.: Testing in null model hypothesis in partial and generalized spline models. Ann. Statist., 16 (1988), 113–119.

    MathSciNet  MATH  Google Scholar 

  • Cox M.G.: 1. An algorithm for approximating convex functions by means of first degree splines. Comput. J., 14 (1971), 272–275.

    MATH  Google Scholar 

  • Cox M.G.: 2. Curve fitting with piecewise polynomials. J. Inst. Math. Appl., 8 (1971), 36–52.

    MathSciNet  MATH  Google Scholar 

  • Cox M.G.: 3. The numerical evaluation of B — splines. J. Inst. Math. Appl., 10 (1972), 134–149.

    MathSciNet  MATH  Google Scholar 

  • Cox M.G.: 4. An algorithm for spline interpolation. J. Inst. Math. Appl., 15 (1975), 95–108.

    MathSciNet  MATH  Google Scholar 

  • Cox M.G.: 5. The representation of polynomials in terms of B — splines. Nat. Phys. Lab. Div. Numer. Anal and Comput., (1977), 85–118.

    Google Scholar 

  • Cox M.G.: 6. A survey of numerical methods for data and function appoximation. State Art. Numer. Anal. Proc. Conf. York, 1976, London, (1977), 627–668.

    Google Scholar 

  • Cox M.G.: 7. The numerical evaluation of a spline from its B-splines representation. J. Inst. Math. Appl., 21 (1978), 135–143.

    MathSciNet  MATH  Google Scholar 

  • Cox M.G.: 8. The incorporation of boundary conditions in spline approximations problems. Lect. Notes Math., 630 (1978), 51–63.

    Google Scholar 

  • Cox M.G.: 9. Practical spline approximation. Nat. Phys. Lab. Div. Inf. Technolog and Comput. Rept., 82 (1982), No.1, 33 pp.

    Google Scholar 

  • Cox M.G.: 10. Direct versus iterative methods of solution for multivariate spline fitting problem. IMA. J. Numer. Anal., 2 (1982), 73–81.

    MathSciNet  MATH  Google Scholar 

  • Cox M.G.: 11. Multivariate smoothing spline functions. SIAM J. Numer.Anal. 21 (1984), No.4, 789–813.

    MathSciNet  MATH  Google Scholar 

  • Cox M.G.; Harris P.M.: 1. Overcoming an instability arising in a spline approximation algoritm by using an alternative form of a single rational function. Bull. Just. Math. Appl., 25 (1989), No.9, 228–232.

    MathSciNet  MATH  Google Scholar 

  • Cox M.G.; Harris P.M.: 2. The approximation of a composite Bézier cubic curve by a composite Bézier quadratic curve. IMA J. Numer. Anal., 11 (1991), 159–180.

    MathSciNet  MATH  Google Scholar 

  • Cox M.G.; Jones Helen M.: Shape preserving spline approximation in the L 1norm. Nat. Phys. Lab. Div. Inf. Technol. and Comput. Rep. (1985), No.68, 14 pp.

    Google Scholar 

  • Cox M.G.; Manneback P.E.: Least — squares spline regression with bloc — diagonal variance matrices. IMA Journal of Numer. Anal., 5 (1985), 275–286.

    MathSciNet  MATH  Google Scholar 

  • Crank J.; Gupta R.S.: A method for solving moving boundary problems in heat flow using cubic splines or polynomials. J. Inst. Math. Appl., 10 (1972), 296–304.

    MathSciNet  MATH  Google Scholar 

  • Craven P.; Grace Wahba: Smoothing noisy data with spline functions. Numer. Math., 31 (1979), 377–403.

    MATH  Google Scholar 

  • Creutz G.; Schubert Ch.: An interactive line creation method using B — splines. Computers and Graphics, 5 (1980), No.2–4, 69–78.

    Google Scholar 

  • Crisci M.R.; Jackiewicz Z.; Russo E.; Vecchio A.: 1. Global stability condition for collocation methods for Volterra integral equatons of the second kind. J. Integral Eqs. and Applications, 2 (1989), No.1, 49–58.

    MathSciNet  Google Scholar 

  • Crisci M.R.; Jackiewicz Z.; Russo E.; Vecchio A.: 2. Global stability of exact collocation methods for Volterra integro — differential equations. Atti. Sem. Mat. Fiz. Univ. Modena, 39 (1991), 527–536.

    MathSciNet  MATH  Google Scholar 

  • Crisci M.R.; Russo E.; Vecchio A.: 1. On the stability of the one — step exact collocation method for the second kind Volterra integral equations with degenerate kernel. Computing, 40 (1988), 315–328.

    MathSciNet  MATH  Google Scholar 

  • Crisci M.R.; Russo E.; Vecchio A.: 2. On the stability of the one — step exact collocation methods for the numerical solution of the second kind. Volterra integral equations. BIT, 29 (1989), 258–269.

    MathSciNet  MATH  Google Scholar 

  • Crisci M.R.; Russo E.; Vecchio A.: 3. Stability results for one — step discretized collocation methods in the numerical treatment of Volterra integral equations. Math. of Comput., 58 (1992), No.197, 119–134.

    MathSciNet  MATH  Google Scholar 

  • Cruickshank D.M.; Wright K.: Computable error bounds for polynomial collocation methods. SIAM J. Numer. Anal., 15 (1978), No.1, 134–151.

    MathSciNet  Google Scholar 

  • Crome L.J.: 1. Regular C 1 — parametrisations for exponential sums and splines. J. Approx. Theory, 35 (1982), 30–44.

    MathSciNet  Google Scholar 

  • Crome L.J.: 2. A unified approach to differential characterisations of local best approximations for exponential sums and splines. 3. Approx. Theory, 36 (1982), 294–303.

    MathSciNet  Google Scholar 

  • Cross G.E.: Splicing n — convex functions using splines. Canad. Math. Bull., 23 (1980), 107–109.

    MathSciNet  MATH  Google Scholar 

  • Culham W.E.; Varga R.S.: Numerical methods for time — dependent nonlinear boundary value problems. Soc. Petroleum Engrs. AIME J., 11 (1971), 374–388.

    Google Scholar 

  • Culpin David: Calculation of cubic smoothing splines for equally spaced data. Numer. Math., 48 (1986), 627–638.

    MathSciNet  MATH  Google Scholar 

  • Cunningham J.K.; Eubauk R.L.; Hsing T.: M — type smoothing splines with auxiliar scale estimation. Comput. Statist. and Data Anal., 11 (1991), No.1, 43–51.

    MathSciNet  Google Scholar 

  • Curry H.B.; Schoenberg I.J.: On Pólya frequency functions IV; The fundamental spline functions and their limits. J. Analyse Math., 17 (1946), 71–107.

    MathSciNet  Google Scholar 

  • Cutkosky R.E.; Pomponiu C.: Spline interpolation and smoothing of data. Comput. Phys. Comm., 23 (1981), 287–299.

    Google Scholar 

  • Cybertowicz Z.: On some approximation problems. Prace Math., 12 (1968), 61–74.

    MathSciNet  MATH  Google Scholar 

  • Daehlen M.: An example of bivariate interpolation with translates of C O — quadratic box splines on three direction mesh. Comput. Aided Geom. Des., 4 (1987), 251–255.

    MathSciNet  MATH  Google Scholar 

  • Daehlen M.; Dokken T.: Spline decomposition for surface manipulation. In ”Product Modeling for CAD and Mannufacturing”, Ed. Turner J. et al., Elsevier N.H., 1991, 31–38.

    Google Scholar 

  • Daehlen M.; Lycke Tom: 1. Bivariate interpolation with quadratic box splines. Math. Comput., 51 (1988), No.183, 219–230.

    MATH  Google Scholar 

  • Daehlen M.; Lycke Tom: 2. Box splines and applications. Geometric modeling (Böblingen, 1990), 35–93, Comput. Graph. Systems Appl., Springer, Berlin, 1991.

    Google Scholar 

  • Dagnino Catterina: Product integration of singular integrands based on cubic — spline interpolation at equally spaced nodes. Numer. Math., 57 (1990), 97–104.

    MathSciNet  MATH  Google Scholar 

  • Dagnino C.; Demichelis V.; Santi E.: 1. Numerical integration based on quasi — interpolating splines. Computing, 50 (1993), No.2, 149–163.

    MathSciNet  MATH  Google Scholar 

  • Dagnino C.; Demichelis V.; Santi E.: 2. An algorithm for numerical integration based on quasiinterpolating splines. Numercal Algorithms, 5 (1993), 443–452.

    MathSciNet  MATH  Google Scholar 

  • Dagnino C.; Palamara Orsi A.: Product integration of piecewise continuous integrands based on cubic spline interpolation at equally spaced nodes. Numer. Math., 52 (1988), No.4, 459–466.

    MathSciNet  MATH  Google Scholar 

  • Dagnino C.; Lamberti P.: Numerical evaluation of Cauchy principal value integrals based on local spline approximation operators. 3. Comput. Appl. Math., 76 (1996), No.1–2, 231–238.

    MathSciNet  MATH  Google Scholar 

  • Dagnino C.; Rabinovici P.: Product integration of singular integrands using quasi-interpolatorţ splines. Comput. Math. Appl., 33 (1997), No.1–2, 59–67.

    MATH  Google Scholar 

  • Dagnino C.; Santi E.: 1. On the evaluation of one — dimensional Cauchy Principal Value Integrals by rules based on cubic spline interpolation. Computing, 43 (1990), 267–276.

    MathSciNet  MATH  Google Scholar 

  • Dagnino C.; Santi E.: 2. Spline product quadrature rules for Cauchy singular integrals. J. Comput. Appl. Math., 33 (1990), No.2, 133–140.

    MathSciNet  MATH  Google Scholar 

  • Dagnino C.; Santi E.: 3. On the convergence of spline product quadratures for Cauchy principal value integrals. J. Comput. Appl. Math., 36 (1991), No.2, 181–187.

    MathSciNet  MATH  Google Scholar 

  • Dagnino C.; Santi E.: 4. Quadratures based on quasi-interpolating spline-projectors for product singular integration. Studia Univ. Babeş-Bolyai, Mathematica, 41 (1996), Nr.2, 35–48.

    MathSciNet  MATH  Google Scholar 

  • DahIke S.; Latour V.; Neeb M.: Generalized cardinal B-splines: Stability, linear independence and appropriate scaling matrices. Constr. Approximation, 13 (1997), No.1, 29–56.

    Google Scholar 

  • Dahmen W.: 1. Polynomial as linear combinations of multivariate B — splines. Math. Z., 169 (1979), 93–98.

    MathSciNet  Google Scholar 

  • Dahmen W.: 2. Konstruktion mehrdimensionaler B — splines und ihre Anwendung auf Approximationsprobleme, I-II. I. Int. Ser. Numer. Math., 51 (1979), 64–82. II. Int. Ser. Numer. Math., 52 (1980), 84–110.

    MathSciNet  Google Scholar 

  • Dahmen W.: 3. On multivariate B — splines. SIAM J. Numer. Anal., 17 (1980), 179–191.

    MathSciNet  MATH  Google Scholar 

  • Dahmen W.: 4. Approximation by linear combinations of multivariate B — splines. J. Approx. Theory, 31 (1981), 299–324.

    MathSciNet  MATH  Google Scholar 

  • Dahmen W.: 5. Adaptive approximation by multivariate smooth splines. J. Approx. Theory, 36 (1982), 119–140.

    MathSciNet  MATH  Google Scholar 

  • Dahmen W.: 6. Subdivision algorithms converge quadratically. J. Comput. Appl. Math., 16 (1986), 145–158.

    MathSciNet  MATH  Google Scholar 

  • Dahmen W.; Dress A.; Miccheli C.A.: On multivariate splines, matroids and the extfunctor. Adv. in Appl. Maths., 17 (1996), No.3, 251–307.

    MATH  Google Scholar 

  • Dahmen W.; Dyn Nira; Levin D.: On the convergence rates of subdivision algorithms for box spline surfaces. Constructive Approximation, 1 (1985), 305–322.

    MathSciNet  MATH  Google Scholar 

  • Dahmen W.; Gmelig Meyling R.I.H.; Ursems J.H.M.: Scattered data interpolation by bivariate C 1 — piecewise quadratic functions. Approx. Theory Appl., 6 (1990), No.3, 6–29.

    MathSciNet  MATH  Google Scholar 

  • Dahmen W.; Goodman T.N.T.; Micchelli C.A.: 1. Compactly supported fundamental functions for spline interpolation. Numer. Math., 52 (1988), 639–664.

    MathSciNet  MATH  Google Scholar 

  • Dahmen W.; Goodman T.N.T.; Micchelli C.A.: 2. Local spline interpolation schemes in one and several variables. Approx. and Optimization, (Havana), (1987), 11–24, Lecture Notes in Math. 1354, Springer, Berlin — New York, 1988.

    Google Scholar 

  • Dahmen W.; Micchelli C.A.: 1. On limits of multivariate B — spline. J. d’Analyse Math., 39 (1981), 256–278.

    MathSciNet  MATH  Google Scholar 

  • Dahmen W.; Micchelli C.A.: 2. Computation of inner products of multivariate B — splines. Numer. Funct. Anal. and Optim., 3 (1981), 367–375.

    MathSciNet  MATH  Google Scholar 

  • Dahmen W.; Micchelli C.A.: 3. On the linear independence of multivariate B — splines I. Triangulations of simploids. SIAM J. Numer. Anal., 19 (1982), 993–1012.

    MathSciNet  MATH  Google Scholar 

  • Dahmen W.; Micchelli C.A.: 4. Some remarks on multivariate B — splines. ISNM 61, Birkhäuser Verlag, Basel, (1982), 81–87.

    Google Scholar 

  • Dahmen W.; Micchelli C.A.: 5. On the linear independence of multivariate B — splines II. Complet configurations. Math. Comput., 41 (1983), 141–164.

    MathSciNet  Google Scholar 

  • Dahmen W.; Micchelli C.A.: 6. Translates of multivariate splines. Linear Algebra Appl., 52/53 (1983), 217–234.

    MathSciNet  Google Scholar 

  • Dahmen W.; Micchelli C.A.: 7. On the approximation order from certain multivariate spline spaces. J. Aust. Math. Soc. Ser. B, 26 (1984), 233–246.

    MathSciNet  MATH  Google Scholar 

  • Dahmen W.; Micchelli C.A.: 8. Some results on box splines. Bull. Amer. Math. Soc., 11 (1984), 147–150.

    MathSciNet  MATH  Google Scholar 

  • Dahmen W.; Micchelli C.A.: 9. Subdivision algorithms for the generation of box spline surfaces. Comput.Aided Geom. Des., 1 (1984), 115–129.

    MATH  Google Scholar 

  • Dahmen W.; Micchelli C.A.: 10. On the approximation order of crisseross finite element spaces. J. Comput. Appl. Math., 10 (1984), 255–273.

    MathSciNet  MATH  Google Scholar 

  • Dahmen W.; Micchelli C.A.: 11. On the local linear independence of translates a box spline. Studia Math., 82 (1985), 243–263.

    MathSciNet  MATH  Google Scholar 

  • Dahmen W.; Micchelli C.A.: 12. On the solution of certain systems of partial difference equations and linear dependence of translates of box splines. Transactions AMS, 292 (1985), No.1, 305–320.

    MathSciNet  MATH  Google Scholar 

  • Dahmen W.; Micchelli C.A.: 13. Line average algorithm: a method for the computer generation of smooth surfaces. Comput. Aided Geom. Design, 2 (1985), 77–85.

    MathSciNet  MATH  Google Scholar 

  • Dahmen W.; Micchelli C.A.: 14. On the piecewise structure of discrete box splines. Comput. Aided Geom. Design, (1986), No.3, 185–191.

    Google Scholar 

  • Dahmen W.; Micchelli C.A.: 15. Statistical encounters with B — splines. AMS Contenporary Math., 59 (1986), 17–48.

    MathSciNet  Google Scholar 

  • Dahmen W.; Micchelli C.A.: 16. Algebraic properties of discrete box — splines. Constr. Approx., 3 (1987), No.2, 209–221.

    MathSciNet  MATH  Google Scholar 

  • Dahmen W.; Micchelli C.A.: 17. On multivariate E — splines. Advances of Math., 76 (1988), 33–93.

    MathSciNet  Google Scholar 

  • Dahmen W.; Micchelli C.A.: 18. Convexity of multivariate Bernstein polynomials and box spline surfaces. Studia Sci. Math. Hungarica, 23 (1988), No.1–2, 265–288.

    MathSciNet  MATH  Google Scholar 

  • Dahmen W.; Micchelli C.A.: 19. The number of solutions to linear diophantine equations and multivariate splines. Trans. Amer. Math. Soc., 308 (1988), 509–532.

    MathSciNet  MATH  Google Scholar 

  • Dahmen W.; Micchelli C.A.: 20. Local dimension of piecewise polynomial spaces, syzygies and solutions of systems of partial differential equations. Math. Nachr., 148 (1990), 117–136.

    MathSciNet  MATH  Google Scholar 

  • Dahmen W.; Micchelli C.A.: 21. Banded matrices with banded invers, II: locally finite decomposition of spline spaces. Constr. Approx., 9 (1993), No.2–3, 263–281.

    MathSciNet  MATH  Google Scholar 

  • Dahmen W.; Micchelli C.A.; Goodman T.N.T.: Compactly supported fundamental functions for spline interpolation. Numer. Math., 52 (1988), 639–644.

    MathSciNet  MATH  Google Scholar 

  • Dahmen, W.; Micchelli C.A.; Seidel H.P.: Blossoming begets B — splines built by B — patches. Math. Comput., 59 (1992), No.199, 97–115.

    MathSciNet  MATH  Google Scholar 

  • Dahmen W.; Oswald P.; Xi-Quan Shi: C 1 — hierarchical bases. J. Comput. Appl. Math. 51 (1994), 37–56.

    MathSciNet  MATH  Google Scholar 

  • Dahmen W.; De Vore R.; Scherer K.: Multidimensionale spline approximation. SIAM J. Numer. Anal., 17 (1980), 380–402.

    MathSciNet  MATH  Google Scholar 

  • Dahmen W.; Scherer K.: Best approximation with piecewise polynomials with variable knots and degree. J. Approx. Theory, 26 (1979), 1–13.

    MathSciNet  MATH  Google Scholar 

  • Dai Yin Sheng; Tang Jun; Yang Ming Sheng: Application of B — splines to the interpolation and approximation of ship contour lines. (chinesse). J. Dalian Univ. Tech., 30 (1990), No.1, 65–72.

    MathSciNet  Google Scholar 

  • Damme Rund van: An algorithm for determining the approximation order of multivariate periodic spline spaces. Numer. Algorithms 5 (1993), No.1–4, 71–81.

    MATH  Google Scholar 

  • Danciu I.: 1. The numerical treatment of nonlinear Volterra integral equations of the second kind by the exact collocation method. Revue d’Analyse Numer. et de Théory de l’Approximation, 24 (1995), 1–2, 59–73.

    MathSciNet  MATH  Google Scholar 

  • Danciu I.: 2. The numerical treatment of nonlinear Volterra integral equations by the discretized collocation method. Revue d’Analyse Numer. et de Théorie de l’Approximation, 24 (1995), 1–2, 75–89.

    MathSciNet  MATH  Google Scholar 

  • Danciu I.: 3. Polynomial spline collocation methods for Volterra integro-differential equations. Revue d’analyse Numer. et de Théorie de l’Approximation, 25 (1996), 1–2, 77–91.

    MathSciNet  MATH  Google Scholar 

  • Daniel J.W.: 1. The approximate minimization of functionals. Prentice Hall, Englewood Chifs, (1971), 59–65.

    MATH  Google Scholar 

  • Daniel J.W.: 2. Convergence of a discretization for constrained spline function problems. SIAM J. Control, 9 (1971), 83–96.

    MathSciNet  MATH  Google Scholar 

  • Daniel J.W.: 3. Contrained approximation and Hermite interpolation with smooth quadratic splines: some negative results. J. Approx. Theory, 17 (1976), 135–149.

    MathSciNet  MATH  Google Scholar 

  • Daniel J.W.: 4. Splines and efficiency in dinamic programming. J. Math. Anal. Appl., 54 (1976), 69–72.

    MathSciNet  Google Scholar 

  • Daniel J.W.: 5. Extrapolation with spline — collocation methods for two — point boundary value problems I. Proposals and justifications. Aeq. Mathematicae, 16 (1977), 107–122.

    MathSciNet  MATH  Google Scholar 

  • Daniel J.W.; Martin A.J.: Extrapolation with spline — collocation methods for two — point boundary value problems II. C 2 — cubics. Aeq. Mathematicae, 22 (1981), 39–41.

    MathSciNet  MATH  Google Scholar 

  • Daniel J.W.; Schumaker L.L.: On the closedness of the linear image of a set, with applications to generalized spline functions. Applicable Anal., 4 (1974), 191–205.

    MathSciNet  MATH  Google Scholar 

  • Daniel J.W.; Scwarz B.K.: Extrapolated collocation for two-point boundary value problem using cubic splines. J. Inst. Math. Apppl., 16 (1975), 161–174.

    MATH  Google Scholar 

  • Daniels K.M.; Bergeron R.D.; Grinstein G.C.: Line monotonic partitioning of planar cubic splines. Comput. and Graphics, 16 (1992), No.1, 55–68.

    Google Scholar 

  • Danilovich V.P.: 1. On one problem projection method of solution of nonlinear operator equations using approximations by L-splines. (russian). Izv.Vyssl. Ucebn.Zaved. Mat., 7(218), (1980), 10–13.

    MathSciNet  Google Scholar 

  • Danilovich V.P.: 2. On the convergence of the spline collocation method for the linear operator equations. (russian). Vestnik Lvov Politeh. Instituta, (1989), No.232, 44–46.

    Google Scholar 

  • Danilovich V.P.; Korsjuk O.I.: Application of the spline-approximation method to the approximate solution of nonlinear integral equations. (russian). Vestnic L’vov Politehn. Inst. Differencial’nye Urav. i ih Priložen, 113 (1980), 25–26.

    MathSciNet  Google Scholar 

  • Dannsberg L.; Nowacki H.: Approximate conversion of surface representation with polynomial bases. Comput. Aided. Geom. Des., 2 (1985), No.1–3, 121–131.

    Google Scholar 

  • Dathe E.M.; Müller P.H.: A contribution to spline-regression. Biom. J., 22 (1980), 259–269.

    MATH  Google Scholar 

  • Dauner H.; Reinsch C.H.: An analysis of two algorithms for shape-preserving cubic spline interpolation. IMA J. Numer. Anal., 9 (1989), No.3, 299–314.

    MathSciNet  MATH  Google Scholar 

  • Davidcik A.N.: 1. Priblijenie funkţii dvuh peremenîh splainami. Idem, (1974), Vîp. 5, 37–42.

    Google Scholar 

  • Davidcik A.N.: 2. Priblijenie differenţimemîh funkţii splainami s ognim dopolnitelnîm uzlov. In ”Isled. po sovrem probl. priblij. funkţii i ih pril. Dnepropetrovsk, (1976), 21–25.

    Google Scholar 

  • Davies A.M.: The use of the Galerkin method with the basis of B — splines for the solution of the one — dimensional primitive equations. J. Comput. Phys., 27 (1978), 123–137.

    MATH  Google Scholar 

  • Davies A.; Kinoshita M.; Van der Water R.: Spline analysis of hidrographic data. Math. Modelling, 7 (1986), 585–593.

    MATH  Google Scholar 

  • Davis H.T.: Some applications of spline functions to time series analysis. Comput. Sci. and Statistics. (Proc. 5 th Ann. Symp. Interface, Oklahoma State Univ.) North Hollywood (Calif.), (1972), 65–7

    Google Scholar 

  • Davis M.; Fairweather G.: On the use of spline — collocation method for boundary problems arising in chemical engineering. Comput. Methods. Appl. Mesh. Engrg., 28 (1981), 179–189.

    Google Scholar 

  • Davydov O.V.: 1. On an exact constant in an inequality of Jackson type for spline approximation. (russian). Problem in analysis and approximation (russian). 35–51. Akad. Nauk. Ukrain SSR, Inst. Math. Kiev, 1989.

    Google Scholar 

  • Davydov O.V.: 2. Asymptotic behavior of best uniform approximations of individual functions by splines. (russian). Ukrain Math. J., 42 (1990), No.1, 50–54.

    MATH  Google Scholar 

  • Davydov O.V.: 3. Conditions for the uniqueness of a spline of best approximation and the best linear method for the class H w. (russian). Current Probl. in Approx. Theory and Complex Analysis, 37–44, Akad. Nauk. Ukrain. SSR, Inst. Mat. Kiev, (1990).

    Google Scholar 

  • Davydov O.V.: 4. Best uniform approximation of periodic functions by splines. (russian). Soviet. Math., 35 (1991), No.5, 7–14.

    MathSciNet  MATH  Google Scholar 

  • Dedieu J.P.: The convergence of quintic spline interpolation. Approx. Theory and its Applcs., 4 (1988), No.2, 79–95.

    MathSciNet  MATH  Google Scholar 

  • Degtjarev S.A.; Doronin G.F.: Priminenie splainov v termodynamike. Mat. Probl. Phys. Ravnovesii, Novosibirsk, (1983), 53–83.

    Google Scholar 

  • Deimel L.E.; Doss C.L.; Fornaro R.J.; McAllister D.F.; Roulier J.A.: Application of shape — preserving spline interpolation to interactive editing of photogrammetric data. Proceedings SIGGRAPH, 2 (1978), 93–99.

    Google Scholar 

  • Deineko V.V.: 1. On realizaţii metoda Hermitovoi splain — collocaţii. Cissl. Met. Meh. splos. sped. (Novosibirsk), 14 (1983), 55–64.

    Google Scholar 

  • Deineko V.V.: 2. Realizaţia metoda armitovoi splain — collocatii v rechenii craevih odnomernîh nestaţionarnîh. Zadaci. Cislenie Met. Mex sploşn. sredî., 16 (1985) No.3, 44–45.

    Google Scholar 

  • Deineko V.V.: 3. O priminenii i effektivnosti metoda Hermitovoi splain kollocaţia. J. Vyçisl. Mat. i Mat. — Fiz. M, (1985), 20 pp.

    Google Scholar 

  • Deineko V.V.: 4. Cislenie reşenie zadaci Cauchy po sheme metoda ermitovoi splain — kollokaţii. Jurnal Vyçisl. Mat. Mat.-Fiz., 26 (1986), No.11, 1754–1755.

    Google Scholar 

  • Dejneko V.V.: Numerical solution of the Cauchy Problem by the Hermite spline collocation scheme. (russian). Zh. Vyçisl. Mat. Mat.-Fiz., 26 (1986), No.11, 1754–1755.

    Google Scholar 

  • Delaye A.: Computing a spline with quasi — optimal nodes. Int. J. Comput. Math., 30 (1989), No.3/4, 249–255.

    MATH  Google Scholar 

  • Delbourgo R.: Accurate C 2 — rational interpolants in tension. SIAM J. Numer. Anal., 30 (1993), No.2, 595–607.

    MathSciNet  MATH  Google Scholar 

  • Delbourgo R.; Gregory J.A.: 1. C 2 — rational quadratic spline interpolation to monotonic data. IMA J. Numer. Anal., 3 (1983), 141–152.

    MathSciNet  MATH  Google Scholar 

  • Delbourgo R.; Gregory J.A.: 2. Shape preserving piecewise rational interpolation. SIAM J. Sci. Stat. Comput., 6 (1987), 967–976.

    MathSciNet  Google Scholar 

  • Deligonul Z.S.; Bilgen S.: Solution of the Volterra equation of renewal theory with the Galerkin technique using cubic splines. J. Stat. Comput. Simulation, 20 (1984), 37–45.

    MathSciNet  MATH  Google Scholar 

  • Delvos F.J.: 1. Splines and pseudo — invers. RAIRO Anal. Numer., 12 (1978), 313–324.

    MathSciNet  MATH  Google Scholar 

  • Delvos F.J.: 2. Bernoulli functions and periodic B — splines. Computing, 38 (1987), No.1, 23–31.

    MathSciNet  MATH  Google Scholar 

  • Delvos F.J.: 3. Periodic interpolation on uniform meshes. J. Approx. Theory, 39 (1987), 71–80.

    MathSciNet  Google Scholar 

  • Delvos F.J.: 4. On the convergence of periodic splines of arbitrary degree. J. Approx. Theory, 53 (1988), 221–230.

    MathSciNet  MATH  Google Scholar 

  • Delvos F.J.: 5. Limits of abstract splines. Inverse and ill — posed problems. (Sankt Wolfgang, 1986), 541–558, Notes Math. Sci. Engrg., 4 Academic Press, Boston, M.A. 1987.

    Google Scholar 

  • Delvos F.J.; Schempp W.: 1. On spline systems. Monatsh. Math., 74 (1970), 399–409.

    MathSciNet  MATH  Google Scholar 

  • Delvos F.J.; Schempp W.: 2. On spline systems: L msplines. Math. Z., 126 (1972), 154–170.

    MathSciNet  MATH  Google Scholar 

  • Delvos F.J.; Schempp W.: 3. On optimal periodic spline interpolation. J. Math. Anal. Appl., 52 (1975), 553–560.

    MathSciNet  MATH  Google Scholar 

  • Delvos F.J.; Schempp W.: 4. Sard’s method on the theory of spline systems. J. Approx. Theory, 14 (1975), 230–243.

    MathSciNet  MATH  Google Scholar 

  • Delvos F.J.; Schempp W.: 5. Convergence of approximate splines via pseudo — inverses. Math. Modelling and Numer. Anal., 21 (1987), No.2, 261–267.

    MathSciNet  MATH  Google Scholar 

  • Delvos F.J.; Kösters H.W.: 1. Zur Konstruktion von M — Splines höheren Grades. Computing, 14 (1975), 173–182.

    MathSciNet  MATH  Google Scholar 

  • Delvos F.J.; Kösters H.W.: 2. Zur periodischen M — Splines — Interpolation. Computing, 16 (1976), 221–230.

    MathSciNet  MATH  Google Scholar 

  • Delvos F.J.; Posdorf H.: On optimal tensor product approximation. J. Approx. Theory, 18 (1976), 99–107.

    MathSciNet  Google Scholar 

  • Delvos F.J.; Schäfer W.; Schempp W.: Convergence of abstract splines. Lect. Notes in Math., 556 (1976), 155–166.

    Google Scholar 

  • Demichelis V.: 1. Uniform convergence for Cauchy principal value integrals of modified quasi-interpolatory splines. Internat. J. Comput. Math., 53 (1994), 189–196.

    MATH  Google Scholar 

  • Demichelis V.: 2. The use of modified quasi-interpolatory splines for solution of the Pradtl equation. J. Comput. Appl. Maths., 59 (1995), No. 3, 329–338.

    MathSciNet  MATH  Google Scholar 

  • Demichelis V.: 3. Quasi-interpolatory splines based on Schoenberg points. Math. of Comput., 65 (1996), No. 215, 1235–1247.

    MathSciNet  MATH  Google Scholar 

  • Demichelis V.: 4. Convergence of derivatives of optimal nodal splines. J. Approx. Theory, 88 (1997), No.3, 370–383.

    MathSciNet  MATH  Google Scholar 

  • Demjanovich J.K.: New properties of minimal splines. Petersburg Semin. on Part. Diff. Eqs, Tyväskylä Univ., Mat. Inst. Ber. 56 (1993), 25–41.

    MathSciNet  Google Scholar 

  • Demko S.: 1. Lacunary polynomial spline interpolation. SIAM J. Numer. Anal., 13 (1976), 369–381.

    MathSciNet  MATH  Google Scholar 

  • Demko S.: 2. Local approximation properties of spline projections. J. Approx. Theory, 19 (1977), 176–185.

    MathSciNet  MATH  Google Scholar 

  • Demko S.: 3. Inverses of band matrices and local convergence of spline projections. SIAM J. Numer. Anal., 14 (1977), 616–619.

    MathSciNet  MATH  Google Scholar 

  • Demko S.: 4. Interpolation by quadratic splines. J. Approx. Theory, 23 (1978), 392–400.

    MathSciNet  MATH  Google Scholar 

  • Demko S.: 5. On the existence of interpolating projections onto spline spaces. J. Approx. Theory, 45 (1985), No.2, 151–156.

    MathSciNet  Google Scholar 

  • Demko S.; Varga R.S.: Extended L perror bounds for spline and L — spline interpolation. J. Approx. Theory, 12 (1974), 242–264.

    MathSciNet  MATH  Google Scholar 

  • Demmler A.; Reinsch C.: Oscillation matrices with Spline smoothing. Numer. Mat., 24 (1975), 375–382.

    MathSciNet  MATH  Google Scholar 

  • Demyanovich Yu K.: 1. New classes of minimum splines. (russian), J. Numer. Anal. Math. Modelling, 9 (1994), No.4, 349–361.

    MathSciNet  Google Scholar 

  • Demyanovich Yu K.: 2. Some properties of minimal splines. Math.Nachr., 177 (1996), 57–79.

    MathSciNet  MATH  Google Scholar 

  • Dendy J.E. Jr.; Fairweather G.: Alternating — direction Galerkin methods for parabolic and hyperbolic problems on rectangular polygons. SIAM J. Numer. Anal., 12 (1975), No.2, 144–163.

    MathSciNet  MATH  Google Scholar 

  • Deng Cai Xia; Deng Zhong Xing: The uniformity of spline interpolation operators in reproductiong kernel spaces and best interpolation approximation operators. (chinese), Numer. Math.J. Chinese Univ., 17 (1995), No.2, 119–128

    MathSciNet  Google Scholar 

  • Denison K.S.; Hamrin C.E. Jr.; Fairweather G.: Solution of boundary value problems using sofware packages. DD04AD and COLSYS. Chem. Eng. Commun., 22 (1983), 1–9.

    Google Scholar 

  • Den man H.H.: Smooth cubic spline interpolation functions. Indust. Math., 21 (1971), 55–75.

    MathSciNet  Google Scholar 

  • Denman H.H.; Larkin W.I.: Invariance conditions on ordinary differential equations defining smoothing functions. SIAM J. Appl. Math., 17 (1969), 1246–1257.

    MathSciNet  MATH  Google Scholar 

  • Dennis D.: Hermite — Birkhoff Interpolation and monoton approximation by splines. J. Approx. Theory, 25 (1979), 248–257.

    MathSciNet  MATH  Google Scholar 

  • Deo Satya: 1. Invariance of dimension of multivariate spline spaces. J. Indian. Math. Soc., 60 (1994), No.1–4, 71–81.

    MathSciNet  MATH  Google Scholar 

  • Deo Satya: 2. On projective dimension on spline modules. J. Approx. Theory, 84 (1996), No. 1, 12–30.

    MathSciNet  MATH  Google Scholar 

  • DeRose T.D.; Barsky B.A.: 1. Geometric continuity for Catmull — Rom splines. AOM Trans. Graph., 7 (1988), 1–41.

    MATH  Google Scholar 

  • DeRose T.D.; Barsky B.A.: 2. Geometric continuity shape parameters, and geometric construction for Catmull — Rom splines. ACM Trans. Graphics, 7 (1988), No.1, 1–41.

    MATH  Google Scholar 

  • Descloux J.: On the numerical integration of the heat equation. Numer. Math., 15 (1971), 371–381.

    MathSciNet  Google Scholar 

  • Deutsch F.; Vasant A. Ubhaya; Xu Yuesheng: Dual cones constrained n-convex L p — approximation and perfect splines. J. Approx. Theory, 80 (1995), No.2, 272–296.

    MathSciNet  Google Scholar 

  • DeVillies J.M.: 1. A convergence result in nodal spline interpolation. J. Approx. Theory, 74 (1993), No.3, 266–279.

    MathSciNet  Google Scholar 

  • DeVillies J.M.: 2. A nodal spline interpolant for the Gregory rule of even order. Numer. Math., 66 (1993), No.1, 123–137.

    MathSciNet  Google Scholar 

  • DeVilliers J.M.; Rohwer C.H.: 1. Optimal local spline interpolants. J. Comput. Appl. Math., 18 (1987), 107–119.

    MathSciNet  Google Scholar 

  • DeVilliers J.M.; Rohwer C.H.: 2. Sharp bounds for the Lebesgue constant in quadratic nodal spline interpolation. In “Approximation and Computation” (ed. Zahar R.V.M.) Birkhäuser ISNM, 119 (1994), 157–178.

    Google Scholar 

  • DeVore R.: Monoton approximation by splines. SIAM J. Math. Anal., 8 (1977), 891–905.

    MathSciNet  Google Scholar 

  • DeVore R.A.; Hu Y.K.; Leviatan D.: Convex polynomial and spline approximation in L p, 0 < p < ∞. Constr. Approx., 12 (1996), No.3, 409–422.

    MathSciNet  MATH  Google Scholar 

  • DeVore R.; Popov V.A.: Free multivariate splines. Constr. Approx., 3 (1987), No.2, 239–248.

    MathSciNet  MATH  Google Scholar 

  • DeVore R.; Richard F.: The degree of approximation by Chebyshevian splines. Trans. Amer. Math. Soc., 181 (1973), 401–418.

    MathSciNet  MATH  Google Scholar 

  • DeVore R.; Scherer K.: A constructive theory to approximation by spline with an arbitrary sequence of knot sets. Lect. Notes. Math., 556 (1976), 167–183.

    MathSciNet  Google Scholar 

  • DeTisi Flavia; Rossini Milvia: Behavior of the beta — splines with values of the parameters beta 2 negative. CAGD, 9 (1992), No.6, 419–423.

    MATH  Google Scholar 

  • Dezin A.A.: Splain — form—, raznostnîe uravnenia, approximaţia. Diff. Uravnenie (Minsk), 24 (1988), No.1, 32–43.

    MathSciNet  Google Scholar 

  • Diamond Harvey, Raphael L.A.; Williams D.A.: 1. Box-spline-based approch to the formulation of numerical methods for partial differential equations. Numer. Methods for Partial Diff. Eqs., 8 (1992), No.3, 289–301.

    Google Scholar 

  • Diamond Harvey, Raphael L.A.; Williams D.A.: 2. Compressed representations of curves and images using a multi-resolution box-spline framework. Advances in Comput. Maths. (New Delphi 1993), 157–170, Ser. Approx. Decompos. 4, World Sci. Publ., River Edge, N.J. 1994.

    Google Scholar 

  • Diao Bai Qing; Jiang C.J.: A dimension — lowering algorithm for parametric variable broken line smothing splines. (chinese). Shandong Kuangye Xueynan Xuebao, 11 (1992), No.4, 417–419.

    Google Scholar 

  • Diaz Julio César: 1. A collocation — Galerkin method for the two point boundary value problems using continuous piecewise polynomial spaces. SLAM J. Numer. Anal., 14 (1977), 844–858.

    MATH  Google Scholar 

  • Diaz Julio César: 2. A collocation — Galerkin method for Poisson’s equation on rectangular regions. Math. Comput., 33 (1979), 77–84.

    MATH  Google Scholar 

  • Diaz Julio César: 3. Collocation — H 1 — Galerkin method for parabolic problems with time — dependent coefficients, SIAM. J. Numer. Anal., 16 (1979), 911–922.

    MathSciNet  MATH  Google Scholar 

  • Didenko V.D.; Pelts G.L.: On the stability of the spline collocation method for singular integral equations with conjugation, (russian). Differentsialnye Uravneniya, 29 (1993), No.9, 1593–1601.

    MathSciNet  Google Scholar 

  • Didenko V.D.; Pelts G.L.: On the stability of the spline collocation method for singular integral equations with conjugation. (russian). Differentsialmy Uravneniya, 29 (1993), No.9, 1593–1601.

    MathSciNet  Google Scholar 

  • Diener D.: Instability in the dimension of space of bivariate piecewise polynomials of degree 2r and smoothness order r *. SIAM. J. Numer. Anal., 27 (1990), No.2, 543–551.

    MathSciNet  MATH  Google Scholar 

  • Dierckx P.: 1. An algorithm for smooting differentiation and integration of experimental data using spline functions. J. Comput. Appl. Math., 1 (1975), 165–184.

    MathSciNet  MATH  Google Scholar 

  • Dierckx P.: 2. An algorithm for least — squares fitting of cubic spline surfaces to functions on a rectiliniar mesh over a rectangle. J. Comput. Appl. Math., 3 (1977), No.2, 113–116.

    MathSciNet  MATH  Google Scholar 

  • Dierckx P.: 3. Algorithm / algorithmus 42: an algorithm for cubic spline fitting with convexity constraints. Computing, 24 (1980), 349–371.

    MathSciNet  MATH  Google Scholar 

  • Dierckx P.: 4. An algorithm for surface fitting with spline functions. IMA J. Numer. Anal., 1 (1981), 267–283.

    MathSciNet  MATH  Google Scholar 

  • Dierckx P.: 5. A fast algorithm for smoothing data on a rectangular grid while using spline functions. SIAM J. Numer. Anal., 19 (1982), 1286–1304.

    MathSciNet  MATH  Google Scholar 

  • Dierckx P.: 6. Algorithms for smoothing data with periodic and parametric splines. Comput. Graph. and Image Process, 20 (1982), 171–184.

    MATH  Google Scholar 

  • Dierckx P.: 7. An algorithm for experimental data deconvolution using spline functions. J. Comput. Phys., 53 (1983), No.1, 163–186.

    MathSciNet  Google Scholar 

  • Dierckx P.: 8. Algorithm for smoothing data on the sphere with tensor product splines. Comput., 32 (1984), No.4, 319–342.

    MathSciNet  MATH  Google Scholar 

  • Dierckx P.: 9. Computation of least squares spline approximations to data over incomplete grids. Comput. Math. Appl., 10 (1984), 283–289.

    MathSciNet  MATH  Google Scholar 

  • Dierckx P.: 10. The spectral approximation of bicubic splines on the sphere. SIAM. J. Sci. and Statist. Comput., 7 (1986), No.2, 611–623.

    MathSciNet  MATH  Google Scholar 

  • Dierckx P.: 11. An algorithm for fitting data over a circle using tensor product spline. J. Comput. Appl. Math., 15 (1986), 161–173.

    MATH  Google Scholar 

  • Dierckx P.; Van Leemput S.; Vermiere T.: Algorithms for surface fitting using Powel — Sabin splines. IMA J. Numer. Anal., 12 (1992), No.2, 271–299.

    MathSciNet  MATH  Google Scholar 

  • Dierckx P.; Piessens R.: Calculation of Fourier coefficients of discrete functions using cubic splines. J. Comput. Appl. Math., 3 (1977), 207–209.

    MathSciNet  MATH  Google Scholar 

  • Dierckx P.; Suetenes P.; Vandermenlen D.: An algorithm for surface reconstruction for planar contours using smoothing splines. 3. Comput. Appl. Math., 23 (1988), 367–388.

    MathSciNet  MATH  Google Scholar 

  • Dierckx P.; Tytgat Bart.: Generating the Bésier points of a B — spline curve. Comput. Aided. Geom. Des., 6 (1989), No.4, 279–291.

    MathSciNet  MATH  Google Scholar 

  • Dietze S.; Schmidt J.W.: Determination of shape preserving spline interpolants with minimal curvature via dual programs. J. Approx. Theory, 52 (1988), 43–57.

    MathSciNet  MATH  Google Scholar 

  • Diggle P.S.; Hutchinson M.F.: On spline smoothing with autocorrelated errors. Austr. J. Statist. 31 (1989), 166–182

    MathSciNet  MATH  Google Scholar 

  • Dikshit H.P.: 1. On cubic interpolatory splines. J. Approx. Theory, 22 (1978), 105–110.

    MathSciNet  MATH  Google Scholar 

  • Dikshit H.P.: 2. Complex cubic spline interpolation. Acta Math. Acad. Sci. Hung. 36 (1980), No.3–4, 243–249.

    MathSciNet  MATH  Google Scholar 

  • Dikshit H.P.; Chaterjee A.: Convergence of a class of cubic interpolatory splines. Proc. Amer. Math. Soc., 82 (1981), 411–416.

    MathSciNet  MATH  Google Scholar 

  • Dikshit H.P.; Ojha Aparajila: 1. On convergence and quasiconformality of complex planar spline interpolants. Math. Proc. Cambridge Phil. Soc., 99 (1986), 347–356.

    MathSciNet  MATH  Google Scholar 

  • Dikshit H.P.; Ojha Aparajila: 2. Dimension of multivariate spline spaces. Bull. Allahabad. Math. Soc., 3 (1988), 11–43.

    MathSciNet  MATH  Google Scholar 

  • Dikshit H.P.; Ojha A.; Zalik R.A.: 1. Wachspress type rational complex planar splines of degree (3, 1). Adv. Comput. Math. 2 (1994), No.2, 235–249.

    MathSciNet  MATH  Google Scholar 

  • Dikshit H.P.; Ojha A.; Zalik R.A.: 2. Rational complex planar splines. Advances in Comput. Maths. (New Delhi 1993), 235–242, Ser. Approx. Decompos. 4., World Sci. Publ. River Edge, N5., 1994.

    Google Scholar 

  • Dikshit H.P.; Power P.: 1. Discrete cubic spline interpolation. J. Approx. Theory, 31 (1981), 99–106.

    MathSciNet  MATH  Google Scholar 

  • Dikshit H.P.; Power P.: 2. On deficient cubic spline interpolation. Numer. Math., 40 (1982), 71–78.

    MathSciNet  MATH  Google Scholar 

  • Dikshit H.P.; Power P.: 3. Discrete cubic spline interpolation. Numer. Math., 40 (1982), 71–78.

    MathSciNet  MATH  Google Scholar 

  • Dikshit H.P.; Power P.: 4. Area matching interpolation by discrete cubic splines. Approx. Theory Appl. Res. Notes Math., 133 (1985), 35–45.

    Google Scholar 

  • Dikshit H.P.; Rana S.S.: 1. Cubic interpolatory splines with nonuniform meshes. J. Approx. Theory, 45 (1985), No.4, 350–362.

    MathSciNet  MATH  Google Scholar 

  • Dikshit H.P.; Rana S.S.: 2. Local behaviour of the derivative of mid point cubic spline interpolator. Internat. J. Math. Sci., 10 (1987), No.1, 63–67.

    MathSciNet  MATH  Google Scholar 

  • Dikshit H.P.; Rana S.S.: 3. Discrete cubic spline interpolation over a nonuniform mesh.Rocky Mount. Journal of Math., 17 (1987), No.4, 709–718.

    MathSciNet  MATH  Google Scholar 

  • Dikshit H.P.; Sharma A.; Tzimbaiario J.: Asymptotic error expansions for spline interpolation. Canad. Math. Bull., 27 (1984), No.3, 337–344.

    MathSciNet  MATH  Google Scholar 

  • Dimitrov D.K.: Hermite interpolation by bivariate continuous super splines. Math. Balkanica, 6 (1992), No.4, 359–364.

    MathSciNet  MATH  Google Scholar 

  • Dimsdale B.: Convex cubic splines. I.B.M. J. Res. and Develop., 22 (1978), 168–178.

    MathSciNet  MATH  Google Scholar 

  • Diogo Teresa; McKee Sean; Tang Tao: A Hermite — Type collocation method for the solution of an integral equation with a certain weakly singular kernel. IMA J. Numer. Anal., 11 (1991), No.4, 595–605.

    MathSciNet  MATH  Google Scholar 

  • Diringer P.: 1. Interpolation, dérivation et intégration á l’aide fonctions spline. Rech. Aérospat., 124 (1968), 13–16.

    Google Scholar 

  • Diringer P.: 2. Pseudo — splines non lineares. Journ. Inf. Meth. Numer. Calc. Sci. Tech., Paris, 1974.

    Google Scholar 

  • Ditzian Z.: 1. Moduli of smoothness using discrete data. J. Approx. Theory, 49 (1987), 115–129.

    MathSciNet  MATH  Google Scholar 

  • Ditzian Z.: 2. A note rational and spline approximation. J. Approx. Theory, 58 (1989), 361–362.

    MathSciNet  MATH  Google Scholar 

  • Djurakilov R.; Israilov M.I.: Postroenîe vesobîh cubaturnth formul dlia singuliarnîh integralov s pomoşchiu splain’ funcţiami. Izv. Viss. Ucebn. Zaved. Mat., 9 (1980), 7–12.

    Google Scholar 

  • Dmitriev V.I.; Baljukina O.N.: O priminenii splain funcţii prireshenia obratnoi zadaci magnitoteluriceskogo zondirovania. Cisl. Melody v Geofiz. M., (1979), 105–121.

    Google Scholar 

  • Dobysh A.D.: 1. Construction of interpolating piecewise polynomial functions. (russian). Sb. Trudy Mosk. Inž — Stroit Inst., 83 (1970), 103–123.

    Google Scholar 

  • Dobysh A.D.: 2. A constructive representation of smooth curves and surfaces, (russian). Trudy 3 — izymn. Skoly. po Mat. Programmar i Smezi Vopv., 2 (1970), 279–299.

    Google Scholar 

  • Doctor H.D.; Bulsaria A.B.; Kalthia N.L.: Spline collocation approach to boundary value problems. Int. J. Numer. Meth. Fluids, 4 (1984), 511–517.

    MATH  Google Scholar 

  • Doctor H.D.; Kalthia N.L.: Spline collocation in the flow of non — Newtonian fluids. Internat. J. Numer. Methods Engrg., 26 (1988), 413–421.

    MATH  Google Scholar 

  • Dodd S.L.; McAllister D.F.; Roulier J.A.: Shape — preserving spline interpolation for specifying bivariate functions on grids. I.E.E.E. Comput. Graph. Appl., 3 (1983), 70–79.

    Google Scholar 

  • Dokken Tor: Finding intersections of B — splines represented geometrice using recursive subdivision techniques. Comput. Aided Geom. Des., 2 (1985), No.1–3, 189–195.

    MATH  Google Scholar 

  • Dolezal V.; Tewarson R.P.: Error bounds for spline — on — spline interpolation. J. Approx. Theory, 36 (1982), 213–225.

    MathSciNet  MATH  Google Scholar 

  • Domsta J.: A theorem on B — splines. Studia Math., 41 (1972), 291–314.

    MathSciNet  MATH  Google Scholar 

  • Domsta J.: 2. A theorem on B — splines II. The periodic case. Bull. Acad. Polon. Sci., 24 (1976), 1077–1084.

    MathSciNet  Google Scholar 

  • Domsta J.: 3. Approximation by spline interpolating basis. Studia Math., 59 (1976), 15–29.

    MathSciNet  Google Scholar 

  • Domsta J.: 4. Interpolating spline basis. Rev. Anal. Numer. Theory. Approx., 5 (1976), 127–143.

    MathSciNet  Google Scholar 

  • Done G.T.S.: Interpolating of mode shapes: a matrix scheme using two — way spline curves. Aeronaut. Quart., 16 (1965), 333–349.

    Google Scholar 

  • Dong Guan Chang; Liang You Dong; He Yuan Jun: Spline interpolation by biarcs. (chinese). Acta Math. Appl. Sinica, 1 (1978), 330–340.

    MathSciNet  Google Scholar 

  • Dong Yunting: Spline collocation solutions of functional equations and the method of finite propagation of wave. (chinese). Numer. Math. J. Chin. Univ., 7 (1985), No.4, 315–326.

    MATH  Google Scholar 

  • Dood S.L.; McAllister D.F.; Roulier J.A.: Shape-preserving spline interpolation for specifying bivariate function on grid. IEEE Comp. Graphics Appl., 3 (1983), 70–79.

    Google Scholar 

  • Dooley J.C.: Two dimensional interpolation of irregularly spaced data using polynomial splines. Phs. Earth, and Planetary Interiors, 12 (1976), 180–187.

    Google Scholar 

  • Doronin V.G.; Ligun A.A.: 1. Vernîe grani nailucisih odnostoronîh priblijenij splainami classev W 2 L 1. Mat. Zamet., 19 (1976), 11–17.

    MathSciNet  MATH  Google Scholar 

  • Doronin V.G.; Ligun A.A.: 2. O tocinîh znaceniah nailucişim odnostoron priblijenij splainami. Mat. Zamet., 20 (1976), 417–424.

    MathSciNet  MATH  Google Scholar 

  • Doronin V.G.; Ligun A.A.: 3. O nailuciashem odnostoronnem priblijenii splainami. Voprosi Teor. Pribl. Funkt. i pril. Kiev, (1976), 97–108.

    Google Scholar 

  • Doronin V.G.; Ligun A.A.: 4. Ob optimalnov vîbore uzlov pri odnostovonuem priblijenii funcţii splainami. Matematika, Izv. Vissh. Uceb. Zoved, (1984), No.9, 29–37.

    Google Scholar 

  • Dougherty D.E.; Prinder G.F.: A brief note on upwind collocation. Internat. J. Numer Methods. Fluids, 3 (1983), 307–313.

    MATH  Google Scholar 

  • Douglas Jr. J.; Dupont T.: 1. Galerkin methods for parabolic equations. SIAM J. Numer. Anal., 7 (1970), 575–626.

    MathSciNet  MATH  Google Scholar 

  • Douglas Jr. J.; Dupont T.: 2. A finite element collocation method fot the heat equation. Sympos. Math., 10 (1971/1972), 403–410.

    Google Scholar 

  • Douglas Jr. J.; Dupont T.: 3. Collocation methods for parabolic equations in a single space variable, based on C 5 — piecewise — polynomial spaces. Lect. Notes Math. 385, Springer, 147–158.

    Google Scholar 

  • Douglas Jr. J.; Dupont T.: 4. Galerkin approximations for the two — point boundary problem using continuous, piecewise polynomial spaces. Numer. Math., 22 (1974), 99–109.

    MathSciNet  MATH  Google Scholar 

  • Draper N.R.; Guttman I.; Lipow P.: All — Bias designs for splines jointed at the axes. J. Amer. Statist. Assoc, 72 (1977), 424–429.

    MathSciNet  MATH  Google Scholar 

  • Dronov S.G.: 1. Approximation by splines of the solution of a boundary value problem. (russian). Investigation in current problems in summation and approximation of functions and their applications. (russian)., Dnepropetrovsk. Gos. Univ., (1987), 30–37.

    Google Scholar 

  • Dronov S.G.: 2. Spline schemes of increased accuracy for a boundary value problem. (russian). Current problems in Approx. Theory and Complex Analysis, Akad. Nauk Ukrain. SSR. Inst. Mat. Kiev, (1990), 44–50.

    Google Scholar 

  • Dronov S.G.; Ligun A.A.: 1. Duality for L — splines. (russan). Ukrainsk. Mat. J., 39 (1987), 776–778.

    MathSciNet  Google Scholar 

  • Dronov S.G.; Ligun A.A.: 2. A spline method for solving a boundary value problem. (russian). Ukrain. Mat. Zh., (1989), No.5, 703–707.

    Google Scholar 

  • Dronov S.G.; Ligun A.A.: 3. Some duality relations for local splines. (russian), Ukrain. Mat. Zh., 46 (1994), No.11, 1467–1472.

    MathSciNet  Google Scholar 

  • Duan Qi; Li Shai He: 1. An error estimate for a class of binariate splines. (chinese). Math. Appl., 5 (1992), No.4, 81–87.

    MathSciNet  Google Scholar 

  • Duan Qi; Li Shai He: 2. The error estimation on a kind of bivariate spline. J. Math. Wuham Univ., 12 (1992), No.1, 20–26.

    MATH  Google Scholar 

  • Dube R.P.: Preliminary specification on spline curves. IEE Transaction on Computers. Vol. C, 28 (1979), No.4, 286–290.

    Google Scholar 

  • Dubeau F.; Savoie J.: 1. Periodic quadratic spline interpolation. J. Approx. Theory, 39 (1983), 77–88.

    MathSciNet  MATH  Google Scholar 

  • Dubeau F.; Savoie J.: 2. Periodic even degree spline interpolation on a uniform partition. J. Approx. Theory, 44 (1985), No.1, 43–54.

    MathSciNet  MATH  Google Scholar 

  • Dubeau F.; Savoie J.: 3. Periodic quartic splines with — spaced knots. IMA J. Numer. Anal., 5 (1985), No.2, 183–189.

    MathSciNet  MATH  Google Scholar 

  • Dubeau F.; Savoie J.: 4. On band circulant matrices in the periodic spline interpolation theory. Linear Algebra Appl., 72 (1985), 177–182.

    MathSciNet  MATH  Google Scholar 

  • Dubeau F.; Savoie J.: 5. Relations de dependence linéaire d’une fonction spline avec partage uniforme de la droite réelle. Annal. Scien. Math. du Québec., 10 (1986), No.1, 5–16.

    MathSciNet  Google Scholar 

  • Dubeau F.; Savoie J.: 6. On consistency relations for polynomial splines on a uniform partition. B.I.T., 27 (1987), No.3, 368–373.

    MathSciNet  MATH  Google Scholar 

  • Dubeau F.; Savoie J.: 7. On circulant matrices for certain periodic splines and histospline projections. Bull. Austral. Math. Soc., 36 (1987), No.1, 49–59.

    MathSciNet  MATH  Google Scholar 

  • Dubeau F.; Savoie J.: 8. Splines périodiques avec partage uniform de la droite réelle. Util. Math., 32 (1987), 111–120.

    MathSciNet  MATH  Google Scholar 

  • Dubeau F.; Savoie J.: 9. Histospline projections on a uniform partition. J. Approx. Theory, 55 (1988), No.1, 18–26.

    MathSciNet  MATH  Google Scholar 

  • Dubeau F.; Savoie J.: 10. Développements asymptotiquess de fonctions splines avec partage uniforme de la droite réelle. SIAM J. Numer. Anal., 26 (1989), No.2, 468–479.

    MathSciNet  MATH  Google Scholar 

  • Dubeau F.; Savoie J.: 11. De l’interpolation à l’aide d’un fonction spline définie sur une partition quelconque. Annalles Sci. Math. Québec, 16 (1992), No.1, 25–34.

    MathSciNet  MATH  Google Scholar 

  • Dubeau F.; Savoie J.: 12. Explicit error bounds for spline interpolation on a uniform partition. J. Approx. Theory 82 (1995), No.1, 1–14.

    MathSciNet  MATH  Google Scholar 

  • Dubeau F.; Savoie J.: 13. Optimal error bounds for quadratic spline interpolation. J. Math. Anal. Appls., 198 (1996), No.1, 49–63.

    MathSciNet  MATH  Google Scholar 

  • Dubeau F.; Savoie J.: 14. Best error bounds for odd and even degree deficient splines. SIAM J. Numer. Anal., 34 (1997), No.3, 1167–1184.

    MathSciNet  MATH  Google Scholar 

  • Dubovnik V.A.: 1. Interpolations splines of two variables. Mathematical physics, 16 (1974), Ird. “Namkova Dumka”, Kiev, (1974), 86–91.

    Google Scholar 

  • Dubovnik V.A.: 2. Reshenie odnoi zadaci ob upravlenia dvijeniem s pomosciu splainov. Vychisl. Mat. v Sovrem. Naucin — Techn. Progresse, Kiev, 1 (1974), 232–237.

    Google Scholar 

  • Dubrule O.: 1. Two methods with different objectives: Splines and kriging. J. Internat. Assoc. Math. Geol., 15 (1983), 245–257.

    MathSciNet  Google Scholar 

  • Dubrule O.: 2. Comparing splines and kriging. Comput. Geosci., 10 (1984), 327–338.

    Google Scholar 

  • Ducateau Ch. F.: 1. Acceleration de convergence pour une extrapolation utilisant les fonctions splines. Procédures Algol en Anal. Numér II. Centre Nat. Res. Sci. Paris, (1970), 79–82.

    Google Scholar 

  • Ducateau Ch. F.: 2. Condition pour qu’un procédé d’interpolation provienne de la minimisation d’un fonction sémi — hilbertienne. C.R. Acad. Sc. Paris, Sér. A, 272 (1971), 266–269.

    MathSciNet  MATH  Google Scholar 

  • Ducateau Ch. F.: 3. Description et propriétés de convergence d’un procédé d’interpolation par des fonctions de classe C k sur un intervalle [a,b]. C.R. Acad. Sci. Paris, Seria A, 272 (1971), 1321–1323.

    MathSciNet  MATH  Google Scholar 

  • Duchaineau M.A.: Using general polar values as control points for polynomial curves. CAGD, 11 (1994), No.4, 411–423.

    MathSciNet  MATH  Google Scholar 

  • Duchon J.: 1. Fonction ”spline” associed an observations d’une fonction aléatoire. C.R. Acad. Sci. Paris, 280 (1975), 949–951.

    MathSciNet  MATH  Google Scholar 

  • Duchon J.: 2. Fonctions spline et vecteurs aléatoire. Tech. Report 231, Sem. d’Analyse Numérique, Univ. Grenoble, (1975).

    Google Scholar 

  • Duchon J.: 3. Fonctions — spline et espérances conditionnelles de champs gaussieuns. Ann. Sci. Univ. Clermont Ferrand II Math., 14 (1976), 19–27.

    MathSciNet  Google Scholar 

  • Duchon J.: 4. Fonctions spline à energie invariante par rotation. IMAG. Grenoble, Research Report 27, January (1976).

    Google Scholar 

  • Duchon J.: 5. Spline minimising rotation — invariant seminorms in Sobolev spaces. Lect. Notes in Math., 571 (1977), 85–100.

    Google Scholar 

  • Duchon J.: 6. Sur l’erreur d’interpolation des fonctions de plusiers variables par les D m — splines. RAERO Anal. Numer., 12 (1978), 325–334.

    MathSciNet  MATH  Google Scholar 

  • Duisekov A.K.: 1. Interpolation by quintic spline functions of defekt two. (russian). Izv. Akad. Nauk. Kazah. SSR. Ser. Fiz. — Math., 5 (1972), 20–24.

    MathSciNet  Google Scholar 

  • Duisekov A.K.: 2. Interpolation by fifth degree spline functions of defect one with equally nodes. (russian). Izv. Aka. Nauk. Kazah. SSR. Ser. Fiz. — Mat., 5 (1974), 28–33.

    MathSciNet  Google Scholar 

  • Dunfield L.G.; Read J.F.: Determination of reaction rates by the use of cubic spline interpolation. J. Chem. Phys., 57 (1972), 2178–2179.

    Google Scholar 

  • Dupin Jean-Claude; Fréville A.: Shape preserving interpolating cubic splines with geometric mesh. Appl. Numer. Math., 9 (1992), 447–459.

    MathSciNet  MATH  Google Scholar 

  • Dupont T.; Fairweather G.; Johnson J.P.: Tree level Galerkin methods for parabolic equations. SIAM J. Numer. Anal., 11 (1974), 392–410.

    MathSciNet  MATH  Google Scholar 

  • Duris C.S.: Discrete interpolating and smoothing spline functions. SIAM J. Numer. Anal., 14 (1977), 616–619.

    MathSciNet  Google Scholar 

  • Dutt P.; Ta’asan S.: A spline — based parameter estimation technique for static models of elastic structures. Applied Numer. Math., 5 (1989), 161–175.

    MathSciNet  MATH  Google Scholar 

  • Dyksen W.R.; Houstis E.N.; Lynch R.E.; Rice J.R.: The performance of the collocation and Galerkin method with Hermite bicubics. SIAM J. Numer. Anal., 21 (1984), No.4, 695–715.

    MathSciNet  MATH  Google Scholar 

  • Dyksen W.R.; Rice J.R.: The importance of scaling for the Hermite bicubic collocation equations. SIAM J. Sci. Statist. Comput., 7 (1986), 707–719.

    MathSciNet  MATH  Google Scholar 

  • Dyn Nira: 1. Perfect — splines of minimum norm for monotone norm and norms induced by inner products, with applications to tensor product approximations and n — widths of integral operators. J. Approx. Theory, 38 (1985), 105–138.

    Google Scholar 

  • Dyn Nira: 2. Generalized monosplines and optimal approximation. Constr. Approx., 1 (1985), No.2, 137–154.

    MathSciNet  MATH  Google Scholar 

  • Dyn Nira: 3. Uniqueness of least-norm generalized monosplines induced by logconcave weight-functions. Ann. Numer. Math., 4 (1997), No.1–4, 289–300.

    MathSciNet  MATH  Google Scholar 

  • Dyn Nira; Cheney E.W.; Light W.A.: Interpolation by piecewise — linear radial basis functions. I. J. Approx. Theory, 59 (1989), No.2, 202–223.

    MATH  Google Scholar 

  • Dyn Nira; Gregory J. A.; Levin D.: Analysis of uniform binary subdivision schemes for curve design. Constr. Approx., 7 (1991), 127–147.

    MathSciNet  MATH  Google Scholar 

  • Dyn Nira; Itai Yad-Shalom: Optimal distribution of knots for tensor — product spline approximation. Quartely of Appl. Math., 49 (1991), No.1, 19–27.

    MATH  Google Scholar 

  • Dyn Nira; Levin D.: Construction of surface spline interpolants of scattered data over finite domains. RAIRO Anal. Numer., 16 (1982), 201–209.

    MathSciNet  MATH  Google Scholar 

  • Dyn Nira; Levin D.; Micchelli C.A.: Using to increase smoothness of curves and surfaces generated by subdivision. Comput. Aided Geom. Des., 7 (1990), No.1–4, 129–140.

    MATH  Google Scholar 

  • Dyn Nira; Levin D.; Yad-Shalom I.: Conditions for regular B — spline curves and surfaces. Math. Modelling and Numer. Anal., 26 (1992), No.1, 177–190.

    Google Scholar 

  • Dyn Nira; Micchelli C.A.: Piecewise polynomial spaces and geometric continuity of curves. Numer. Math., 54 (1988), 319–337.

    MathSciNet  MATH  Google Scholar 

  • Dyn Nira; Ron A.: 1. Recurrence relations for Tchebycheffian B — splines. J. d’Analyse Math., 51 (1989), 118–138.

    Google Scholar 

  • Dyn Nira; Ron A.: 2. Periodic exponential box splines on a three direction mesh. J. Approx. Theory, 56 (1989), 287–296.

    MathSciNet  Google Scholar 

  • Dyn Nira; Ron A.: 3. Local approximation by certain spaces of multivariate exponential — polynomials, approximation order of exponential box splines and related interpolation problems. Trans. Am. Math. Soc., 319 (1990), No.1, 381–403.

    Google Scholar 

  • Dyn Nira; Ron A.: 4. On cardinal translation — invariant Tchebycheffian B — splines. Approx. Theory Appl., 6 (1990), No.2, 1–12.

    MathSciNet  Google Scholar 

  • Dyn Nira; Wong W.H.: On the characterization of non — negative volume — matching surface — splines. J. Approx. Theory, 51 (1987), 1–10.

    MathSciNet  MATH  Google Scholar 

  • Earnshaw J.L.; Yuille I.M.: A method of fitting parametric equations for curves and surfaces to sets of points defining them approximatively. Comput. Aided Design, 3 (1971), 19–22.

    Google Scholar 

  • Easwaran C.V.: Polynomial and spline interpolation using DERIVE. The Internat. DERIVE Journal, 2 (1995), No.3, 11–26.

    Google Scholar 

  • Eck M.; Hadenfeld J.: 1. Knot removal for B — splines curves. CAGD 12 (1995), No.3, 259–282.

    MathSciNet  MATH  Google Scholar 

  • Eck M.; Hadenfeld J.: 2. Local energy fairing of B-spline curves. Computing Supplementum, 10 (1995), 129–147.

    Google Scholar 

  • Eck M.; Lasser D.: B — spline — Bézier representation of geometric spline curves: quartics and quintics. Computers Math. Applic, 25 (1992), No.11, 23–39.

    MathSciNet  Google Scholar 

  • Edwards J.A.: Exact equations of the nonlinear spline. ACM Trans. Math. Software, 18 (1992), No.2, 174–192.

    MathSciNet  MATH  Google Scholar 

  • Eggermont P.P.B.: Collocation for Volterra integral equations of the first kind with iterated kernel. SIAM J. Numer. Anal., 20 (1983), 1032–1048.

    MathSciNet  MATH  Google Scholar 

  • Egorov A.D.: Ob oţenke progreşnosti aproximaţij continualnîh integralov zvjazanîn s zamenoi argumenta splainov. Dokladî Akad. Nauk. SSRB, 22 (1978), 112–114.

    Google Scholar 

  • Eidson H.D.; Schumaker L.L.: 1. Computation of g — spline via a factorization method. Comm. ACM, 17 (1974), 526–530.

    Google Scholar 

  • Eidson H.D.; Schumaker L.L.: 2. Spline solution of linear initial and boundary — value problems. Serie Intern. Anal. Num. Suisse, 32 (1976), 67–80.

    MathSciNet  Google Scholar 

  • Eiler H.C.P. Max D.B.: Flexibile smoothing with B-splines and penalties. Statistical Science, 11 (1996), No.2, 89–121.

    MathSciNet  Google Scholar 

  • Einarsson B.: 1. Numerical calculation of Fourier integrals with cubic splines. BIT, 8 (1968), 279–286.

    MathSciNet  MATH  Google Scholar 

  • Einarsson B.: 2. Erratum to: Numerical calculation of Fourier integrals with cubic splines. BIT, 9 (1969), 183–184.

    Google Scholar 

  • Einarsson B.: 3. Approximation with spline functions. (swedish). Nordisk. Math. Tidskr., 21 (1973), 145–151.

    MathSciNet  MATH  Google Scholar 

  • Eijkhout V.; Margenov S.: Preconditioned iterative solution of spline finite element systems. Math. Balkanica, 4 (1990), Fax. 4, 350–367.

    MathSciNet  MATH  Google Scholar 

  • Eisele Eberhard F.: Chebyshev approximation of plane curves by splines. J. Approx. Theory, 76 (1994), No.2, 133–148.

    MathSciNet  MATH  Google Scholar 

  • Eisenstat S.C.; Jakson K.R.; Lewis J.W.: The order of monotone piecewise cubic interpolation. SIAM. J. Numer. Anal., 22 (1985), 1220–1237.

    MathSciNet  MATH  Google Scholar 

  • Elfving T.; Andersson L.E.: An algorithm for computing constrained smoothing spline functions. Numer. Math., 52 (1988), 583–595.

    MathSciNet  MATH  Google Scholar 

  • Elhay S.: Optimal quadrature. Bull. Austral. Math. Soc., 1 (1969), 81–108.

    MathSciNet  MATH  Google Scholar 

  • Eliseenko I.L.: Estimation of the density of a probability distribution by spline — functions. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov, 166 (1988), Issled. po Mat. Statist. 8, 32–43.

    MATH  Google Scholar 

  • Eliseev G.M.: Construction des fonctions splines d’interpolation en moyenne du second degree. (russian). Cislen. Metody Mikh. Splosh. Sredy SUN, 9 (1978), 63–67.

    Google Scholar 

  • Elschner J.: 1. Galerkin methods with splines for singular integral equations over (0,1). Numer. Math., 43 (1984), 265–281.

    MathSciNet  MATH  Google Scholar 

  • Elschner J.: 2. On suboptimal convergence of finite element methods for pseudodifferential equations on a closed curve. Math. Nachr., 128 (1986), 115–128.

    MathSciNet  MATH  Google Scholar 

  • Elschner J.: 3. Asymptotics of solutions to pseudodifferenti al equations of Mellin type. Math. Nachr., 130 (1987), 267–305.

    MathSciNet  MATH  Google Scholar 

  • Elschner J.: 4. On spline approximation for a class of integral equations.

    Google Scholar 

  • Elschner J.: I. Galerkin methods and collocation with piecewise polynomials. Math. Meth. in the Appl. Sci., 10 (1988), 543–559.

    MathSciNet  MATH  Google Scholar 

  • Elschner J.: II. Galerkin’s method with smooth splines. Math. Nachr., 140 (1989), 273–283.

    MathSciNet  MATH  Google Scholar 

  • Elschner J.: III. Collocation methods with piecewise linear splines. Seminar Analysis, Operator eqs. and numer. anal. Karl — Weierstrass Inst. Math. Berlin, (1987), 25–40.

    Google Scholar 

  • Elschner J.: 5. On spline approximation for singular integral equations on an interval. Math. Nachr., 139 (1988), 309–319.

    MathSciNet  MATH  Google Scholar 

  • Elschner J.: 6. On spline collocation for convolution equations. Integral Eqs. and Operator Theory, 12 (1989), 487–510.

    MathSciNet  Google Scholar 

  • Elschner J.: 7. On the double layer potential operator over polyhedral domains: solvability in weighted Sobolev spaces and spline approximation. Symposium ”Analysis an Manifolds with singularities; Teubuer Texte Math., Stuttgart, 131 (1992), 57–64.

    MathSciNet  Google Scholar 

  • Elschner J.: 8. On spline approximation for a class of non — compact integral equations. Math. Nachr., 146 (1990), 277–321.

    MathSciNet  Google Scholar 

  • Elschner J.: 9. The double — layer potential operator over polyhedral domains. II. Spline Galerkin methods. Math. Methods Appl. Sci., 15 (1992), No.1, 23–37.

    MathSciNet  MATH  Google Scholar 

  • Elschner J.: 10. The h — p — version of spline approximation methods for Mellin convolution equations. J. Integral Equations Appl., 5 (1993), No.1, 47–73.

    MathSciNet  MATH  Google Scholar 

  • Elschner J.: 11. On the exponential convergence of spline approximation methods for Wiener — Hopf equations, Math. Nachrichten 160 (1993), 253–264.

    MathSciNet  MATH  Google Scholar 

  • Elschner J.; Graham I.G.: An optimal order collocation method for first kind boundary integral equations on polygons. Numer. Math., 70 (1995), No.1, 1–31.

    MathSciNet  MATH  Google Scholar 

  • Elschner J.; Prössdorf S.; Rathsfeld A.; Schmidt G.: Spline approximation of singular integral equations. Demonstr. Math., 18 (1985), No.3, 661–672.

    MATH  Google Scholar 

  • El-Safty A.: On the numerical solution of reduced ordinary differential equations by a class of formulas based on spline function appoximation. Period. Polytechn. Elec. Eng., 27 (1983), No.2, 123–134.

    Google Scholar 

  • Elszkowski J.M.: Contribution to a theory of splines. Bull. Pol. Acad. Sci. Tech. Sci., 42 (1994), No.3, 411–415.

    MATH  Google Scholar 

  • El-Safty A.; Abo — Hasha; Shadia M.: On the application on spline functions to initial value problems with retarded argument. Int. J. Comput. Math., 32 (1990), No.3/4, 173–179.

    MATH  Google Scholar 

  • El-Tom M.E.A.: 1. Application of spline functions to Volterra integral equations. J. Innst. Math. Appl., 8 (1971), 354–357.

    MathSciNet  MATH  Google Scholar 

  • El-Tom M.E.A.: 2. Numerical solution of Volterra integral equations by spline functions. BIT, 13 (1973), 1–7.

    MathSciNet  Google Scholar 

  • El-Tom M.E.A.: 3. On the numerical stability of spline function approximations to solutions of Volterra integral equations of the second kind. BIT, 14 (1974), 136–145.

    MathSciNet  MATH  Google Scholar 

  • El-Tom M.E.A.: 4. Spline functions approximations to the solution of singular Volterra integral equations of the second kind. J. Inst. Math. Applics., 14 (1974), 303–309.

    MATH  Google Scholar 

  • El-Tom M.E.A.: 5. On the spline functions approximations to the solution of Volterra integral equations of the first kind. BIT, 14 (1974), 288–297.

    MathSciNet  MATH  Google Scholar 

  • El-Tom M.E.A.: 6. Efficient algorithms for Volterra integral equations of the second kind. Computing, 14 (1975), 153–166.

    MathSciNet  MATH  Google Scholar 

  • El-Tom M.E.A.: 7. Applications of spline functions to systems of Volterra integral equations of the first and second kind. J. Inst. Math. Appl., 17 (1976), 295–310.

    MathSciNet  MATH  Google Scholar 

  • El-Tom M.E.A.: 8. On the best cubature formulas and spline interpolation. Numer. Math., 32 (1979), 291–305. Elfving T.; Andersson E.L.: An algorithm for computing constrained smoothing spline functions. Numer. Math., 52 (1988), 583–595.

    MathSciNet  MATH  Google Scholar 

  • Engels H.: 1. Allgemeine interpolierende Splines von Grade 3. Computing, 10 (1972), 365–374.

    MathSciNet  MATH  Google Scholar 

  • Engels H.: 2. Zur Anwendung kubischer Splines auf die Richardson — Extrapolation. Jber. Deutsch. Math. — Verein, 74 (1972), 66–83.

    MATH  Google Scholar 

  • Engels H.: 3. Allgemeine interpolierende Splines dritten Grades. ZAMM, 54 (1974), 215–217.

    MathSciNet  Google Scholar 

  • Epstein M.P.: On the influence of parametrization in parametric interpolation. SIAM J. Numer. Anal., 13 (1976), 261–268.

    MathSciNet  MATH  Google Scholar 

  • Ertel J.E.; Fowlkes E.B.: Some algorithms for linear spline and piecewise multiple linear regression. J. Amer. Statist. Assoc., 71 (1976), 640–648.

    MATH  Google Scholar 

  • Esch R.E.; Eastman W.L.: Computational methods for best spline function approximation. J. Approx. Theory, 2 (1969), 85–96.

    MathSciNet  MATH  Google Scholar 

  • Eschdavlatov B.: 1. Oţenka pogreşnosti adnogo kubicseskogo splaina. Chysl. Integrir. i Smej. Vopr. (Taskent), (1990), 117–126.

    Google Scholar 

  • Eschdavlatov B.: 2. Construction of quadrature formulas for Fourier — type integrals by means of Ryabenkii splines on the third and fourth degrees. (russian), Idem, 126–132.

    Google Scholar 

  • Esser H.: Eine interpolatorische einbettung von Gitterfunktionen in W m,p [a,b] für beliebige nichtäquidistante Gitter. Numer. Funct. Anal. and Optimiz., 8 (1985/86), 325–345.

    MathSciNet  Google Scholar 

  • Eubank R.L.: 1. The hat matrix for smoothing splines. Stat. Probab. Lett., 2 (1984), 9–14.

    MathSciNet  MATH  Google Scholar 

  • Eubank R.L.: 2. Approximate regression models and splines. Commun Statist. A, 13 (1984), 433–484.

    MathSciNet  MATH  Google Scholar 

  • Eubank R.L.: 3. On the relationship between functions with the same optimal knots in spline and piecewise polynomial approximations. J. Approx. Theory, 40 (1984), 327–332.

    MathSciNet  MATH  Google Scholar 

  • Eubank R.L.: 4. Diagnostics for smoothing splines. J.R.S.S. B, 47 (1985), 332–341.

    MathSciNet  MATH  Google Scholar 

  • Eubank R.L.: 5. A simple smoothing spline. Amer. Statist., 48 (1994), 103–106.

    MathSciNet  Google Scholar 

  • Evans D.G.; Schweizer P.N.; Hanra M.S.: Parametric cubic splines and geologic shape descriptions. J. Int. Assoc. Math. Geol., 17 (1985), 611–624.

    Google Scholar 

  • Ewald S.; Mühlig H.; Mulansky B.: Bivariate interpolating and smoothing tensor product splines. Math. Research. vol. 52, Berlin, Akademie Verlag, (1989), 55–68.

    Google Scholar 

  • Eyre D.: 1. Splines and a three — body separable expansion for scattering problems. J. Comput. Phys., 6 (1984), No.1, 149–164.

    MathSciNet  Google Scholar 

  • Eyre D.: 2. Cubic spline — projection method for two — dimensional integral equations of scattering theory. J. Comput. Phys. 114 (1994), No.1, 1–8.

    MathSciNet  MATH  Google Scholar 

  • Eyre D.: 3. Spline-Galerkin solution of dynamic equations for particle comminution and collection. J. Comput. Phys., 120 (1995), No.2, 305–315.

    MathSciNet  MATH  Google Scholar 

  • Eyre D.; Wright C.J.; Reuter G.: Spline — collocation with adaptive mesh grading for solving the stochastic collection equation. J. Comput. Phys., 78 (1988), No.2, 288–304.

    MATH  Google Scholar 

  • Fabian V.: Complet cubic spline estimation of non — parametric regression functions. Probability Theory and Related Fields, 85 (1990), No.1, 57–64.

    MathSciNet  MATH  Google Scholar 

  • Fabiano R.H.: 1. Uniform stable spline approximation for scalar delay problems. Progr. Systems Control Theory, 19 Birkhäuser, 1995, 151–157.

    Google Scholar 

  • Fabiano R.H.: 2. Stability preserving spline approximation for scalar functional-differential equations. Comput. Math. Appl., 29 (1995), No.8, 87–94.

    MathSciNet  MATH  Google Scholar 

  • Fage Simpson Chaterine: Fonctions spline complexe d’interpolation d’order n. Computing, 15 (1975), 131–136.

    Google Scholar 

  • Fairweather G.: 1. A survey of discete Galerkin methods for parabolic equations in one space variable. Math. Colloq. U.C.T., 7 (1971/72), 43–77.

    MathSciNet  Google Scholar 

  • Fairweather G.: 2. Galerkin methods for vibration problems in two space variables. SIAM J. Numer. Anal., 9 (1972), 702–714.

    MathSciNet  MATH  Google Scholar 

  • Fairweather G.: 3. Finite element Galerkin methods for differential equations. Lect. Notes in Pure and Appl. Math. Vol. 34, Marcel Dekker Inc. New York, (1978).

    Google Scholar 

  • Fairweather G.: 4. Spline collocation methods for a class of hyperbolic partial integro-differential equations. SIAM J. Numer. Anal., 31 (1994), No.2, 444–460.

    MathSciNet  MATH  Google Scholar 

  • Fairweather G.; Johnson J.P.: On the extrapolation of Galerkin methods for parabolic problems. Numer. Math., 23 (1975), 269–287.

    MathSciNet  MATH  Google Scholar 

  • Fairweather G.; Meade D.: Spline collocation method for the numerical solution of differential equations. In: Math. for Large Scale Computing, Lect. Notes in Pure and Appl. Math., 120 (Ed. I.C. Diaz), Masal Dekker Inc. New York, (1989), 297–341.

    Google Scholar 

  • Fairweather G.; Saylov Rick D.: The reformulation and numerical solution of certain nonclasical initial boundary value problems. SIAM J. Sci. Statist. Computing, 12 (1991), No.1, 127–144.

    MATH  Google Scholar 

  • Fairweather G.; Serna-Sanz J.K.M.; Christie J.: A stabilized Galerkin — methods for a third — order evalutionary problem. Math. Comput., 55 (1990), Nr.192, 497–507.

    MATH  Google Scholar 

  • Fairweather G.; Yanik Elisabeth G.: Finite element methods for nonlinear parabolic and hyperbolic partial integro — differential equations. Diff. Eqs. and Appls. I, II, (Columbus, OH, 1988), Ohio Univ. Press, Athens. OH., (1989), 270–279.

    Google Scholar 

  • Fan Gensum: 1. An extremal problem of generalized periodic splines and n — widths of generalized Bernoulli kernel. (chinese). Chin. Ann. Math. Ser. A, 8 (1987), 75–87.

    Google Scholar 

  • Fan Gensum: 2. Relations between entire functions and cardinal splines. (chinese), J. Beijing Norm. Univ. Nat. Sci., 31 (1995), No.3, 296–302.

    Google Scholar 

  • Fan Gensum: 3. The asymptotic connection between approximation by cardinal splines and entire functions of exponential type. Chinese Sci. Bull., 41 (1996), No.4, 265–270.

    MathSciNet  Google Scholar 

  • Fan Gensum; Liu Yong Ping: On the optimal quadrature least L — norm of monosplines with free knots on the real axis. J. Complexity, 8 (1992), No.4, 467–487.

    MathSciNet  Google Scholar 

  • Fan S.C.; Cheung Y.K.: Analysis of shallow shells by spline finite strip method. Eng. Struct., 5 (1983), 255–263.

    Google Scholar 

  • Fang Gen Sun; Liu Yong Ping: On the optimal quadrature least L — norm of monosplines with free knots on the real axis. J. Complexity, 8 (1992), 467–487.

    MathSciNet  Google Scholar 

  • Fang Kui: A C k preserving interpolating spline function of degree 2k. (chinese), J. Numer. Methods Comput. Appl., 15 (1994), No.4, 299–307.

    MathSciNet  Google Scholar 

  • Fang Kui; Wang Xing Bo; Fu Kai Xin: Shape-preserving interpolation methods for quadratic spline functions. (chinese), Hunan Ann. Math., 14 (1994), No.1, 80–83.

    MathSciNet  Google Scholar 

  • Fang Kui; Zhang Xin Jian: Shape-preserving C 1 cubic spline interpolation. (chinese), J.Numer. Methods Comput. Appl., 15 (1994), No.3, 187–193.

    MathSciNet  Google Scholar 

  • Fang Kui; Zhu Gus Qingr: C 1 monotonicity-preserving and shape — preserving piecewise polynomial interpolation. (chinese), Hunan Ann. Math., 15 (1995), No.2, 38–42.

    MathSciNet  Google Scholar 

  • Farin G.: 1. A construction for visual C 1 — continuity of polynomial surfaces patches. Computer Graphics and Image Prac, 20 (1982), 272–282.

    MATH  Google Scholar 

  • Farin G.: 2. Visually C 2 cubic splines. CAD, 14 (1982), 137–139.

    Google Scholar 

  • Farin G.: 3. Some remarks on V 2 — splines. Computed Aided Geom. Design, 2 (1985), No.4, 325–328.

    MathSciNet  MATH  Google Scholar 

  • Farin G.: 4. Rational curves and surfaces. Math. Meth. in CAGD. Pap. Int. Conf. Oslo, 1988, (1989) 215–238.

    Google Scholar 

  • Farin G.: 5. Splines in CAD/CAM. Surv. Math. Ind., 1 (1991), No.1, 39–73.

    MathSciNet  MATH  Google Scholar 

  • Farin G.; Barry P.J.: A link Bézier and Lagrange curves and surfaces schemes. Comput. Aided Design, 18 (1986), 525–528.

    Google Scholar 

  • Farin G.; Hausford D.; Worsey A.: The singular cases for γ — spline interpolation. Comput. Aided Geom. Design, 7 (1990), 533–546.

    MathSciNet  MATH  Google Scholar 

  • Farin G.; Rein G.; Sapidus N.; Worsey: Fairing cubic — B — splines. Computer. Aided Geom. Design, 4 (1987), Nr.1–2, 91–104.

    MATH  Google Scholar 

  • Faruki R.T.; Hamaguchi S.: Spline approximation of effectived potentials under periodic boundary conditions. J. Comput. Phys. 115 (1994), No.2, 276–287.

    Google Scholar 

  • Farwing R.: Multivariate trucated powers and B — splines with coalescent knots. SIAM J. Numer. Anal., 22 (1985), No.3, 592–603.

    MathSciNet  Google Scholar 

  • Fasshauer G.E.; Schumaker L.L.: Minimal energy surfaces using parametric splines. CAGD, 13 (1996), No.1, 45–79.

    MathSciNet  MATH  Google Scholar 

  • Fawzy Tharwat: 1. Spline functions and the Cauchy Problems I-VII.

    Google Scholar 

  • Fawzy Tharwat: 1. Annal. Univ. Sci. Budapestiensis, 1 (1976), 81–98.

    Google Scholar 

  • Fawzy Tharwat: II. Acta Math. Acad. Sci. Hungaricae, 29(3–4), (1977), 259–271.

    Google Scholar 

  • Fawzy Tharwat: III. Anal. Univ. Sci. Budapestiensis, 1 (1978), 35–46.

    MATH  Google Scholar 

  • Fawzy Tharwat: IV. Acta Math. Sci. Hungaricae, 30(3–4), (1977), 219–226.

    Google Scholar 

  • Fawzy Tharwat: V. Annal. Univ. Sci. Budapestiensis, 1 (1978), 109–127. (with. Janos Köhegyi and István Fekete).

    MATH  Google Scholar 

  • Fawzy Tharwat: VI. Annal. Univ. Sci. Budapestiensis, 28 (1985), 2–10.

    Google Scholar 

  • Fawzy Tharwat: VII. Annal. Univ. Sci. Budapestiensis, 24 (1981), 57–62.

    MATH  Google Scholar 

  • Fawzy Tharwat: 2. Spline functions and Cauchy problems. XII. Error of an arbitrary order for the approximate solution of the differential equations y′ = f(x, y). Boundary and Int. Layers. Comput. Asympt. Math. Proc. BAIL I Conf. Dublin, (1980), 281–285.

    Google Scholar 

  • Fawzy Tharwat: 3. An improved error of an arbitrary order for the approximate solution of differential equation y′ = f(x, y) with spline functions. Mitt. Inst. Meeresk. Univ. Hamburg, 26 (1983), 63–73.

    Google Scholar 

  • Fawzy Tharwat: 4. Approximate solution of the initial value problem for ordinary differential equations. Annales Univ. Sci. Budapestiensis Computatorica, 5 (1984), 83–86.

    MATH  Google Scholar 

  • Fawzy Tharwat: 5. Spline approximation in L 2 space. Annal. Univ. Sci. Budapestiensis, 26 (1985), 27–31.

    Google Scholar 

  • Fawzy Tharwat: 6. (0,1,3) lacunary interpolation by G — splines. Ann. Univ. Sci. Budapest, Eötvös Sekt. Math., 29 (1986), 63–67.

    Google Scholar 

  • Fawzy Tharwat: 7. Notes on lacunary interpolation by spline, I, II, III, (0,3) interpolation. Annal. Univ. Sci. Budapestiensis, 38 (1985), 17–28.

    Google Scholar 

  • Fawzy Tharwat: II. Annal. Univ. Sci. Budapest, Sectio Comput., 28 (1987), 117–123.

    Google Scholar 

  • Fawzy Tharwat: III. Acta Math. — Hung., 50 (1987), 35–37.

    Google Scholar 

  • Fawzy Tharwat: 8. (0,2,4) lacunary interpolation with g — splines. Annal. Univ. Sci. Budapestiensis, Sectio Computatorica, 7 (1987), 75–78.

    MATH  Google Scholar 

  • Fawzy Tharwat: 9. Lacunary interpolation by splines (0,2,3) case. Studia Sci. Math. Hungarica, 23 (1988), No.3–4, 335–338.

    Google Scholar 

  • Fawzy Tharwat; Ahmed Al-Mutib: Spline functions and Cauchy problems XII. Proceed. BAIL 1 Conf. June 1980, Trinity College, Dubli, (1980), 281–285.

    Google Scholar 

  • Fawzy Tharwat; Holail F.: Notes on lacunary interpolation with splines. IV. (0,2). Interpolation with splines of degree 6. J. Approx. Theory, 49 (1987), No.2, 110–114.

    MathSciNet  Google Scholar 

  • Fawzy Tharwat; Ramadan Z.: 1. Spline approximations for system of ordinary differential equations III. Mathematica-Rev. d’analyses numer. et théorie de l’approx., 15 (1986), No.2, 117–126.

    Google Scholar 

  • Fawzy Tharwat; Ramadan Z.: 2. Spline approximations for a system of ordinary differential equations II. Anal. Univ. Sci. Budapestiensis, Sectio Computatorica, 7 (1987), 53–62.

    Google Scholar 

  • Fawzy Tharwat; Ramadan Z.: 3. Improved error of an arbitrary order for the approximate solution of system of ordinary differential equations with spline functions. Ann. Univ. Sci. Budapestiensis, Sectio Computatorica, 9 (1989), 81–97.

    Google Scholar 

  • Fawzy Tharwat; Schumaker L.L.: A piecewise polynomial lacunary interpolation method. J. Approx. Theory, 48 (1986), No.4, 407–426.

    MathSciNet  MATH  Google Scholar 

  • Fawzy Tharwat; Soliman Samia: 1. A spline approximation method for the initial value problem y n = f (x, y, y′). Ann. Univ. Sci. Budapestiensis, Sectio Computorica, 10 (1990), 299–323.

    Google Scholar 

  • Fawzy Tharwat; Soliman Samia: 2. Spline approximation for system of n — th order ordinary differential equations. I. Studia Univ. Babeş — Bolyai, Ser. Math. II. Annal. Univ. Sci. Budapest, Sect. Comput. 7.

    Google Scholar 

  • Fawzy Tharwat; Soliman Samia: 3. Stability of the spline approximation method for solving system n — th order ordinary differential equations. Ann. Univ. Sci. Budapestiensis, Sectio Computorica, 9.

    Google Scholar 

  • Feimeier M.: Hermitesche Kollocation bei Integralgleichungen. Computing, 15 (1975), 137–146.

    MathSciNet  Google Scholar 

  • Feng Y.Y.: 1. Spline interpolation at knot averages on a geometric mesh. (chinese). J. Math. Res. Expo., 4 (1984), No.2, 37–42.

    MATH  Google Scholar 

  • Feng Y.Y.: 2. A class of explicit generalized spline interpolation schemes. (chinese). Numer. Math. J. Chinese Univ., 8 (1986), No.4, 327–333.

    MathSciNet  MATH  Google Scholar 

  • Feng Y.Y.; Chang G.Z.: A simple proof of the iterated limit for variation diminishing operator of spline functions. (chinese). J. Systems. Sci. Math. Sci., 5 (1984), No.3, 165–172.

    MathSciNet  Google Scholar 

  • Feng Y.Y.; Kozak J.: L 1 — bound of L 2 — projections on to splines on a geometric mesh. J. Approx. Theory, 35 (1982), 64–76.

    MathSciNet  MATH  Google Scholar 

  • Feng Y.Y.; Lai Ming-Jun: On the condition on the partition for the existence of the B — spline in the space S 4 2. (chinese). Mat. Numer. Sinica, 7 (1985), No.2, 205–210.

    MathSciNet  MATH  Google Scholar 

  • Ferguson J.: Multivariable curve interpolation. J.A.C.M., 11 (1964), 221–228.

    MathSciNet  MATH  Google Scholar 

  • Ferguson R.D.: 1. Sign changes and minimal support propertes of Hermite — Birkhoff splines with compact support. SIAM J. Numer. Anal., 11 (1974), 769–779.

    MathSciNet  MATH  Google Scholar 

  • Ferguson R.D.: 2. Applications of variable knot spline analysis to problems of event detection. Proc. Summer. Comput. Simul. Conf. Chicago I. 11, 1977, La lolla, Calif. (1977), 313–319.

    Google Scholar 

  • Ferguson D.R.; Frank P.D.; Jones A.K.: Surface shape control using constrained optimization on the B — spline representation. Computer Aided Geom. Design, 5 (1988), 87–103.

    MathSciNet  MATH  Google Scholar 

  • Fernandes R.I.: Efficient orthogonal spline collocation methods for solving linear second order hyperbolic problems on rectangles. Numer. Math., 77 (1997), No.2, 223–241.

    MathSciNet  MATH  Google Scholar 

  • Ferrand C.: Lisage par utilisation de fonctions analogues aux fonctions spline. Actes de 6e Congrèsde l’AFIRO (Nancy, 1967), Assoc. Franc. d’Inform. et de Rech. Operat. Paris, (1967), 14–31.

    Google Scholar 

  • Fidan Zeynep: The proof of the existence and uniqueness of cubic spline interpolation for a given function. J.Fac.Sci.Ege.Univ., Ser A 15 (1992), No.1, 55–58.

    MATH  Google Scholar 

  • Figueiredo Rui J.P. de: LM — g splines. J. Approx. Theory, 19 (1977), 332–360.

    MATH  Google Scholar 

  • Figueiredo Rui J.P. de; Chen Guanrong: P D L g splines defined by partial differential operators with initial and boundary value conditions. SLAM J. Numer. Anal., 27 (1990), No.2, 519–528.

    MATH  Google Scholar 

  • Figueiredo Rui J.P. de; Netravah A.N.: 1. On the construction of minimum Baudwith functions from discrete data. SLAM J. Appl. Math. 28 (1975), 190–201.

    Google Scholar 

  • Figueiredo Rui J.P. de; Netravah A.N.: 2. On a class of minimum energy controls related to spline functions. I.E.E.E. Trans. Automatic Control A.C., 21 (1976), 725–727.

    Google Scholar 

  • Filatov V.V.: O Cebysevskom priblijenii cubiceskimi splainami. Vycisl. Systemî, Novosibirsk, 56 (1973), 23–26.

    MathSciNet  Google Scholar 

  • Fiorot J.C.; Jeannin P.: Courbes splines rationnelles contrôlées par un polygone massique. C.R. Acad. Sci. Ser. 1, 310 (1990), No.12, 839–844.

    MathSciNet  MATH  Google Scholar 

  • Fiorot J.C.; Jeannin P.; Taleb S.: B — rational curves and reparametrization: The quadratic case. RAIRO, Modélisation Math. Anal. Numer., 27 (1993), No.3, 289–311.

    MathSciNet  MATH  Google Scholar 

  • Fiorot J.C.; Tabka J.: 1. Splines d’interpolation polynomiales de degree 3 de classe C 2 preservant la forme. C.R. Sci., Paris, Ser. I Math., 307 (1988), 133–138.

    MathSciNet  MATH  Google Scholar 

  • Fiorot J.C.; Tabka J.: 2. Shape — preserving cubic polynomial interpolating splines. Math. Comput., 57 (1991), No.195, 291–298.

    MathSciNet  MATH  Google Scholar 

  • Fischer B.; Opfer G.; Puri M.L.: A local algorithm for constructing non — negative cubic splines. J. Approx. Theory, 64 (1991), No.1, 1–16.

    MathSciNet  MATH  Google Scholar 

  • Fisher S.D.; Jerome J.W.: 1. Perfect spline solution to L — extremal problems. J. Approx. Theory, 12 (1974), 78–90.

    MathSciNet  MATH  Google Scholar 

  • Fisher S.D.; Jerome J.W.: 2. Spline solution to L 1 — extremal problems in one and several variables. J. Approx. Theory, 13 (1975), 73–83.

    MathSciNet  MATH  Google Scholar 

  • Fisher S.D.; Jerome J.W.: 3. Minimum norm extremals in function spaces with applications to classical and modern analysis. Lect. Notes Math., 479 (1975).

    Google Scholar 

  • Fisher S.D.; Jerome J.W.: 4. Stable and unstable elastica equilibrium and the problem of minimum curvature. J. Math. Anal. Appl., 53 (1976), 367–376.

    MathSciNet  MATH  Google Scholar 

  • Fitzgerald C.H.; Schumaker L.L.: A differential equation approach to interpolation at extremal points. J. Analyse Math., 22 (1969), 117–134.

    MathSciNet  MATH  Google Scholar 

  • Fitzpatrick J.M.; Schumaker L.L.: On 1—1 bivariate transformations. J. Approx. Theory, 72 (1993), 40–53.

    MathSciNet  MATH  Google Scholar 

  • Fix G.: Higher — order Rayleigh — Ritz approximations. J. Math. Mech., 18 (1969), 645–657.

    MathSciNet  MATH  Google Scholar 

  • Fix G.; Larsen K.: On the convergence of S.O.R. iterations for finit element approximations to elliptic boundary value problems. SIAM J. Numer. Anal., 8 (1971), 536–547.

    MathSciNet  MATH  Google Scholar 

  • Fix G.; Nassif N.: On finite element approximations to time dependent problems. Numer. Math., 19 (1972), 127–135.

    MathSciNet  MATH  Google Scholar 

  • Fix G.; Strang G.: Fourier analysis on the finite element method in Ritz — Galerkin theory. Studies in Appl. Math., 48 (1969), 265–273.

    MathSciNet  MATH  Google Scholar 

  • Flaherty J.E.; Mathon W.: Collocation with polynomial and tension splines for singularly — perturbed boundary value problems. SLAM J. Sci. Statist. Comput., 1 (1980), 260–289.

    MathSciNet  MATH  Google Scholar 

  • Fleck J.A.: A cubic — spline method for solving the wave equation of nonlinear optic. J. Comput. Phys., 16 (1974), 324–341.

    MathSciNet  MATH  Google Scholar 

  • Fletcher Y.; McAllistere D.F.: Automatic Tension Adjustinenet for interpolatory splines. IEEE Computer Graphics and Appls., Jan. 1990, 10–16.

    Google Scholar 

  • Floater M.S.: 1. A week condition on the convexity of tensor product Bezier and B-spline surfaces. Adv. Comput. Maths., No.1, 2 (1994), 67–80.

    Google Scholar 

  • Floater M.S.: 2. High — order approximation of conic sections by quadratic splines. CAGD, 12 (1995), No.6, 617–637.

    MathSciNet  MATH  Google Scholar 

  • Fog N.G.: Creative definition of ship hulls using B-spline surface. Comput. Aided Des., 16 (1984), No.4, 225–229.

    Google Scholar 

  • Foley T.A.: 1. Local control of interval tension using weighted splines. Comput. Aided Geom. Des., 3 (1986), No.4, 281–294.

    MathSciNet  MATH  Google Scholar 

  • Foley T.A.: 2. Interpolation with interval and point tension controls using cubic weighted γ — splines. ACM. Trans. Math. Software, 13 (1987), No.1, 68–96.

    MathSciNet  MATH  Google Scholar 

  • Foley T.A.: 3. Weighted bicubic spline interpolation to rapidly varying data. ACM Trans. Graphics, 6 (1987), 1–18.

    MATH  Google Scholar 

  • Foley T.A.; Ely H.S.: Surface interpolation with tensor control using cardinal bases. Comput. Aided. Geom. Des., 6 (1989), No.2, 97–109.

    MathSciNet  MATH  Google Scholar 

  • Fong P.; Seidel H.P.: An implementation of triangular B-spline surfaces over rbitrary triangulations. CAGD, No.3–4, 10 (1993), 267–275.

    MathSciNet  MATH  Google Scholar 

  • Fontanella F.: Some theorems on lacunary interpolation using piecewise polynomial functions. (italian). Matematiche (Catania), 26 (1971), 183–198.

    MathSciNet  Google Scholar 

  • Ford W.S.: Periodic cubic spline interpolation with equidistant nodes. Computer J., 18 (1975), No.2, 183–184.

    MATH  Google Scholar 

  • Forrest A.R.: 1. On Coons and other methods for the representation of curves surfaces. Computer Graphics Image Proc., 1 (1972), 341–359.

    MathSciNet  Google Scholar 

  • Forrest A.R.: 2. Interactive interpolation and approximation by Bézier polynomials. Computer J., 15 (1972), 71–79.

    MathSciNet  MATH  Google Scholar 

  • Forsey R.D.; Bartels R.H.: 1. Hierarchical B-spline rafinement. In Proceedings of SIGGRAPH 88, Comput. Graph., 22 (1988), No.4, 202–212.

    Google Scholar 

  • Forsey R.D.; Bartels R.H.: 2. Surface fitting with hierarchical splines. ACM-Transaction on Graphics, 14 (1995), No.2, 134–161.

    Google Scholar 

  • Foster J.; Richard F.B.: Gibbs-Wilbraham splines. Constr. Approx., No.1, 11 (1995), 37–52.

    MathSciNet  MATH  Google Scholar 

  • Franke R.: 1. Smooth interpolation of scattered data by local thin plate splines. Comput. Math. Appl., 8 (1982), 273–281.

    MathSciNet  MATH  Google Scholar 

  • Franke R.: 2. Thin plate splines with tension. Comput. Aided. Geom. Des., 2 (1985), No.1–3, 87–95.

    MathSciNet  MATH  Google Scholar 

  • Franke R.; Nielson G.: Smooth interpolation of large sets of scattered data. Intern. J. Numer. Meth. Engr., 15 (1980), 1691–1704.

    MathSciNet  MATH  Google Scholar 

  • Frăţilă Oancea Elena: L’approximation de la fonction de repartition avec des fonctions spline. Studia Univ. Babeş — Bolyai, Ser. Math. Mec. Cluj, 19 (1974), 62–68.

    Google Scholar 

  • Freeden Willi: 1. On spherical spline interpolation and approximation. Math. Meth. Appl. Sci., 3 (1981), 551–575.

    Google Scholar 

  • Freeden Willi: 2. On approximation by harmonic splines. Manuscr. Geod., 6 (1981), 193–244.

    Google Scholar 

  • Freeden Willi: 3. Spline methods in geodetic approximation problems. Math. Meth. Appl. Sci., 4 (1982), 382–396.

    Google Scholar 

  • Freeden Willi: 4. Interpolation and best approximation by harmonic spline functions. Theoretical and computational aspects. Boll. Geodeziae Sci. Affini, 41 (1982), No.1, 105–120.

    Google Scholar 

  • Freeden Willi: 5. Spherical spline interpolation — basic theory and computational aspects. J. Comput. Appl. Math., 11 (1984), 367–375.

    MathSciNet  MATH  Google Scholar 

  • Freeden Willi: 6. Ein Konvergenzsatz in spheerischer Spline — Interpolation. Zeit. Vermessunganach., 104 (1984), 569–575.

    Google Scholar 

  • Freeden Willi: 7. Ein Beitrag zur numerischen Berechnung des Dirichletschen Aussenraumproblems der Potentialtheorie mittels harmonischer Splines. ZAMM, 65 (1985), No.5, 260–262.

    Google Scholar 

  • Freeden Willi: 8. A spline interpolation method for solving boundary value problems of potential theory from discretely given data. Numer. Meth. Partial Diff. Eqs., 3 (1987), No.1, 375–398.

    MATH  Google Scholar 

  • Freeden Willi: 9. Interpolation by multidimensional periodic splines. J. Approx. Theory, 55 (1988), No.1, 104–117.

    MathSciNet  MATH  Google Scholar 

  • Freeden Willi; Gervens Theo: Vector spherical spline interpolation — Basic theory and computational aspects. Math. Methods Appl. Sci., 16 (1993), No.3, 151–183.

    MathSciNet  MATH  Google Scholar 

  • Freeden Willi; Reuter R.: 1. A class of multidimensional periodic splines. Manuscripta Matem., 35 (1981), 371–386.

    MATH  Google Scholar 

  • Freeden Willi; Reuter R.: 2. Spherical harmonic splines. Theoretical and computational aspects. Meth. Verf. Math. Phys., 27 (1983), 79–103.

    Google Scholar 

  • Freeden W.; Witte B.: A combined spline — interpolation and smoothing method for the determination of the external gravitational potential for heterogeneous data. Bull. Geodesique, 56 (1982), 53–62.

    MathSciNet  Google Scholar 

  • Freeden W.; Hermann P.: Uniform approximation by spherical spline interpolation. Math. Z., 193 (1986), 265–275.

    MathSciNet  MATH  Google Scholar 

  • Freeman H.; Glass J.M.: On the quantization of line — drawing data. I.E.E.E. Trans. Sci. Cybern. SSC, 5 (1969), 70–79.

    Google Scholar 

  • Freud G.; Popov V.A.: Nekotorîe Vaprosî approximaţii splain — funkţiami i polinomami. Stud. Sci. Math., 5 (1970), 161–171.

    MathSciNet  MATH  Google Scholar 

  • Freyburger K.: 1. A Remez type algorithm for generalized spline spaces. Computing 52, No 1, (1994), 65–87.

    MathSciNet  MATH  Google Scholar 

  • Freyburger K.: 2. Constructing generalized spline spaces. Numer. Funct. Anal. Optimiz., 15 (1994), No.7–8, 791–811.

    MathSciNet  MATH  Google Scholar 

  • Friedland S.; Micchelli C.A.: Rounds of the solutions of difference equations and spline interpolation at knots. Linear Algebra and Appl., 20 (1978), 219–251.

    MathSciNet  MATH  Google Scholar 

  • Friedman J.H.: Multivariate adaptive regression splines. Ann. of Statistics, 19 (1991), No.1, 1–66.

    MATH  Google Scholar 

  • Friedman J.H.; Grosse E.; Stuetzle W.: Multidimensional aditiv spline approximation. SIAM J. Sci. Stat. Comput., 4 (1983), 291–302.

    MathSciNet  MATH  Google Scholar 

  • Fritsch F.N.: 1. The Wilson — Fowler spline is a v — spline. Comput. Aided. Geom. Design., 3 (1986), No.2, 155–162.

    MathSciNet  MATH  Google Scholar 

  • Fritsch F.N.: 2. Representations for parametric cubic splines. Computer Aided Geometric Design, 6 (1989), 79–82.

    MathSciNet  MATH  Google Scholar 

  • Fritsch F.N.; Butland J.: A method for constructing local monotone piecewise cubic interpolants. SIAM J. Sci. Stat. Comput., 5 (1984), 300–304.

    MathSciNet  MATH  Google Scholar 

  • Fritsch F.N.; Carlson R.E.: 1. Monoton piecewise cubic interpolation. SLAM J. Numer. Anal., 17 (1980), 238–246.

    MathSciNet  MATH  Google Scholar 

  • Fritsch F.N.; Carlson R.E.: 2. Monotonicity preserving bicubic interpolation. Computer Aided Geom. Design, 2 (1985), 117–121.

    MathSciNet  MATH  Google Scholar 

  • Froese Fischer Charlotte; Guo W.: Spline algorithms for the Hartree — Fock equation for the helium ground state. J. Comput. Phys., 90 (1990), No.2, 486–496.

    MATH  Google Scholar 

  • Frontini M.; Gautschi W.; Milovanovici G.V.: Moment — preserving spline approximation on finit interval. Numer. Math., 50 (1987), 503–518.

    MathSciNet  MATH  Google Scholar 

  • Frost C.E.; Kinzel G.L.: An automatic Adjustment procedure for rational splines. Computers and Graphics, 6 (1992), No.4, 171–176.

    Google Scholar 

  • Frontini M.; Milovanovič G.V.: Moment — preserving spline approximation on finite intervals and Turan quadratures. Facta. Universitis (Niš). Ser. Math. Inform., 4 (1989), 45–56.

    MATH  Google Scholar 

  • Frost C.E.; Kinzel G.L.: An automatic Adjustment Procedure for rational splines. Computers and Graphics, 6 (1992), No.4, 171–176.

    Google Scholar 

  • Fröhner M.: 1. Numerische Lösung von gewöhnlichen Differentialgleichungen mit nacheilenden Argument. Wiss. Schriften Techn. Hochschul. Karl — Marx Stadt., 1 (1975), 115–121.

    Google Scholar 

  • Fröhner M.: 2. Solution of the Cauchy problem for ordinary differential equations with retarded argument by means of splaines. (russian). Z. Vyčisl. Mat. i Mat. Fiz., 17 (1977), 948–954.

    MATH  Google Scholar 

  • Fröhner M.: 3. Ein Galerkin — Verfahren zur numerischen Lösung der Burgers — Gleichung. Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput., 6 (1985), 37–48.

    MATH  Google Scholar 

  • Fröhner M.: 4. Numerical solution of diffusion — convection equations with spline — Galerkin technique. Proceed. Internat. Conf. of Numer. Meth., Sofia, August 22–27, (1989), 172–176.

    Google Scholar 

  • Fuchs P.M.: 1. Charakterisierung der Konvergenzordnung und A — Stabilität von speziellen Kollokationsverfahren. ZAMM, 63 (1983), 345–346.

    Google Scholar 

  • Fuchs P.M.: 2. Charakterisierung der Konvergenzordnung einer Klasse von Kollokationsverfahren. ZAMM, 65 (1985), 579–581.

    MATH  Google Scholar 

  • Fuchs P.M.: 3. On the stability of spline — collocation methods of multivalue type. BIT, 27 (1987), 374–388.

    MathSciNet  MATH  Google Scholar 

  • Fuchs P.M.: 4. A — stable spline — collocation methods of multivalue type. BIT, (1989), 295–310.

    Google Scholar 

  • Fu Kai Sen.: 1. B — spline expression of a class of quadratic spline and their applications. (chinese). Nat. Sci. J. Xiangtan Univ., 1 (1983), 31–42.

    Google Scholar 

  • Fu Kai Sen.: 2. The asymptotic property of the error for second kind cubic spline interpolation. (chinese). Nat. Sci. J. Xiangtan Univ., 2 (1987), 1–7.

    Google Scholar 

  • Fu Kai Xin, Fu Ling Yuan: Teh collocation method in view of spline-on-spline. (chinese), Nat. Sci. J. Xiangtan Univ., 15 (1993), Suppl. 58–62.

    Google Scholar 

  • Fu Kai Xin; Guan Li: The structure of univariate vertex splines. (chinese). Natur. Sci. J. Xiangtan Univ., 13 (1991), No.2, 16–22.

    MathSciNet  Google Scholar 

  • Fu Kai Xin; Shen Xinag Yang: Asymptotic expansion and results on superconvergence of single knot splines. (chinese). Human Ann. Math., 6 (1986), No.2, 105–113.

    Google Scholar 

  • Fu Kai Xin; Shu Shi: Asymptotic expansion of cubic splines. (chinese). Natur. Sci. J. Xiangtan Univ., (1986), No.3, 1–9.

    Google Scholar 

  • Fu Kai Xin; Zhang Zinjion: Asymptotic characteristic for quadratic spline interpolation. (chinese). Not. Sci. J. Xiangtan Univ. 16 (1994), No.1, 1–10.

    Google Scholar 

  • Fu Qing Xiang: 1. Optimum cubic spline fitting with desired convexity and its algorithms. (chinese). Acta. Math. Appl. Sinica, 2 (1979), 331–339.

    MathSciNet  Google Scholar 

  • Fu Qing Xiang: 2. The existence and uniqueness of cubic interpolation splines. (chinese). Fuzhon Daxue Huobao, (1982), No.1, 13–19.

    Google Scholar 

  • Fu Qing Xiang: 3. The local asymptotic behaviour of (0,3) quintic lacunary interpolation splines. (chinese). Fuzhou Daxue Xuobao, (1982), No.2, 16–31.

    Google Scholar 

  • Fu Qing Xiang: 4. The norm type (I′) cubic spline interpolation operators. (chinese). Fuzhou Daxue Xuobao, (1982), No.3, 1–7.

    Google Scholar 

  • Fu Qing Xiang: 5. A note on bound for the norm of certain spline projection. (chinese). Math. Numer. Sin., 6 (1984), 100–104.

    Google Scholar 

  • Fuhr R.D.; Hsieh L.; Kallay M.: Object-oriented paradigm for NURBS curve and surface design. Computer— Aided Design, 17 (1995), no.2, 95–100.

    Google Scholar 

  • Fukr R.D.; Kallay M.: Monoton linear rational spline interpolation. CAGD, 9 (1992), No.4, 313–319.

    Google Scholar 

  • Fyfe D.J.: 1. The use of cubic splines in the solution of two — point boundary value problems. Comput. J., 12 (1969), 188–192.

    MathSciNet  MATH  Google Scholar 

  • Fyfe D.J.: 2. The use of cubic splines in the solution of certain fourth order boundary value problems. Comput. J., 13 (1970), 204–205.

    MathSciNet  MATH  Google Scholar 

  • Fyfe D.J.: 3. Linear dependence relations connecting equal interval N th degree splines and their derivatives. J. Inst. Math. Applics., 7 (1971), 398–406.

    MathSciNet  MATH  Google Scholar 

  • G abbasov R.F.: 1. Application of spline functions in constructive problems of mechanics. In ”Sbornik Trudy” Mosk. Inj. Stroit. Inst., 156 (1978), 65–76.

    Google Scholar 

  • Gabbasov R.F.: 2. On a spline — method for numerical solution of integral equations of the third kind. (russian). Differ. Uravn., 27 (1991), No.9, 1648–1650.

    MathSciNet  MATH  Google Scholar 

  • Gabdulhaev B.G.: 1. Splain — metodî reşenia adnovo classa singularnîh integro — diferenţialnîh uravnenij. Izv. Vyss. Ucebn. Zaved. Mat., 6 (157) (1975), 14–24.

    MathSciNet  Google Scholar 

  • Gabdulhaev B.G.: 2. Optimizaţia collocaţionîh metodov. Dokl. Akad. Nauk. SSSR., 247 (1979), 1033–1037.

    MathSciNet  Google Scholar 

  • Gabdulhaev B.G.: 3. Optimization of collocation methods for solving integral and differential equations. (russian). Izv. Vyss. Zaved. Mat., 1 (1980), 3–11.

    MathSciNet  Google Scholar 

  • Gabdulhaev B.G.; Ahmetov S.M.: O metode splain — kollokatia dlja integralnth uravnenia. In ”Prilojenie funkţ. analiz. k priblij. vychisleniami”. Izv. Vyzov Matematika, 6 (1975), 14–24.

    Google Scholar 

  • Gaffney P.W.: The calculation of indefinits integral B — splines. J. Inst. Math. Appl., 17 (1976), 37–41.

    MathSciNet  MATH  Google Scholar 

  • Gaier D.: Saturation bei Spline — Approximation und Quadratur. Numer. Math., 16 (1970), 129–140.

    MathSciNet  MATH  Google Scholar 

  • Gaifullina L.P.: 1. On the spline methods for solving integral and differential equations. (russian). Izv. Vyss. Ucebn. Zav. Mat., (1980), No. 1, 68–71.

    Google Scholar 

  • Gaifullina L.P.: 2. O splain-metode reşenija integralnîh uravnenii. (russian). Matematika, 1 (1980), 68–71.

    MathSciNet  Google Scholar 

  • Gaifullina L.P.: 3. Application of spline appoximate solution of integral equations. (russian). Comput. Math. and Comput. Software. Kazan. Gos. Univ. Kazan., 3 (1981), 143–158.

    MathSciNet  Google Scholar 

  • Gaifullina L.P.: 4. O metode splain — collocatij dlia differenţialnovo uravnenija paraboliceskovo tipa. Izv. Vyss. Ucebn. Zadev. Matematika, 6 (1981), 25–28.

    MathSciNet  Google Scholar 

  • Gaissmaier B.: Schnelle und genaue Berechnung von Fourier — integralen durch Kombination von Spline — Interpolation und schneller Fourier — Transformation. Nachr. — Techn. Z., 24 (1971), 601–605.

    Google Scholar 

  • Galkin P.V.: 1. The uniqueness of the element of best mean approximation to a continuous functions using spline with fixed nodes. (rusian). Mat. Zamet., 15 (1951), 3–15.

    MathSciNet  Google Scholar 

  • Galkin P.V.: 2. The possibility of périodc spline interpolation. (russian). Mat. Zamet., 8 (1970), 563–574.

    MathSciNet  Google Scholar 

  • Galligani I.: On the smoothing of experimental data. Calcolo, 8 (1971), 359–376.

    MathSciNet  Google Scholar 

  • Gamidov V.M.: Error of interpolation by local cubic spline. (russian). Vychisl. Systemy, (1986), No.115, 41–59.

    Google Scholar 

  • Gao Jian: 1. The asymptotic expansions of quintic lacunary interpolation splines. (chinese). Natur. Sci. J. Xiangtan Univ., 10 (1988), No.3, 11–17.

    MathSciNet  MATH  Google Scholar 

  • Gao Jian: 2. Using lower — order spline — on — spline functions to approximate the derivcatives of a function. (chinesee), Gaoxiao Yingyong Shusue Xuebao, 7 (1992), No.2, 240–249.

    MATH  Google Scholar 

  • Gao Jian: 3. On approximating the derivative of a function by low order spline — on — spline. (chinese). Appl. Math. J. Chin. Univ., 7 (1992), No.2, 240–249.

    MATH  Google Scholar 

  • Gao Jian: 4. A new finite element of C 1 cubic splines. J. Comput. Appl. Math., 40 (1992), 305–312.

    MathSciNet  Google Scholar 

  • Gao Jian: 5. A C 2 — finite element and interpolation. Computing, 50 (1993), No.1, 69–76.

    MathSciNet  Google Scholar 

  • Gao Jian: 6. Asymptotic analysis of the remainder term of a two-level exponential interpolating spline. (chinese), J.Yiyang Teachers College 12 (1995), No.5, 26–31.

    MathSciNet  Google Scholar 

  • Gao Junbin: 1. A remark on interpolation by bivariate splines. Approx. Theory Appl., 7 (1991), No.2, 41–59.

    MathSciNet  MATH  Google Scholar 

  • Gao Junbin: 2. A remark on the interpolation by C 1 quartic bivariate splines with boundary conditions. In A Friendly Colloction of Math. Papers I, Jillin Univ. Press. Changehung, China, 1990, 99–102, and J. Math. Res. Exposition, 11 (1991), 433–442.

    Google Scholar 

  • Gao Junbin: 3. Interpolation by C 1 quartic bivariate splines. J. Math. Res. Exposition, 11 (1991), 433–442.

    MathSciNet  MATH  Google Scholar 

  • Gao Junbin: 4. A new finite element of C 1 cubic splines. J. Comput. Appl. Math., 40 (1992), 305–312.

    MathSciNet  MATH  Google Scholar 

  • Gao Junbin: 5. A C 2 finite element and interpolation. Computing, 50 (1993), 69–76.

    MathSciNet  Google Scholar 

  • Gao Junbin: 6. The dimension of a class of bivariate spline spaces. Appl. Math., Seria B, 9 (1994), No.2, 177–188.

    MATH  Google Scholar 

  • Gao Junbin: 7. Interpolation and approximation by bivariate splines of S 3 1mn (1)). Math. Appl., 9 (1996), No.1, 26–32.

    MathSciNet  Google Scholar 

  • Gao Junbin; Cheng Zhong: Interpolation by bivariate splines in the space S 1 4(1)). (chinese). J. Math. (Wuhan), 13 (1993), No.2, 250–260.

    MathSciNet  MATH  Google Scholar 

  • Gao Junbin; Cheng Sao Wei: The problems of dimension of bivariate spline spaces Sr 3r-1 (Delta). Math. Appl. 6 (1993), supt., 89–96.

    Google Scholar 

  • Gao Junbin; Xu Lizhi: Concerning a problem of interpolation by splines of S 3 1. (chinese). Numer. Math. Nanking, 10 (1988), No.1, 55–67.

    MATH  Google Scholar 

  • Gao Xie Pin: 1. Asymptotic expansion of tension spline functions. (chinese). Natur. Sci. J. Xiangtan Univ., 11 (1989), 31–38.

    MathSciNet  Google Scholar 

  • Gao Xie Pin: 2. Asymptotic expansion of quartic Hermite — Birkhoff interpolation cardinal splines. (chinese). Natur. Sci. J. Xiangtan Univ., 13 (1991), 41–45.

    MathSciNet  Google Scholar 

  • Gao Xie Pin: 3. Term-by-term asymptotic expansion and spline-on-spline approximations for tension spline interpolation on [0, ∞). (chinese), Natur. Sci. I. Xiangtan Univ., 15 (1993), suppl. 49–57.

    Google Scholar 

  • Gao Xie Pin; Jin Ji Cheng; Shu Ski: Asymptotic expansion of type (II) tension splines. (chinese). Natur.Sci. J, Xiangtan Univ. 15 (1993), suppl. 44–48.

    Google Scholar 

  • Gao Xie Pin; Shu Shi: 1. Approximating function derivatives by multiple quadratic spline — on — spline interpolations. (chinese). Nat. Sci. J. Xiangtan Univ. 16 (1994), No.1, 29–36.

    Google Scholar 

  • Gao Xie Pin; Shu Shi: 2. The asymptotic expansion for spline-on-spline collocation of nonlinear two point boundary problem. Diff. Eqs. and Control Theory (eds Deug Z., G. Lu, Ruan S.) Lect. Notes in Pure and Appl. Math., M. Dekker, Inc. 176, (1995).

    Google Scholar 

  • Gao Xie Pin; Shu Shi: 3. Spline-on-spline collocation and asymptotic expansions for two-point boundary value problems. (chinese), Natur. Sci. J. Xrangton Univ,, 16 (1994), No.2, 10–14.

    Google Scholar 

  • Gao Xie Piu; Shu Shie; Fu Kaixin: 1. The term by term asymptotic expansions for quartic interpolating splines and its spline-on-spline scheme. (chinese) Numer. Math., Nanjing 17, (1995), No. 3, 230–242.

    Google Scholar 

  • Gao Xie Piu; Shu Shie; Fu Kaixin: 2. Quartic spline-on-spline interpolation. J. Comput.Appl. Math., 71 (1996), No.2, 213–223.

    MathSciNet  Google Scholar 

  • Gardner L.R.T.; Gardner G.A.: 1. Solitary waves of the regularised long-wave equation. J. Comput. Physics, 91 (1990), 441–459.

    MATH  Google Scholar 

  • Gardner L.R.T.; Gardner G.A.: 2. A conservative B-spline finit element method for the nonlinear Schrödinger equation. In ”Bainov D. (ed), Proceeds. Third Internat. Colloq.Numer. Anal.,Plovdiv, Bulgaria, 1994, Utrecht VSP, 81–90 (1995).

    Google Scholar 

  • Gardner L.R.T.; Gardner G.A.; Ali A.H.A.: 1. A finit element solution for the Korteweg — de Vries equation using cubic B — splines. Proc. 5 th Int. Symp. Numer. Meth. Eng. Lausanne, Sept 1989, Vol.2, Southampton-Berlin, (1989), 565–570.

    Google Scholar 

  • Gardner L.R.T.; Gardner G.A.; Ali A.H.A.: 2. Simulations of solitons using quadratic spline finite elements. Comput. Methods Appl. Mech. Engrg., 92 (1991), No.2, 231–243.

    MathSciNet  MATH  Google Scholar 

  • Gardner L.R.T.; Gardner G.A.; Ali A.H.A.: 3. Modelling non-linear wawes with B — spline. Finite Elements. Intern. Conf. Math. and Num. aspects of wawe propagation phenom. 1991.

    Google Scholar 

  • Gardner L.R.T.; Gardner G.A.; Dag I.: A B-spline element method for the regularized long wave equation. comm. Numer. Methods Engrg., 11 (1995), No.1, 59–68.

    MathSciNet  MATH  Google Scholar 

  • Gardner L.R.T.; Gardner G.A.; Geyikli T.: 1. Solitary wave solutions of the MKdV-equation. Comput. Methods Appl. Mec. Engrg., 124 (1995), No.4, 321–333.

    MathSciNet  MATH  Google Scholar 

  • Gardner L.R.T.; Gardner G.A.; Geyikli T.: 2. The boundary forced MKdV-equation. J. Comput. Physics, 113 (1994), 5–12.

    MathSciNet  MATH  Google Scholar 

  • Gardner L.R.T.; Gardner G.A.; Netter E.: A new B-spline finite element method for the advection-diffusion equation. In: Bainov D (ed), Proceeds. Fifth Internat. Colloq. Diff. Eqs. Plovdiv, Bulgaria, 1994, Utrecht VPS, (1995), 123–132.

    Google Scholar 

  • Gardner L.R.T.; Gardner G.A.; Zaki S.I.; El Sahrawi Z.: B — spline finite element studies of the nonlinear Schrodinger equation. Comput. Methods, Appl. Mech. Engrg. 108 (1993), No. 3–4, 303–318.

    MathSciNet  MATH  Google Scholar 

  • Gasca M.: 1. Bernstein polynomials, B — splines and computer aided geometric design. (spanish). Homage to Prof. Dr. Nácere Hayek Calil, (1990), 125–132.

    Google Scholar 

  • Gasca M.: 2. Spline functions and total positivity. Rev. Mat. Univ. Complutense Madr. Spec. Iss., (1996), 125–139.

    Google Scholar 

  • Gasca M.; Pena E. L.: Un problema de interpolation de Hermite — Birkhoff con integrales: los g r — splines. Actas 4 Jordanas mat. Insvesp. Jacai, 1 (1977), Zaragoza, 233–236.

    Google Scholar 

  • Gasîmova S.G.: Collocation method for differential equations with discontinuous coefficients. (russian). Izv. Acad. Nauk Az. SSR, Ser. fiz.— telen i mat. Nauk., 9 (1988), No.5–6, 33–36. 1991.

    Google Scholar 

  • Gasparo Maria Grazia; Morandi Rossana: Piecewise cubic monotone interpolation with assigned slopes. Computing, 46 (1991), 355–365.

    MathSciNet  Google Scholar 

  • Gasquet C.: Perturbations de fonctions — spline. C.R. Acad. Sci. Paris, 276 (1973), No.22, 1465–1468.

    MathSciNet  MATH  Google Scholar 

  • Gasser T.: Spline smoothing of spectra. COMPOSTAT, 1974. Proc. Comput. Statist. Wien, (1974), 323–332.

    Google Scholar 

  • Gautschi W.: 1. Spline approximation and quadrature formulae. Trends in functional analysis and approximation theory. (Acquafredda di Maratea 1989), Univ. Modena, (1991), 47–60.

    Google Scholar 

  • Gautschi W.: 2. Spline approximation and quadrature formulae. Atti. Sem. Mat. Fiz. Univ. Modena, 40 (1992), No.1, 169–182.

    MathSciNet  MATH  Google Scholar 

  • Gautschi W.; Milovanovici G.V.: Spline approximations to spherical symetric distributions. Numer. Math., 49 (1986), 111–121.

    MathSciNet  Google Scholar 

  • Gavrilovič M.M.: Optimal approximation of convex curve by functions which are piecewise linear. J. Math. Anal. Appl., 52 (1975), No.2, 260–282.

    MathSciNet  MATH  Google Scholar 

  • Gânscă I.: 1. Monospline with given order of deficiency and optimal quadrature formulae. Rev. Roum. Math. Pures et Appl., 22 (1977), 453–460.

    MATH  Google Scholar 

  • Gânscă I.: 2. Asupra unor funcţii monospline de două variabile şi formule de cuadratură optimale de tip închis. Stud. Cerc. Mat., Bucharest, 29 (1977), 221–231.

    MATH  Google Scholar 

  • Gânscă I.: 3. Monosplines with a given order of dificiency and optimal quadrature formulae. II. Rev. Roumaine Math. Pures. Appl., 22 (1977), 1107–1115.

    MATH  Google Scholar 

  • Ge Cai Xia; Zou Kai Qi; Wnag Jing: Fuzzy Newton interpolation and the representation of fuzzy spline functions. (chinese). Mohu Xitong yu Shuexue, 9 (1995), No.4, 85–90.

    Google Scholar 

  • Ge Q.J.; Rastegar J.: A special class of C 3 rational quartic spline curves for two-harmonic trajectory synthesis. Computional kinematics’95 (Sophia Antipolis 1995)., 281–290, Solid. Mech. Appl. 40, Kluwer Acad. Publ. 1995.

    MathSciNet  Google Scholar 

  • Gehringer K.R.; Reduer R.A.: Nonparametric density estimation using tensor product splines. Comm. Stat. Simul., 21 (1992), No.2, 849–878.

    MATH  Google Scholar 

  • Gensun Fong; Yongping Liu: On the optimal quadrature least L — norm of monosplines with free knots on the real axis. J. Complexity, 8 (1992), No.4, 467–487.

    MathSciNet  Google Scholar 

  • Getmanov V.G.: Reproduction of nonstationary dependences with use of approximation splines. J. Comput. Systems Sci. Internat., 31 (1993), No.1, 58–94.

    MathSciNet  Google Scholar 

  • Gfreyer H.: Uniform convergence of interpolation by cubic spline. Computing, 29 (1982), No.4, 361–364.

    MathSciNet  Google Scholar 

  • Ghizzetti A.: Interpolazione con splines verificanti una opportuna condizione. Calcolo, 20 (1983), 53–65.

    MathSciNet  Google Scholar 

  • Ginnis A.I.; Kaklis P.D.; Sapidis N.S.: Polynimial splines of nonuniform degree: Controlling convexity and fairness. In: Sapidis N.S. (ed), SIAM, Geometrie Design Publications Philadelphia, PA, 1994, 253–274.

    Google Scholar 

  • Giovene G.; Morandi Cecchi M.: 1. Un metodo per l’approssimatione della soluzione di equationi differentiali ordinarie del primo ordine mediante funzioni spline. Le Matematiche, vol.36 (1981).

    Google Scholar 

  • Giovene G.; Morandi Cecchi M.: 2. Spline approximation for two — points linear boundary value problems. Le Matematiche, 37 (1982), 162–169.

    MathSciNet  Google Scholar 

  • Girashovici Ju.M.; Levin M.I.: Monosplainî kvadraturnîe formulî na mnojestvah funkţii a zadannîmi kraevîmi usloviami. Jr. Tallin Politehn. Inst., 393 (1976), 21–30.

    Google Scholar 

  • Gladwell I.; Mullings D.I.: On the effect of boundary conditions in collocation by polynomial spline fit the solution of boundary value problems in ordinary differenial equations. J. Inst. Math. London, 16 (1975), 93–107.

    MathSciNet  MATH  Google Scholar 

  • Glass J.M.: Smooth — Curve interpolation: a generalized spline — fit procedure. BIT, 6 (1966), 277–293.

    MATH  Google Scholar 

  • Glockle W.; Hasberg G.; Neghabian A.R.: Numerical treatment of few — body equations in momentum space by spline methods. Z. Phys. A, 305 (1982), 217–221.

    MathSciNet  Google Scholar 

  • Gmeling R.J.H.; Pfluger P.R.: On the dimension of the spaces of quadratic C 1 — splines in two variables. Approx. Theory Appl., 4 (1988), 37–54.

    MathSciNet  Google Scholar 

  • Goël J.J.: Construction of basis functions for numerical utilization of Ritz’s method. Numer. Math., 12 (1968), 435–447.

    MathSciNet  MATH  Google Scholar 

  • Godwin A.N.: 1. Spline curven with length constraints. J. Inst. Math. Appl., 24 (1979), 219–229.

    MathSciNet  MATH  Google Scholar 

  • Godwin A.N.: 2. Family of cubic splines with one degree of freedom. Comput. Aided. Des., 11 (1979), 13–18.

    Google Scholar 

  • Goldapp M.: Approximation of circular areas by cubic polynomials. Comput. Aided. Geom. Design, 8 (1991), 227–238.

    MathSciNet  MATH  Google Scholar 

  • Goldemberg L.M.; Climontov V.E.; Seredinskij A.V.: Recurrentnîe metodî postraenia interpolationîh splain funktiij. Avtomat. i Telemeh., 3 (1979), 173–176.

    Google Scholar 

  • Goldman M.A.: 1. A remark on splines in Hilbert spaces. (russian). Mathematics I, Latv. Univ. Riga, 552 (1990), 29–32.

    Google Scholar 

  • Goldman M.A.: 2. Splines in spaces of continuous functions. (russian). Mathematics, Latv. Univ. Riga, 576 (1992), 75–80.

    Google Scholar 

  • Goldman M.A.: 3. Some remarks on B-splines. Mathematics, L. Atv. Univ., Zinät Raksti 588, Riga, 1993, 95–102.

    Google Scholar 

  • Goldman R.N.: 1. Properties of B — splines. J. Approx. Theory, 44 (1985), 132–153.

    MathSciNet  Google Scholar 

  • Goldman R.N.: 2. Urn models and Beta — Splines. I.E.E.E. Comput. Graphics and Applications, 6 (1986), 57–64.

    Google Scholar 

  • Goldman R.N.: 3. Urn models, approximations and splines. J. Approx. Theory, 54 (1988), 1–66.

    MathSciNet  MATH  Google Scholar 

  • Goldman R.N.: 4. Urn models and B — Splines. Constructiv Approximation, 4 (1988), 265–288.

    MATH  Google Scholar 

  • Goldman R.N.: 5. Blossoming and knot insertion algorithm for B — spline curves. Comput. Aided Geom. Des., 7 (1990), No.1–4, 69–81.

    MATH  Google Scholar 

  • Goldman R.N.: 6. Dual polynomial bases. J. Approx. Theory, 79 (1994), No. 3, 311–346.

    MathSciNet  MATH  Google Scholar 

  • Golitschek M. von: 1. On the convergence of interpolating periodic spline functions of high degree. Numer. Math., 19 (1972), 146–154.

    MathSciNet  MATH  Google Scholar 

  • Golitschek M. von: 2. On n — width and interpolation by polynomial splines. J. Approx. Theory, 26 (1979), No.2, 132–141.

    MathSciNet  MATH  Google Scholar 

  • Golomb M.: 1. Approximation by periodic spline interpolants on uniform meshes. J. Approx. Theory, 1 (1968), 26–65.

    MathSciNet  MATH  Google Scholar 

  • Golomb M.: 2. H m,p — extensions by H m,p — splines. J. Approx. Theory, 5 (1972), 238–275.

    MathSciNet  MATH  Google Scholar 

  • Golomb M.; Jerome J.W.: 1. Linear ordinary differential equations with boundary conditions on arbitray point sets. Trans. Amer. Math. Soc., 153 (1971), 235–264.

    MathSciNet  MATH  Google Scholar 

  • Golomb M.; Jerome J.W.: 2. Equilibrio of the curvature functionals and manifolds of nonlinear interpolating spline curves. SIAM J. Math. Anal., 13 (1982), 421–458.

    MathSciNet  MATH  Google Scholar 

  • Gomez Montenegro Arnaldo; Ruisanchez Doiz Nelson: Cubic spline interpolation for the solution of boundary value problems for ordinary differential equations. (spanish). Investigacion Oper., 13 (1992), No.1, 47–60.

    MathSciNet  MATH  Google Scholar 

  • Gong Da Ping; Xu Shu Rong: A class of optimal quadratic spline interpolation formulas based on l 1 norm. (chinese). Math. Appl., 6 (1993), No.2, 168–171.

    MathSciNet  Google Scholar 

  • Gonska H.H.; Meir J.: 1. A bibliography on approximation of functions by Bernstein — type operators (1955–1982). In Approx. Theory IV, C. Chui, L. Schumaker and J. Ward (eds). Acad. Press, New York, (1983), 729–785.

    Google Scholar 

  • Gonska H.H.; Meir J.: 2. A bibliography on approximation of functions by Bernstein — type operators. (Supplement, 1986), Academic Press, New York, (1986), 621–654.

    Google Scholar 

  • Gonska H.H.; Röth A.: Control point insertion for B — spline curves. Bull. Austr. Math. Soc., 38 (1988), No.2, 307–312.

    MATH  Google Scholar 

  • Gonsor D.; Neamţu Marian:Null spaces of differential operators polar forms, and splines. J. Approx. Theory, 86 (1996), No.1, 81–109.

    MathSciNet  MATH  Google Scholar 

  • Goodman T.N.T.: 1. Perfect splines and Hermite — Brikhoff interpolation. J. Approx. Theory, 26 (1979), 108–118.

    MathSciNet  MATH  Google Scholar 

  • Goodman T.N.T.: 2. Necesary conditions for the convergence of cardinal Hermite splines as their degree tends to infinity. Trans. Amer. Math. Soc., 255 (1979), 231–241.

    MathSciNet  MATH  Google Scholar 

  • Goodman T.N.T.: 3. Hermite — Birkhoff interpolation by Hermite — Birkhoff splines. Proc. R. Soc. Edinburg, 88 (1981), 195–201.

    MATH  Google Scholar 

  • Goodman T.N.T.: 4. The Lebesgue constants for some cardinal spline interpolation operators. J. Approx. Theory, 36 (1982), 104–118.

    MathSciNet  MATH  Google Scholar 

  • Goodman T.N.T.: 5. Interpolation in minimum seminorm and multivariate B — splines. J. Approx. Theory, 37 (1982), 212–223.

    Google Scholar 

  • Goodman T.N.T.: 6. The Lebesgue constants for some cardinal spline interpolation operators. J. Approx. Theory, 36 (1982), No.2, 104–118.

    MathSciNet  MATH  Google Scholar 

  • Goodman T.N.T.: 7. Solvability of cardinal spline interpolation problems. Proc. Roy. Soc. Edinburg, 95 (1983), 1187–1205.

    Google Scholar 

  • Goodman T.N.T.: 8. Duality for infinite Hermite spline interpolation. Rocky Mountain J. Math., 13 (1983), 619–625.

    MathSciNet  MATH  Google Scholar 

  • Goodman T.N.T.: 9. Propertis of B — Splines. J. Approx. Theory, 44 (1985), No.2, 132–153.

    MathSciNet  MATH  Google Scholar 

  • Goodman T.N.T.: 10. Some properties of bivariate Bernstein — Schoenberg operators. Constr. Approx., 3 (1987), 123–130.

    MathSciNet  MATH  Google Scholar 

  • Goodman T.N.T.: 11. Spline curves and surface in interpolation and design. Bull. Inst. Math. Appl., 24 (1988), 82–85.

    MathSciNet  MATH  Google Scholar 

  • Goodman T.N.T.: 12. Constructing piecewise rational curves with Frenet frame continuity. Comput. Aided Geom. Design (special issue), 7 (1990), No. 1–4, 15–31.

    MATH  Google Scholar 

  • Goodman T.N.T.: 13. Closed surfaces defined from biquadratic splines. Constr. Approx., 7 (1991), 149–160.

    MathSciNet  MATH  Google Scholar 

  • Goodman T.N.T.: 14. Inflections on curves in two and three dimensions. Comput. Aided Geom. Design., 8 (1991), 37–50.

    MathSciNet  MATH  Google Scholar 

  • Goodman T.N.T.: 15. Joining rational curves smoothly. Comput. Aided. Geom. Design, 8 (1991), No.6, 443–464.

    MathSciNet  MATH  Google Scholar 

  • Goodman T.N.T.: 16. Two ways to construct a smooth piecewise rational curve. J. Approx. Theory, 72 (1993), 69–86.

    MathSciNet  MATH  Google Scholar 

  • Goodman T.N.T.: 17. New bounds on the zeros of spline functions. J. Approx. Theory, 76 (1994), No.1, 123–130.

    MathSciNet  MATH  Google Scholar 

  • Goodman T.N.T.: 18. Interpolatory Hermite spline wavelets. J. Approx. Theory, 78 (1994), No.2, 174–189.

    MathSciNet  MATH  Google Scholar 

  • Goodman T.N.T.: 19. Asymptotic formulas for multivariate Bernstein — Schoenberg operators. Constr. Approx., 11 (1995), No.4, 439–453.

    MathSciNet  MATH  Google Scholar 

  • Goodman T.N.T.: 20. Properties of bivariate refinable spline pairs. In: Multivariate Approximations (Edited by W. Haussmann e.a.), Akademie Verlag, Berlin, 1997, 63–82.

    Google Scholar 

  • Goodman T.N.T.; Lee S.L.: 1. Another extremal property of perfect splines. Proc. Amer. Math. Soc., 70 (1978), 129–135.

    MathSciNet  MATH  Google Scholar 

  • Goodman T.N.T.; Lee S.L.: 2. Some extremal problems involving perfect splines. Comment. Math. Special Issue, 2 (1979), 127–137.

    MathSciNet  Google Scholar 

  • Goodman T.N.T.; Lee S.L.: 3. A class of generalized cardinal splines. J. Approx. Theory, 27 (1979), 99–112.

    MathSciNet  MATH  Google Scholar 

  • Goodman T.N.T.; Lee S.L.: 4. Limits of cardinal spline functions. Southeast Asian Bull. Math. Special Issue, (1979), 84–101.

    Google Scholar 

  • Goodman T.N.T.; Lee S.L.: 5. Spline approximation operators of Bernstein — Schoenberg type in one and two variables. J. Approx. Theory, 33 (1981), 248–263.

    MathSciNet  MATH  Google Scholar 

  • Goodman T.N.T.; Lee S.L.: 6. The Budan — Fourier theorem and Hermite — Birkhoff spline interpolations. Trans. Amer. Math. Soc., 271 (1982), 469–483.

    MathSciNet  MATH  Google Scholar 

  • Goodman T.N.T.; Lee S.L.: 7. Cardinal interpolation by D m — splines. Proc. Roy. Soc. Edinburg, 94 (1983), 149–161.

    MathSciNet  MATH  Google Scholar 

  • Goodman T.N.T.; Lee S.L.: 8. Interpolatory and variation — diminishing properties of generalized B — splines. Proc. R. Soc. Edinburg. Sect. A, 96 (1984), 249–259.

    MathSciNet  MATH  Google Scholar 

  • Goodman T.N.T.; Lee S.L.: 9. Properties of Beta-splines. J. Approx. Theory, 44 (1985), No.2, 132–153.

    MathSciNet  MATH  Google Scholar 

  • Goodman T.N.T.; Lee S.L.: 10. Convolution operators with trigonometric spline kernels. Proc. Edinb. Math. Soc. II. Ser., 31 (1988), No.2, 285–299.

    MathSciNet  MATH  Google Scholar 

  • Goodman T.N.T.; Lee S.L.: 11. Homogeneous polynomial splines. Proc. Roy. Soc. Edinburg Sect. A, 117 (1991), No.1–2, 89–102.

    MathSciNet  MATH  Google Scholar 

  • Goodman T.N.T.; Lee S.L.: 12. Wavelets of multiplicity r. Trans. Amer. Math. Soc. 342 (1994), No.1, 307–324.

    MathSciNet  MATH  Google Scholar 

  • Goodmann T.N.T.; Lee S.L.; Sharma A.: 1. Approximation by — spline of the circle. Canadian J. of Math., 37 (1985), No.6, 1085–1111.

    Google Scholar 

  • Goodmann T.N.T.; Lee S.L.; Sharma A.: 2. Approximation and interpolation by complex splines on the torus. Proc. Edinb. Math. Soc. II, Ser. 32, No.2 (1989), 197–212.

    Google Scholar 

  • Goodmann T.N.T.; Michelli C.A.: Limits of spline functions with periodic knots. J. London Math. Soc., 28 (1983), 103–112.

    MathSciNet  Google Scholar 

  • Goodman T.N.T.; Ong B.H.: Calculating areas of box splines surfaces. Comput — Aided Design, 27 (1995), No.6, 476–486.

    Google Scholar 

  • Goodmann T.N.T.; Schoenberg I.J.; Sharma A.: Piecewise smooth solution of some difference — differential equations. J. Approx. Theory, 48 (1986), No.3, 262–271.

    MathSciNet  Google Scholar 

  • Goodmann T.N.T.; Sharma A.: A Bernstein — Schoenberg type operators: shape preserving and limiting behaviour. Conad. J. Math., 47 (1995), No.5,959–973.

    Google Scholar 

  • Goodmann T.N.T; Taani A.A.: Cardinal interpolation by symmetric exponential box splines on a three — direction mesh. Proc. Edinburg Math. Soc., 33 (1990), No.2, 251–264.

    Google Scholar 

  • Goodmann T.N.T.; Unsworth K.: 1. Manipulating shape and producing geometric continuity in B-spline curves. IEEE Computer Graphics Applics., 6 (1986), 50–56.

    Google Scholar 

  • Goodmann T.N.T.; Unsworth K.: 2. Shape — preserving interpolation by parametrically defined curves. SIAM J. Numer. Anal., 25 (1988), No.6, 1453–1465.

    MathSciNet  Google Scholar 

  • Goodmann T.N.T.; Unsworth K.: 3. Generation of B — spline curves using a recurrence relation. In NATO ASI Servies F, Fundamental Algorithms for Computer Graphics, 325–353. Springer V., 1991.

    Google Scholar 

  • Goodsell G.: A multigrid-type method for thin plate spline interpolation on a circle. IMA J. Numer. Anal., 17 (1997), No.2, 321–337.

    MathSciNet  MATH  Google Scholar 

  • Gorbenko N.I.; Hin N.P.: Spline solution of the Dirichlet problem for the Poisson equation in two — dimensional methods. Variational — difference in mathematical — physics. Akad. Nauk. SSSR, Sibirsk. Otdel. Novosibirsk, 71–80.

    Google Scholar 

  • Gorbunov V.K.: The method of normal spline collocation. (russian). Zh. Vychisl. Mat. i Mat. fiz., 29 (1989), No.2, 212–224.

    MathSciNet  MATH  Google Scholar 

  • Gordon W.J.: 1. Spline — blended surface interpolation through curve networks. J. Math. Mech., 18 (1969), 931–952.

    MathSciNet  MATH  Google Scholar 

  • Gordon W.J.: 2. Blending — functions methods of bivariate and multivariate interpolation and approximation. SIAM J. Numer. 1. Anal., 8 (1971), 158–177.

    MATH  Google Scholar 

  • Gordon W.J.; Riesenfeld R.F.: 1. B — spline curves and surfaces. Comput. Aided Geom. Des. New York, (1974), 95–126.

    Google Scholar 

  • Gordon W.J.; Riesenfeld R.F.: 2. Bernstein — Bezier methods for the computer — aided design of free form curves and surfaces. Journal of ACM, 21 (1974), No.2, 293–310.

    MathSciNet  MATH  Google Scholar 

  • Gorenflo R.: Numerical treatment of Abel integral equations. In G. Anger ed. Inverse and improperly posed problems in differential equations. Akad. Verlag. Berlin, (1979), 125–133.

    Google Scholar 

  • Gori Lauri Nicolo Amati: 1. A method of interpolation by means of generalized splines. (italian). Rend Mat., 4 (1984), No.4, 601–616.

    MathSciNet  Google Scholar 

  • Gori Lauri Nicolo Amati: 2. Splines and Cauchy principal value integrals. Advanced Math. Tools in Metrology (Torino), 1993), 115–122, SAMAS 16, World Sci. Publishing, RE, N.J., 1994.

    Google Scholar 

  • Gori L.; Santi E.: 1. Monospline connected with quasi — Gaussian functional: Some properties. (italian). Calcolo, 25 (1988), No.4, 281–299.

    MathSciNet  MATH  Google Scholar 

  • Gori L.; Santi E.: 2. The Peano kernel in relation to quasi — Gaussian quadrature formulae. Facta Universitatis (Niš). Ser. Math. Inform., 3 (1988), 73–86.

    MathSciNet  MATH  Google Scholar 

  • Gori L.; Santi E.: 3. On a method of approximation by means of spline functions. Approximation, Optimization and Computing. Theory and Applications, (ed. by A.G. Law and C.L. Wong), (1990), 41–46.

    Google Scholar 

  • Gori L.; Santi E.: 4. Moment preserving approximations: a monospline approach. Rend. Mat. Appl., 12 (1992), No.4, 1031–1044.

    MathSciNet  MATH  Google Scholar 

  • Gormaz R.: Polar cone splines. In ” Multivariate Approximation”, W. Haussmann e.a. (eds.), M.R. 101, Akademie Verlag, Berlin, 1997, 83–94.

    Google Scholar 

  • Goshtasby Ardeshir: Geometric modelling using rational Gaussian curves and surfaces. Comput. Aided Des., 27 (1995), No.5, 363–375.

    MATH  Google Scholar 

  • Goshtasby A.; Cheng F.; Barsky B.A.: B-spline curves and surfaces viewed as digital filters. Comput. Vision Graph. and Image Proc., 52 (1990), No.2, 264–275.

    Google Scholar 

  • Gottlieb D.; Gustafsson B.; Olsson P.; Strand B.: On the superconvergence of Galerkin methods for hyperbolic I.B.V.P.. SIAM J. Numer. Anal., 33 (1996),No.5, 1778–1796.

    MathSciNet  MATH  Google Scholar 

  • Gourlay A.R.: Some recent methods for the numerical solution of time — dependent partial differential equations. Proc. Roy. Soc. London, 323 (1971), 219–235.

    MathSciNet  MATH  Google Scholar 

  • Grabowski H.; Li X.: Coefficient formula and matrix of nonuniform B — spline functions Comput — Aided Des. 24 (1992), No.12, 637–642.

    MATH  Google Scholar 

  • Graham G.I.; Joe S.; Sloan I.H.: Iterated Galerkin versus iterated collocation for integral equations of the second kind. IMA Journal Numer. Anal., 5 (1985), 355–369.

    MathSciNet  MATH  Google Scholar 

  • Graham N.Y.: Smoothing with periodic cubic splines. Bell. System. Tech. J., 62 (1983), Part. 1, 101–110.

    MathSciNet  MATH  Google Scholar 

  • Grandine T.A.: 1. The evolution of inner products of multivariate simplex splines. SIAM J. Numer. Anal., 24 (1987), No.4, 882–886.

    MathSciNet  MATH  Google Scholar 

  • Grandine T.A.: 2. The computional cost of simplex spline functions. SIAM J. Numer. Anal., 24 (1987), No.4, 887–890.

    MathSciNet  MATH  Google Scholar 

  • Grandine T.A.: 3. An iterative method for computing multivariate C 1 — piecewise polynomial interpolants. CAGD, 4 (1987), 307–319.

    MathSciNet  MATH  Google Scholar 

  • Grandine T.A.: 4. A stable evolution of multivariate simplex spline. Math. Comput., 50 (1988), 197–205.

    MathSciNet  MATH  Google Scholar 

  • Grandine T.A.: 5. Computing zeroes of spline functions. Comput. Aided. Geom. Des., 6 (1989), No.2, 129–136.

    MathSciNet  MATH  Google Scholar 

  • Grandine T.A.: 6. On convexity of piecewise polynomial functions on triangulations. Comput. Aided Geom. Design, 6 (1989), 181–187.

    MathSciNet  MATH  Google Scholar 

  • Grebenikov A.L: 1. Generalized splines and piecewise interpolation. Trudy 2th Conf. molodîh Uc. Fak. Vycisl. Mat. i Kibern. Moskow Univ., (1975), 61–68.

    Google Scholar 

  • Grebenikov A.L: 2. Approksimatia kvadraticinîmi splainami. Cisl. analiz. na FORTRANE. M. Moskow Univ., 15 (1976), 91–95.

    Google Scholar 

  • Grebenikov A.L: 3. O vîbore uzlov pri approximatij functij adnoi i mnogih peremenih s splainami. Vyčisl. Mat. i Mat. Fiz., 16 (1976), 219–223.

    Google Scholar 

  • Grebenikov A.L: 4. O iavnom metode approximatij functij adnoi i mnogih peremeennîh splainami. Vyčisl. Mat. i Mat. Fiz., 18 (1978), 853–859.

    Google Scholar 

  • Grebenikov A.L: 5. Optimal choise of grids in the interpolation of functions of two variables by splines. (russian). Vyčisl. Metody i Programirovania, 35 (1981), 154–158.

    Google Scholar 

  • Grebenikov A.L: 6. Solution of some operator equations by the method of splines. (russian). Numer. Anal. methode, algorithms, programs; Collect. Artic. Moskva, (1983), 110–119.

    Google Scholar 

  • Grebenikov A.L: 7. Regularizing properties of explicit approximating splines. In Mathematical modeling, methods, automation of the processing of observations and their applications. (russian). Moskov. Gos. Univ., Moskow, 275 (1986), 39–46.

    Google Scholar 

  • Grebenikov A.L: 8. A spline approximation method for solving some ill — posed problems. (russian). Sov. Math. Dokl., 37 (1988), No.1, 102–105.

    Google Scholar 

  • Grebenikov A.L: 9. Spline approximation method for restoring functions. Soviet. J. numer. anal. Math. Modelling, 4 (1989), No.4, 267–281.

    MathSciNet  Google Scholar 

  • Grebenikov A.L: 10. Solving integral equations with the singularity in the kernel by the spline approximation method. Soviet. J. Numer. Math. Modelling, 5 (1990), No.3, 199–208.

    Google Scholar 

  • Grebenikov A.L: 11. Spline — algorithm for solving some ill — posed problems. (rassian). O kooperiraem. rabotah. NIVTz. Mosk. God. Univ., (1990), 77–99.

    Google Scholar 

  • Grebenikov A.I.; Stolyarenko D.A.: Numerical analysis of spline algorithms for smoothing functions of two variables defines with error on irregular grids. (rassian). Methods and algorithms of numerical analysis. 80–94, Moskov. Gos. Univ. Moscow, 1987, (eds: Bakhvalov N.S.; Karmanov VG; Morozov V.A.).

    Google Scholar 

  • Greenwell — Yanik C.E.; Fairweather G.: Analyses of spline collocation methods for parabolic and hyperbolic problems in two spaces variables. SIAM J. Numer. Anal., 23 (1986), 282–296.

    MathSciNet  MATH  Google Scholar 

  • Gregory J.A.: 1. Shape preserving spline interpolation. Computer — Aided Design, 18 (1986), 53–57.

    Google Scholar 

  • Gregory J.A.: 2. Shape preserving rational spline interpolation rational approximation and interpolation. Graves — Morris, Saff, Varga (eds). Springer, Berlin, 431–441.

    Google Scholar 

  • Gregory J.A.; Hahn J.M.: 1. Geometric continuity and convex combination patches. Computer Aided Geom. Design, 4 (1987), 79–89.

    MathSciNet  MATH  Google Scholar 

  • Gregory J.A.; Hahn J.M.: 2. A C 2 — polygonal surface patch. Computer Aided Geometric Design, 6 (1989), 69–75.

    MathSciNet  MATH  Google Scholar 

  • Gregory J.A.; Hughes H.R.: 1. A generalized approximation theory for quadratic forms: application to randomized spline type Sturm — Liouville problems. J. Theoret. Probab., 8 (1995), No.3, 703–715.

    MathSciNet  MATH  Google Scholar 

  • Gregory J.A.; Hughes H.R.: 2. A generalized approximation theory for quadratic forms II. Application to randomized spline type focal/conjugate point problems. J. Theoret. Probab., 8 (1995), No.4, 963–971.

    MathSciNet  MATH  Google Scholar 

  • Gregory J.A.; Sarfraz M.: A rational cubic spline with tension. Comput. Aided Geom. Design. (special issue), 7 (1990), No.1–4, 1–14.

    MathSciNet  MATH  Google Scholar 

  • Gregory John; Zeman Marvin: Spline matrices and their applications to some higher order methods for boundary value problems. SIAM J. Numer. Anal., 25 (1988), No.2, 399–410.

    MathSciNet  MATH  Google Scholar 

  • Greiner G.; Seidel H-P.: Modeling with triangular B-splines. IEEE Computer Graphics and Applications, March 1994, 56–60.

    Google Scholar 

  • Greiner H.: A survey on univariate data interpolation and approximation by splines of given shape. Math. Comput. Modelling, 15 (1991), No.10, 97–106.

    MathSciNet  MATH  Google Scholar 

  • Gresbrand A.: Rational B-splines with prescribed poles. Numerical Algorithms, 12 (1996), 151–158.

    MathSciNet  MATH  Google Scholar 

  • Greville T.N.E.: 1. Numerical procedures for interpolation by spline functions. SIAM J. Numer. Anal., 1 (1964), 53–68.

    MathSciNet  Google Scholar 

  • Greville T.N.E.: 2. Table for third-degree spline interpolation with equally spaced arguments. Math. Comput., 24 (1970), 179–183.

    MathSciNet  MATH  Google Scholar 

  • Greville T.N.E.: 3. On the normalization of the B-splines and the location of the nodes for the case of unequally spaced knots. Inequalities, ed. by O. Shisha, Academic Press, New York, (1967), 286–290.

    Google Scholar 

  • Greville T.N.E.; Schoenberg I.J.; Sharma A.: The spline interpolation of sequences satisfying a linear recurrence relation. J. Approx. Theory, 17 (1976), 201–221.

    MathSciNet  Google Scholar 

  • Grezdov G.I.; Saurin A.A.: Organization of interpolation proceses with spline functions of higher order. (russian). Gibrid. Vychisl. Mashini i Complexî, Kiev, (1989), No.12, 21–23.

    Google Scholar 

  • Griessmair J.; Purgathofer W.: Deformation of solids with trivariate B-splines. Proc. Eurographics 89, Elsevier Sci. Publ. North-Holland, 1989, 137–148.

    Google Scholar 

  • Grigorenko Ja. M.; Obljakuliev O.; Polishuk T.I.: On the numerical solution of system of differential equations using cubic splines. (russian). Vychisl.i Prikl. Matem., 32 (1977), 99–106.

    Google Scholar 

  • Grigorenko Ja. M.; Saparov H.; Berenov M.H.: O cislenii realizaţii metoda splainkollokatii v zadaciah izbiga priamougolnîh plastiu. Vychisl. i Prikl. Mat. (Kiev), 68 (1989), 93–100.

    MATH  Google Scholar 

  • Grigorenko M.M.; Skorospelov V.A.: O resenij adnoi zadaci oglajidanij cubiceskimi splainami. Vycisl. Sistemi Novosibirsk, 56 (1973).

    Google Scholar 

  • Grigorieff R.D.: Über Einbettungen mit interpolierenden Splines in Sobolewräume. Math. Nachr., 120 (1985), 267–273.

    MathSciNet  MATH  Google Scholar 

  • Grigorieff R.D.; Sloan I.H.: 1. High — order spline Petrov — Gahrkin methods with quadrature. ZAMM 76 (1996), Supplement 1, 15–18.

    Google Scholar 

  • Grigorieff R.D.; Sloan I.H.: 2. Spline Petrov-Galerkin methods with quadrature. Numer. Funct. Anal. Optim., 17(1996), No.7–8, 755–784.

    MathSciNet  MATH  Google Scholar 

  • Grigorkiv V.S.; Zaidov K. Kh.: Approximation of productions curves and surfaces by basis splines. (russian), Izv. Akad. Nauk. Tadzhik SSR Otdel, 1991, No.1 (119), 13–18.

    Google Scholar 

  • Grigorovici G.A.; NikolaišVili S.S.: On numerical solution of Volterra integral equations using spline approximations. Sam. Inst. Mat. Dokl., 12–13 (1978), 67–70.

    Google Scholar 

  • Griăin A.M.; Bercun V.N.: The iteration — interpolation method and spline theory. (russian). Dokladi Akad. Nauk. SSSR., 214 (1974), 751–754.

    Google Scholar 

  • Gritzenko N.A.: Using piecewise functions for the numerical solution of ordinary differential equations. (russian). In Diff. Eqs. and their Applications, Dnepropetrovsk, (1971), 11–16.

    Google Scholar 

  • Groetsch C.W.: Generalized inverses and generalized splines. Numer. Funct. Anal. Optim., 2 (1980), 93–97.

    MathSciNet  MATH  Google Scholar 

  • Gronger M.: Spline d’interpolation, commande optimale et filtrage. Rev. Cathedec, 17 (1980), 93–131.

    Google Scholar 

  • Grosse E.: Tensor spline approximation. Linear Algebra and Applic., 34 (1980), 29–41.

    MathSciNet  MATH  Google Scholar 

  • Grosse E.; Hobby J.D.: Improved rounding for spline coeffcients and knots. Math. Cornput. 63 (1994), No.207, 175–194.

    MathSciNet  MATH  Google Scholar 

  • Grossmann Ch.; Roos H.G.: Zur Herleitung der Konvergenzordnung bei C 1 — Spline — Kollokationsmethoden für eine monotone Rand — wertaufgabe. ZAMM, 68 (1988), 59–60.

    MathSciNet  MATH  Google Scholar 

  • Grossmann L.M.: A collocation method for the neutron transport equation. Transport Theory and Statistical Physics, 12.

    Google Scholar 

  • Grossmann L.M.; Hennart J.P.; Meade D.: Finite element collocation methods for space — time reactor dynamics. Trans. Amer. Nucl. Soc., 41 (1982), 311–312.

    Google Scholar 

  • Grozev G.R.: 1. Optimal quadrature formulae for differentiable functions. Calcolo, 23 (1986), Fasc. I, 67–92.

    MathSciNet  MATH  Google Scholar 

  • Grozev G.R.: 2. Comparison theorems for L — monosplines of minimal norm. Numer. Math., 56 (1989), 331–343.

    MathSciNet  MATH  Google Scholar 

  • Grzanna J.: Zweidimensionale Splineinterpolation über einen Polargitter. J. Approx. Theory, 22 (1978), 189–201.

    MathSciNet  MATH  Google Scholar 

  • Gu C.: 1. What happens when bootstrapping the smoothing spline. Comm. Statist. Theory Meth. 16 (1987), 3275–3284.

    MATH  Google Scholar 

  • Gu C.: 2. Adaptive spline smoothing in non — Gaussian regression models. J. Amer. Statist. Assoc., 85 (1990), 801–807.

    MathSciNet  Google Scholar 

  • Gu C.: 3. Interaction splines with regular data automatically smoothing digital images. SIAM J. Sci. Comput., 14 (1993), No.1, 218–230.

    MathSciNet  MATH  Google Scholar 

  • Gu C.; Bates D.M.; Chen Z.; Wahba G.: The computation of G.C.V. through Housenholder tridiagonalization with applications to the fitting of interactive spline models. SIAM J. Matrix Anal., 10 (1989), 457–480.

    MathSciNet  MATH  Google Scholar 

  • Gu C.; Wahba G.: 1. Minimizing GCV/GML scores with multiple smoothing parameters via the Newton method. SIAM J. Sci. Stat. Comput., 12 (1991), No.2, 383–398.

    MathSciNet  MATH  Google Scholar 

  • Gu C.; Wahba G.: 2. Semiparametric analysis of variance with tensor product thin plate splines. J.Roy Statist. Soc. Ser. B., 55 (1993), 353–368.

    MathSciNet  MATH  Google Scholar 

  • Guan Hui; Torii Tatsuo: An interactive method for desogning smooth convex curves by using a cubic B-spline formulation. Trans. Inform. Process. Soc. Japan, 26 (1995), No.12, 2754–2760.

    MathSciNet  Google Scholar 

  • Guan Lü Tai: 1. Spline on convex sets. (chinese) Yingyong Shuxue yu Jisnan Shuxue, (1981), No.4, 11–18.

    Google Scholar 

  • Guan Lü Tai: 2. A smoothing spline iterative algorithm for computing spline functions in a convex set. (chinese). Numer. Math. J. Chinese Univ., 4 (1982), 268–278.

    MathSciNet  Google Scholar 

  • Guan Lü Tai: 3. Multivariate generalized spline approximation to scattered data with continuous boundary conditions throughout a rectangle. (chinese). Acta Sci. Nat. Univ. Sunyatseni, (1986), No.2, 79–86.

    Google Scholar 

  • Guan Lü Tai: 4. A method for constructing numerical integration formulas higher dimensions with thin plate splines. (chinese). Acta Sci. Nat. Univ. Sunyatseni, (1988), No.1, 39–44.

    Google Scholar 

  • Guan Lü Tai: 5. Bivariate spline interpolation to scattered data on a triangle. (chinese). J. Numer. Methods. Comput. Appl., 10 (1989), No.1, 10–20.

    Google Scholar 

  • Guan Lü Tai: 6. Bicubic polynomial natural splines with differential conditions to interpolation of reflecting antenna surfaces. (chinese), Nat. Sci. J. Xiangtan Univ., 15 (1993), Suppl. 189–197.

    Google Scholar 

  • Guan Lü Tai: 7. Local cardinal spline method in periodic solutions of a two-degree-of-freeden nonlinear equation. (chinese), Nat. Sci. J. Xiangtan Univ., 15 (1993), Suppl. 17–24.

    Google Scholar 

  • Guan Lü Tai: 8. Polynimial natural spline smoothing interpolation and generalized interpolation to scattered data. (chinese), Math. Numer. Sinica, 15 (1993), No.4, 383–401.

    Google Scholar 

  • Guan Lü Tai: 9. Truncated B-spline-wavelets on a bounded interval and its vanishing moment property. (chinese). Acta Sci. Nat. Univ. Sunyatseni, 35 (1996), No.3, 28–33.

    Google Scholar 

  • Guan Shi Hong; Chen Zhan — Ben: Generalized L 2 — error estimates for spline interpolation on spline spaces S (2m — 1, D, Z), (m — 1 ≤ z ≤ 2m — 2) and optimal L 2 — error priori bounds for odd degree spline interpolation and its derivatives. (chinese). Math. Numer. Sinica, 7 (1985), No.2, 124–130.

    MathSciNet  Google Scholar 

  • Guglielmo F. di: 1. Méthode des éléments finit: une famille d’approximations des espèces de Sobolev par les translatés des fonctions. Calcolo, 7 (1970), 185–233.

    MathSciNet  MATH  Google Scholar 

  • Guglielmo F. di: 2. Résolution approchée des problèmes aux limites elliptiques pour des schèmes aux éléments finit à plusieurs fonctions arbitraires. Calcolo, 8 (1971), 185–213.

    MathSciNet  Google Scholar 

  • Guid Niko; Zalik Borut: Contributions to practical consideration of B — splines. Automatika, 31 (1990), 83–88.

    Google Scholar 

  • Guo Jun Bin: On the dimension of the bivariate spline spaces S 3r r(Δ 002A). J.Math. Res. Exposition 14 (1994), No.3, 367–378.

    MathSciNet  Google Scholar 

  • Guo Shun Sheng: On a saturation for a spline approximation. Approx. Theory Appl., 10 (1994), no.1, 65–75.

    MathSciNet  Google Scholar 

  • Guo Wen; Stynes M.: Finite element analysis of exponentially fitted Lumped schemes for time — dependent convection — deffusion problems. Numer. Math., 66 (1993), No.3, 347–371.

    MathSciNet  MATH  Google Scholar 

  • Guo Wen Yi: On complex lacunary interpolation splines of class C 2. (chinese). J. Fudan Univ. Natur. Sci., 24 (1985), 13–20.

    MathSciNet  Google Scholar 

  • Guo Zhu Rui: 1. On some problems in spline approximation. (chinese). Zhejiang Daxue, Xuebao, (1979), No.4, 11–48.

    Google Scholar 

  • Guo Zhu Rui: 2. On a sort of interpolating spline. (chinese). Math. Numer. Sinica, 2 (1980), 282–287.

    MathSciNet  Google Scholar 

  • Guo Zhu Rui: 3. Note on lacunary interpolatioon by splines. (chinese). Math. Numer. Sinica, 3 (1981), 175–178.

    MathSciNet  Google Scholar 

  • Guo Zhu Rui: 4. On lacunary spline interpolation. (chinese). Math. Numer. Sinica, 4 (1982), 109–113.

    MathSciNet  Google Scholar 

  • Guo Zhu Rui: 5. Smoothness of best L p — approximation of a class of nonlinear generalized splines. (chinese). Chinese Ann. Math. Ser. A, 10 (1989), No.4, 416–420.

    MathSciNet  Google Scholar 

  • Guo Zhu Rui; Jia Rong Qing: AB-net approach to the study of multivariate splines. (chinese). Adv. in Math. (China)., 19 (1990), No.2, 189–198.

    MathSciNet  Google Scholar 

  • Guo Zhu Rui; Sha Zhen: Some problems concerning interpolating splines. (chinese). Yingyong Shuxue yu Jisnan Shuxue, (1981), No. 5, 1–17.

    Google Scholar 

  • Guo Zhu Rui; Ye Maodong; Huang Oa Ren: 1. Approximation degree of the recurrent interpolation splines. (chinese). Chin. Ann. Math. A, 6 (1985), No.2, 163–168.

    Google Scholar 

  • Guo Zhu Rui; Ye Maodong; Huang Oa Ren: 2. Lacunary interpolation by splines I, II. J. Math. Res. Exposition, 7 (1987), No.1, 87–96.

    MathSciNet  Google Scholar 

  • Guo Zhu Rui; Zhen Sha; Wu Shengc Hang: On interpolation splines S k 1(Δ mn (i)). (chinese). Chin. Ann. Math. Ser. A, 8 (1987), 368–376.

    Google Scholar 

  • Gusar V.V.: 1. On spline — controlability and approximate finding of the optimal spline control. (russian). Ukrainsk. Mat. J., 40 (1988), 724–730.

    MathSciNet  Google Scholar 

  • Gusar V.V.: 2. Ob adnoi zadace splain — upravlenia nelineinîmi sistemami. Differenţialnîe Uravnenia, 24 (1988), No.9, 1475–1480.

    MathSciNet  Google Scholar 

  • Gutknecht M.H.: The evaluation of the conjugate function of a periodic spline on a uniforme mesh. J. Comput. Appl. Math., 16 (1986), 181–201.

    MathSciNet  MATH  Google Scholar 

  • Guzek A.J.; Kemper A.G.: A new error analysis for a cubic spline approximate solution of a class of Volterra integro — differential equations. Math. Comput., 27 (1973), 563–570.

    MathSciNet  MATH  Google Scholar 

  • Günttner R.: Exact bounds for the uniform approximation by cardinal spline interpolants. Numer. Math. 68 (1994), No.2, 263–267.

    MathSciNet  MATH  Google Scholar 

  • Giismann B.: 1. Fehlerschranken der Galerkin — Projektionen auf Splines mit ungleichmässingen Unterteilungen. ZAMM, 59 (1979), 61–62.

    Google Scholar 

  • Giismann B.: 2. Bounds of Galerkin projections on splines with highly nonuniform meshes. SIAM. J. Numer. Anal., 18 (1981), 1109–1119.

    MathSciNet  Google Scholar 

  • Gyn N.; Ron A.: Cardinal translation invariant Cebysevian B — spline. Approximation Theory Appl., 6 (1990), No.2, 1–12.

    MATH  Google Scholar 

  • Györváry J.: 1. Spline — Funktionen und das Cauchy — Problem. Proc. Internat. Conf. on Constructive Funktion Theory, Varna, 31. May — 6 Junie, 1981.

    Google Scholar 

  • Györváry J.: 2. Spline — Funktionen und das Cauchy Problem. Sb. VSCHT Praze, R, 4 (1982), 109–112.

    Google Scholar 

  • Györváry J.: 3. Eine spezielle Spline — Funktion und das Cauchy Problem. Anal. Univ. Sci. Budapest, 3 (1982), 73–83.

    Google Scholar 

  • Györváry J.: 4. Lakunäre Interpolation mit spline-funktionen die Fälle (0, 2, 3), und (0, 2, 4). Acta Math. Hungar., 42 (1983), 25–33.

    MathSciNet  Google Scholar 

  • Györváry J.: 5. Numerische Lösung der Differentialgleichungen y″ = f(x, y, y′) mit Spline — Funktion. Ann. Univ. Sci. Budapest, Sect. Comput., 4 (1983), 21–27.

    MathSciNet  Google Scholar 

  • Györváry J.: 6. Lakunäre Interpolation mit Spline — Funktionem. Acta Math. Hung., 44 (3–4), (1984), 327–333.

    Google Scholar 

  • Györváry J.: 7. Cauchy problem and modified lacunary spline functions. Constructive Theory of Functions, Sofia, 84 (1984), 392–396.

    Google Scholar 

  • Györváry J.: 8. Die Lösung der Anfangsprobleme der gewöhnlichen Differentialgleichungen mit Hilfe der modifizierten lakunären Spline — Funktionen. Function spaces (Poznan, 1986), 158–163, Teubner-Texte Math. 103, Teubner, Leipzig, 1988.

    Google Scholar 

  • Györváry J.: 9. The numerical solution of differential equations using modefied lacunary spline functions of type (0;2;3). Acta Math. Hungar. 64 (1994), No.4, 397–408.

    MathSciNet  Google Scholar 

  • Györváry J.; Mihálykó Cs.: The numerical solution of nonlinear differential equations by spline functions. Acta Math. Hungarica, 59 (1992), No.1–2, 39–48.

    Google Scholar 

  • H aas R.: Module and vector space bases for spline spaces. J. Approx. Theory, 65 (1991), No.1, 73–89.

    MathSciNet  MATH  Google Scholar 

  • Haase M.C.: Extra smoothness requirements for Galerkin methods for the wave equations. SLAM J. Numer. Anal., 33 (1996), No.5, 1962–1968.

    MathSciNet  MATH  Google Scholar 

  • Hadjidimos A.; Houstis E.N.; Rice J.R.; Vavalis E.A.: Iterative line cubic spline collocation method for elliptic partial differential equations in several dimensions. SIAM. Sci. Comput., 14 (1993), No.3, 715–734.

    MathSciNet  MATH  Google Scholar 

  • Hagen H.: Geometric spline curves. Comput. Aided. Geom. Des. 2 (1985), No.1–3, 223–227.

    MathSciNet  MATH  Google Scholar 

  • Hagen R.: Über eine Kollokationsmethode zur lösung von parabolischen Differentialgleichungen. Wiss. Z. Techn. Hochsch. Karl — Marx — Stadt, 21 (1979), 917–922.

    MathSciNet  MATH  Google Scholar 

  • Haimovici A.: Sur une certaine approximation des distributions généralisant des formules d’intégration, de dérivation numérique et d’interpolation. Rev. Roumaine Math. Pures. Appl., 15 (1970), 1415–1419.

    MathSciNet  MATH  Google Scholar 

  • Hakop A. Hakopian: 1. Multivariate divided differences and multivariate interpolation of Lagrange and Hermite type. J. Approx. Theory, 34 (1982), 286–305.

    MathSciNet  MATH  Google Scholar 

  • Hakop A. Hakopian: 2. Multivariate spline functions, B — spline basis and polynomial interpolation I. SIAM J. Numer. Anal., 19 (1982), 510–517. II. Studia Math., 9 (1984), 91–102.

    MathSciNet  MATH  Google Scholar 

  • Hakopian H.; Saakian A.A.: 1. O sisteme differenţialnîh uravnenia zvjazannoi s polynomialnîm klassom box splaina. Matem. Zametki, 44 (1988), No.6, 705–724.

    Google Scholar 

  • Hakopian H.; Saakian A.A.: 2. Multidimensional splines and polynomial interpolation. (russian) Uspekhi Mat. Nauk. 48 (1993), No.5, 376.

    Google Scholar 

  • Hallang A.W.: 1. Approximation durch positive lineare Splines — Operatoren konstruiert mit Hilfe lokalor Integrale. J. Approx. Theory, 28 (1980), 161–183.

    MathSciNet  Google Scholar 

  • Hallang A.W.: 2. A topological spline system approach to even degree polynomial splines. Numer. Funct. Anal. and Optim., 9 (1987), No.7–8, 725–742.

    MathSciNet  Google Scholar 

  • Hall C.A.: 1. On error bounds for spline interpolation. J. Approx. Theory, 1 (1968), 209–218.

    MATH  Google Scholar 

  • Hall C.A.: 2. Error bounds for periodic quintic splines. Comun. ACM., 12 (1969), 450–452.

    MATH  Google Scholar 

  • Hall C.A.: 3. Bicubic interpolation over triangles. J. Math. Mech., 19 (1969), 1–11.

    MathSciNet  MATH  Google Scholar 

  • Hall C.A.: 4. Natural cubic and bicubic spline interpolation. SLAM J. Numer. Anal., 10 (1973), 1055–1060.

    MATH  Google Scholar 

  • Hall C.A.: 5. Uniform convergence of cubic spline interpolante. J. Approx. Theory, 7 (1973), 71–75.

    MATH  Google Scholar 

  • Hall C.A.: 6. Error bounds for bicubic spline interpolation. J. Approx. Theory, 7 (1973), 41–47.

    MATH  Google Scholar 

  • Hall C.A.; Meyer W.W.: Optimal error bounds for cubic spline interpolation. J. Approx. Theory, 16 (1976), 105–122.

    MathSciNet  MATH  Google Scholar 

  • Hallet P.; Mund E.H.; Hennart J.P.: An logorithm for the interpolation of functions using quintic splines. J. Comput. Appl. Math., 1 (1975), 279–288.

    MathSciNet  MATH  Google Scholar 

  • Halpem E.F.: Bayesian spline regression when the number of knots is unknown. J. of the Royal Statistical Society, Series B, 35 (1973), 347–360.

    Google Scholar 

  • Hamann Bernd: Construction of a B-spline approximation for use in numerical grid generation. Appl. Math. Comput., 65 (1994), No. 1–3, 295–314.

    MathSciNet  MATH  Google Scholar 

  • Hamann Bernd; Jean B.A: Interactive surface correction based on a local approximation scheme. CAGD, 13 (1996), No.4, 351–358.

    MATH  Google Scholar 

  • Hamann Bernd; Jsai P.-Y.: A tessellation algorithm for the representation of trimmed NURBS surfaces with arbitrary trimming curves. Computer — Aided Design, 28 (1996), 461–472.

    Google Scholar 

  • Hamina Matti; Saranen Jukka: 1. On the spline collocation method for the single — layer heat operator equation. ZAMM, 71 (1991), 629–631.

    Google Scholar 

  • Hamina Matti; Saranen Jukka: 2. On the spline collocation method for the single — layer heat operator equation. Boundary elements, XIV, Vol.1. (Seville 1992), 349–363 and Math. Comput., 62 (1994), No.205, 41–64.

    Google Scholar 

  • Häm merlin G.; Schumaker L.L.: 1. Error bounds for the approximation of Green’s kernels by splines. Numer. Math., 35 (1979), 17–22.

    Google Scholar 

  • Häm merlin G.; Schumaker L.L.: 2. Procedures for kernel approximation and solution of Fredholm integral equations of the second kind. Numer. Math., 34 (1987), 125–141.

    Google Scholar 

  • Hämmerlin G.; Lückemann W.: The numerical treatment of integral equations by a substitution karnel method using blending-splines. Memorie Accad. Nazionale Sci. Lattere e Arti di Modena, Serie VI, 21 (1979), 1–15.

    Google Scholar 

  • Hämmerlin G.; Nikolis A.: Superkonvergenz bei trigonometrischen Splines und spline — on — splines. In: Beitröge zur Angewanden Analysis und Informatik. Aachen, Shaker Verlag, Berichle aus der Math. (1994), 112–122.

    Google Scholar 

  • Handscomb D.C.: 1. Spline representation of incompresible flow. IMA J. Numer. Anal., 4 (1984), 491–502.

    MathSciNet  MATH  Google Scholar 

  • Handscomb D.C.: 2. Local recovery of a solenoidal vector field by an extension of the thin — plate spline technique. Numer. Algorithms, 5 (1993), No.1–4.

    Google Scholar 

  • Hangelbrock R.J.; Kaper H.G.; Leaf G.K.: Collocation methods for integro — differential equations. SIAM J. Numer. Anal., 14 (1977), 377–390.

    MathSciNet  Google Scholar 

  • Han Guoqiang: 1. Extrapolation of a discrete collocation-type method of Hammerstein equations. J.Comput. Appl. Maths., 61 (1985), 73–86.

    Google Scholar 

  • Han Guoqiang: 2. The asymptotic expansion for the second kind cubic interpolation spline. (chinese). Math. Numer. Sin., 8 (1986), 200–204.

    MATH  Google Scholar 

  • Han Guoqiang: 3. Asymptotic expressions and superconvergence for odd periodic spline interpolation. (chinese). Numer. Math. J. Chin. Univ., 9 (1987), No.3, 193–197.

    MATH  Google Scholar 

  • Han Guoqiang: 4. Asymptotic expressions and extrapolations of tension spline collocation for second — order ordinary differential equations. (chinese). Math. Numer. Sin., 10 (1988), No.1, 18–26.

    MATH  Google Scholar 

  • Han Guoqiang: 5. Asymptotic expressions for the remainder terms in fourth order operator spline interpolation, and their points of superconvergence. (chinese). Numer. Math. J. Chinese Univ., 10 (1988), No.2, 126–135.

    MathSciNet  Google Scholar 

  • Han Guoqiang: 6. A construction for histogram spline interpolation in Hilbert spaces. (chinese). Math. Numer. Sinica, 11 (1989), 212–219.

    MathSciNet  MATH  Google Scholar 

  • Han Guoqiang: 7. Correction and extrapolation of difference and spline methods for singular boundary value problems. (chinese). Numer. Math. J. Chinese Univ., 13 (1991), No.2, 141–146.

    MathSciNet  MATH  Google Scholar 

  • Han Guoqiang: 8. Asymptotic formulas for interpolation by a class of even splines and their superconvergence. (chinese). J. Math. Wuhan, 11 (1991), No.4, 475–478.

    MathSciNet  Google Scholar 

  • Han Guoqiang: 9. Spline finite difference methods and their extrapolation for singular two — point boundary value problems. J. Comput. Math. 11 (1993), No.4, 289–296.

    MathSciNet  MATH  Google Scholar 

  • Han Guoqiang: 10. Asymptotic error expansion of a collocation — type method for Volterra — Hammerstein integral equations. Appl. Numer. Math. 13 (1993), 357–369.

    MathSciNet  MATH  Google Scholar 

  • Han Guoqiang: 11. Asymptotic error expansion of quadratic spline collocation solutions for two-point boundary value problems. Numer. Math. J. Chinese Univ., 3 (1994), No.2, 120–125.

    MathSciNet  MATH  Google Scholar 

  • Han Guoqiang; Zhang Liqing: 1. Asymptotic error expansion of two-dimensional Volterra integral equation by iterated collocation. Appl. Math. Comput., 61 (1994), No.1, 269–286.

    MathSciNet  MATH  Google Scholar 

  • Han Guoqiang; Zhang Liqing: 2. Asymptotic error expansion of a collocation-type method for Hammerstein equations. Appl. Math. and Comput., 72 (1995), 1–19.

    MathSciNet  MATH  Google Scholar 

  • Han Lin Chen: 1. Quasiinterpolant splines on the unit circle. J. Approx. Theory, 38 (1983), 312–318.

    MathSciNet  MATH  Google Scholar 

  • Han Lin Chen: 2. Interpolation and approximation on the unit disc by complex harmonic splines. J. Approx. Theory, 43 (1985), No.2, 112–123.

    MathSciNet  MATH  Google Scholar 

  • Han Lin Chen; Tron Hvaring: Approximation of complex harmonic functions by complex harmonic splines. Math. Comput., 42 (1984), 151–164.

    MathSciNet  MATH  Google Scholar 

  • Han Lu; Sehumaker L.L.: Fitting monoton surfaces to scattered data using C 1 piecewise polynomials. SIAM J. Numer. Anal., 34 (1997), No.2, 569–585.

    MathSciNet  MATH  Google Scholar 

  • Han Weimin; Jou Emery: On the computation of minimal energy splines. Applied Mathematics and Computation, 47 (1992), No.1, 1–13.

    MathSciNet  MATH  Google Scholar 

  • Hänler Anke: An error estimate for quadratic splines. Rostak Math. Kooloq., 46 (1993), 60–64.

    MATH  Google Scholar 

  • Hänler A.; Maess G.: 2D — interpolation by quadratic splines with minimal surface. Math. Research Berlin, Akademie Verlag, Vol. 52, (1989), 80–86.

    Google Scholar 

  • Hanna M.S.; Evans D.G.; Schiwitzer P.N.: On the approximation on plane curves by parametric cubic spline. BIT, 26 (1986), 217–232.

    MathSciNet  MATH  Google Scholar 

  • Hanson R.J.: Constrained least square curve fitting to discrete data using B-splines — A user quide. Saudia Laboratoris, pp. 78–1291, Sand. (1979).

    Google Scholar 

  • Hanson R.I.; Philips J.L.: An adaptive numerical method for solving linear Fredholm integral equations of the first kind. Numer. Math., 24 (1975), 291–307.

    MathSciNet  MATH  Google Scholar 

  • Hantzschumann K.: Basisfunktionen für Polynomsplines. Wiss. Z. Techn. Univ. Dresden, 25 (1976), 399–403.

    MathSciNet  Google Scholar 

  • Hao Yu Bin: 1. Explicit approximation by splines of the fifth degree with interpolation near the boundary. (russian). Zh. Vychisl. Mat. i Mat. Fiz., 29 (1989), No.8, 1236–1241.

    Google Scholar 

  • Hao Yu Bin: 2. Explicit approximation by spline functions on the number line. (chinese). Heilongjiang Daxue Ziran Kexue Xuebao, 7 (1990), No.1, 6–9.

    MathSciNet  Google Scholar 

  • Harada Koiehi; Nakamae Eilrachiro: 1. An isotropic four — point interpolation based on cubic splines. Comput. Graphcs Image Process, 20 (1982), 283–287.

    Google Scholar 

  • Harada Koiehi; Nakamae Eilrachiro: 2. Sampling point setting on cubic — splines for computer animation. Visual Comput., 5 (1989), 14–21.

    Google Scholar 

  • Harder R.L.; Desmarais R.N.: Interpolation using surface spline. J. Aircraft, 9 (1972), 189–197.

    Google Scholar 

  • Hartley P.J.; Judd C.J.: 1. Parametrization of Bezier — type B — spline curves and surfaces. Comput. Aided. Des., 10 (1978), 130–134.

    Google Scholar 

  • Hartley P.J.; Judd C.J.: 2. Parametrization and share of B — spline curves for CAD. Computer. Aided. Design, 12 (1980), No.5, 235–238.

    Google Scholar 

  • Hartmann E.: Blending of implicit surfaces with functional splines. Comput. Aided. Design, 22 (1990), No.8, 500–506.

    MATH  Google Scholar 

  • Hartmann E.; Feng Yu Yu: On the convexity of functioanl splines. CAGD., 10 (1993), No.2, 127–142.

    MathSciNet  MATH  Google Scholar 

  • Hastie Trevor: Pseudosplines. J. Roy. Statis. Soc. Ser., B. 58 (1996), No.2, 379–396.

    MATH  Google Scholar 

  • Hatamov A.: 1. Spline approximation of functions with a convex derivatives. (russian). Dokl. Akad. Nauk. USSR, 3 (1980), 4–6.

    MathSciNet  Google Scholar 

  • Hatamov A.: 2. O priblijenii funcţii a uîpukloi proizvodnoi posredstvom splainov. Izv. Vuzov. Matematika, 4 (1980), 87–95.

    MathSciNet  Google Scholar 

  • Hatamov A.: 3. O splain — approximaţij funcţij a uîpukloi proizvodnoi. Matem. Zamet., 31 (1982), 877–887.

    Google Scholar 

  • Hatano K.; Ninomiya I.: 1. An algorithm and error analysis of bivariate interpolating spline. Dzëxo sëri., 19 (1978), 196–203.

    Google Scholar 

  • Hatano K.; Ninomiya I.: 2. The algorithms for the computation of interpolating splines by means of B — splines. Dzëxo sëri, 19 (1978), 538–545.

    Google Scholar 

  • Haussmann W.: 1. On multivariate spline systems. J. Approx. Theory, 11 (1974), 285–305.

    MathSciNet  MATH  Google Scholar 

  • Haussmann W.: 2. Spline — Systeme und beste Approximation von lineare Funktionalen. Anal. Numer. et Thorie Approx., 4 (1975), 13–19.

    MathSciNet  MATH  Google Scholar 

  • Haussmann W.; Pottinger P.: 1. On the construction and convergence of multivariate interpolation operators. J. Approx. Theory, 19 (1977), 205–221.

    MathSciNet  MATH  Google Scholar 

  • Haussmann W.; Pottinger P.: 2. Zur Konvergenz mehrdimensionaler Interpolationsverfahren. ZAMM, 53 (1973), 195–197.

    MathSciNet  Google Scholar 

  • Hayes J.G.: 1. Numerical methods for curve and surface fitting. J. Inst. Math. Appl., (1974), 144.

    Google Scholar 

  • Hayes J.G.: 2. New shapes from bicubic splines. Proceed. CAD 74, Imperial College, London, IPC Business Press, Guildford 1974.

    Google Scholar 

  • Hayes J.G.: 3. Curved knot lines and surfaces with ruled segments. Lect. Notes in Math., 912 (1981), Springer Verlag, 140–156.

    MathSciNet  Google Scholar 

  • Hayes J.G.; Halliday J.: The least — squares fitting of cubic spline surfaces to general data sets. J. Inst. Math. Appl., 14 (1974), 89–103.

    MathSciNet  MATH  Google Scholar 

  • Hayes J.G.; Pinder G.; Celia M.: Alternating — direction collocation method for rectangular regions. Comput. Math. Appl. Mech. Engrg., 27 (1981), 265–277.

    MathSciNet  MATH  Google Scholar 

  • He Chun Fa: A note on the spline finite — points method. (chinese). J. Numer. Methods. Comput. Appl., 5 (1984), No.1, 1–15.

    MathSciNet  Google Scholar 

  • He Guang—qian; Zhou Run—zhen; Liu Chun—zhe: Application of spline function method in the solution of plates and shells. (chinese). J. Building Structures, 2 (1981), No.2, 1–9.

    Google Scholar 

  • He Guangyu: Numerical solutions for the Laplace equation using cubic splines. (chinese). Lanzhou Daxue Xuebao, 25 (1989), 32–36.

    MathSciNet  MATH  Google Scholar 

  • He Guangyu; Wang Pu: Solutions of partial differential equations with fourth order splines. (chinese). J. Lanzhou Univ. Nat. Sci., 23 (1987), No.1, 17–24.

    MATH  Google Scholar 

  • He Tian Xiao: The spline interpolation with local basis and its application. In A Friendly Collection of Math. Papers I Jilin Univ. Press. Changehun, China, (1990), 71–78.

    Google Scholar 

  • He Wei Bao; Luo Yong Tang: Discrete hyperbolic splines. (chinese). Hunan Ann. Math., 5 (1985), No.2, 26–32.

    MathSciNet  Google Scholar 

  • Heckman N.E.: Spline smoothing in a party liniar model. J.R.S.S. B, 48 (1986), 244–248.

    MathSciNet  MATH  Google Scholar 

  • Hedstrom G.W.; Varga R.S.: Application of Besov — spaces to spline approximation. J. Approx. Theory, 4 (1971), 295–327.

    MathSciNet  MATH  Google Scholar 

  • Heidemann U.: Linearer Ausgleich mit Exponentialsplines bei automatischer Bestimung der Intervallteilungspunkte. Computing, 38 (1986), 217–227.

    MathSciNet  Google Scholar 

  • Heindl G.: 1. Spline — Funktionen mehrer Veränderlicher. Definition und Erzugung durch integration. Bayer. Akad. Wiss. Math. Natur., 6 (1970), 49–63.

    Google Scholar 

  • Heindl G.: 2. Spline — Funktionen als Interpolations funktionen mit Betragsminimalen n — ten Ableitungen und die Approximation von Peanofunktionalen. ZAMM, 53 (1973), 161–162.

    MathSciNet  Google Scholar 

  • Heinz A.: Spline Funktionen bei der Losung von Integralgleichungen. Numer. Math., 19 (1972), No.2, 116–126.

    MathSciNet  MATH  Google Scholar 

  • Hennert J.P.: 1. Piecewise polynomial approximations with extrapolation for multidimensional diffusion equations. Trans. Amer. Nuclear. Soc., 15 (1972), 297–299.

    Google Scholar 

  • Hennert J.P.: 2. One step piecewise polynomial multyple collocation methods for initial value problems. Math. Comput., 31 (1977), 24–36.

    Google Scholar 

  • Herbold R.J.; Schultz M.H.; Varga U.S.: The effect of quadrature errors in the numerical solution of boundary value problems by variational techniques. Aequationes Math., 3 (1969), 247–270.

    MathSciNet  MATH  Google Scholar 

  • Herbold R.J.; Varga R.S.: The effect of quadrature error in the numerical solution of two dimensional boundary value problems by variational techniques. Aequationes Math., 7 (1971), 36–58.

    MathSciNet  MATH  Google Scholar 

  • Herceg D.; Surla K.: Solving a nonlocal singularly perturbed problem by splines in tension. Rev. of Research, Faculty of Science Math. Series, Novi Sad., 21 (1991), No.2, 119–132.

    MathSciNet  MATH  Google Scholar 

  • Hering L.: 1. Darstelung von Bézier — Kurven als B — spline — Kurven. Computing, 31 (1983), 149–153.

    MathSciNet  MATH  Google Scholar 

  • Hering L.: 2. Closed C 2 — and C 3 — continuous Bézier and B — splines curves with given tangent polygons. Comput. Aided. Design, 15 (1983), 3–6.

    Google Scholar 

  • Hermann T.: A racionális äs a spline approximàció közti kapcsolatról. Matematikai Lapok, 24 (1973), 381–385.

    Google Scholar 

  • Hermann N.; Kettmann M.: Zur Stabilität lakunärer Splinefunktionen. ZAMM, 70 (1990), No.6, 566–567.

    Google Scholar 

  • Herron G.: Polynomial bases for quadratic and cubic polynomials which yield control points with small couvex hull. Computer Aided Geometric Design, 6 (1989), 1–9.

    MathSciNet  MATH  Google Scholar 

  • Hertling J.: 1. Approximation of piecewise continuous by a modification of piecewise Hermite interpolation. Numer. Math., 15 (1970), 404–414.

    MathSciNet  MATH  Google Scholar 

  • Hertling J.: 2. Multivariate approximation theory with splines. Acta Univ. Carolinee. Math. Phys., 15 (1974), 39–41.

    MathSciNet  Google Scholar 

  • Hertling J.: 3. Numerical treatment of algebraic integral equations by variational methods. SIAM J. Numer. Anal., 12 (1975), 203–212.

    MathSciNet  MATH  Google Scholar 

  • Hertling J.: 4. On the numerical solution of some algebraic integral equations. Computing, 17 (1976), 69–77.

    MathSciNet  MATH  Google Scholar 

  • Hess W.; Schimidt J.W.: 1. Convexity preserving interpolation with exponential splines. Computing, 36 (1986), 335–342.

    MathSciNet  MATH  Google Scholar 

  • Hess W.; Schimidt J.W.: 2. Positive quadratic, monotone quintic C 2 — spline interpolation in one two dimensions. J. Comput. Appl. Math. 55 (1994), 51–67.

    Google Scholar 

  • Hess W.; Schimidt J.W.: 3. Shape preserving C 3 data interpolation and C 2 histopolation with splines on threefold refined grids. ZAMM, 76 (1996), No.9, 487–496.

    MATH  Google Scholar 

  • Higgins J.R.: Five short stories about cardinal series. Bull. Amer. Math. Soc., 12 (1985), 45–89.

    MathSciNet  MATH  Google Scholar 

  • Higham D.J.: Monotonic piecewise cubic interpolation, with applications to ODE ploting. J. Comput. Appl. Maths., 39 (1992), 287–294.

    MathSciNet  MATH  Google Scholar 

  • Hija A.L.: Approximation by local splines of functions of two variables on a special grid. In ”Some problems in anlysis and differential topology” (russian), 103–110, Akad. Nauk. Ukrain SSR, Inst. Mat. Kiev, 1988.

    Google Scholar 

  • Hildebrand Wilbur: Connecting the dots parametrically: an alternative to cubic splines. College Mat. J., 21 (1990), No.3, 208–215.

    MATH  Google Scholar 

  • Hill D.R.: 1. On comparing Adams and natural spline multistep formulas. Math. Comput., 29 (1975), 741–745.

    MathSciNet  MATH  Google Scholar 

  • Hill D.R.: 2. Splines and numerical solutions with an accurassy O(h 3) for a hyperbolic differential — integral equation. Math. Balkanica, 5 (1991), No.4, 279–296.

    MathSciNet  Google Scholar 

  • Hlobîstov V.V.: O nekatorîh stoistvah extremalnîh paraboliceskih splainov. Vychisl. Prikl. Mat. (Kiev), 48 (1982), 23–26.

    Google Scholar 

  • Hoang Van Lai: 1. The application of splines in the approximate determination of the classical solution of the Cauchy problem for a first — order quasilinear equation. (russian). Ukrain. Mat. Zh., 39 (1987), No.4, 501–506.

    MathSciNet  Google Scholar 

  • Hoang Van Lai: 2. O pogresnosti interpoljaţii kubiceskimi splainami na ravnomernoi setke. Chysl. Integr. i Smej. Vopr. (Taşhkent), (1990), 69–72.

    Google Scholar 

  • Hobot G.: Application of cubic spline functions for the solution of a two — point linear boundary value problem. (polish). Mat. Stos. 35 (1992), 47–56.

    MathSciNet  MATH  Google Scholar 

  • Hoch M.; Fleischmann G.; Girod B.: Modeling and animation of facial expressions based on B-splines. Visual Computer, 11 (1994), No.2, 87–95.

    Google Scholar 

  • Hodjaniazov S.F.: 1. Second derivatives multistep formulas based on g — splines. In: Numer Methods for Diff. Systems. (Eds L. Lapidus; W.E. Schiesser), Academic Press, (1976), 25–38.

    Google Scholar 

  • Hodjaniazov S.F.: 2. Priblijennoe resenie integralnovo uravnenia Arbenţa s pomosciu paraboliceskih splainov. Voprosî Vîcisl. i prikl. mat. (Taşkent), 74 (1984), 41–48.

    Google Scholar 

  • Hoeffding W.: The L 1 — norm of the approximation error for splines with equidistant knots. J. Approx. Theory, 11 (1974), 176–193. (Erattum). J. Approx. theory, 21 (1977), 224–235.

    MathSciNet  MATH  Google Scholar 

  • Hohenberger W.; Reuding T.: Smoothing rational B-spline curves using the weights in an optimization procedure. CAGD, 12 (1995), No.8, 837–848.

    MathSciNet  MATH  Google Scholar 

  • Hoitsma D.H.; Lee Mousuk: Generalized rational B — spline surfaces. NURBS for curve and surface design. Colloct. Pap. SIAM Conf. Geom. Des., Tempe IAZ (USA), 1990, 87–102, (1991).

    Google Scholar 

  • Holladay J.C.: A smoothest curve approximation. Math. Tables Aid. Comput., 11 (1957), 233–243.

    MathSciNet  MATH  Google Scholar 

  • Höllig Klaus: 1. A generalization of Jackson’s inequality. J. Approx. Theory, 31 (1981), 154–157.

    MathSciNet  MATH  Google Scholar 

  • Höllig Klaus: 2. A remark of multivariate B — splines. J. Approx. Theory, 33 (1981), 119–125.

    MathSciNet  Google Scholar 

  • Höllig Klaus: 3. L — boundedness of L 2 — projections on splines for a geometric mesh. J. Approx. Theory, 33 (1981), 318–333.

    MathSciNet  MATH  Google Scholar 

  • Höllig Klaus: 4. Multivariate Splines. SIAM J. Numer. Anal., 19 (1982), 1013–1031.

    MathSciNet  MATH  Google Scholar 

  • Höllig Klaus: 5. Multivariate splines. AMS Short Course Lecture Notes, 36 (1986), 103–127.

    Google Scholar 

  • Höllig Klaus: 6. G — splines. Comp. Aided. Geom. Design, 7 (1989), 197–207.

    Google Scholar 

  • Höllig Klaus: 7. Algorithms for rational spline curves. in Transaction of the Fifth Army Conf. on Appl. Maths. and Computing., 287–300.

    Google Scholar 

  • Höllig K.; de Boor C.: Box-spline tiling. Amer. Math. Montly, 98 (1991), 703–802.

    Google Scholar 

  • Höllig K.; Koch J.: 1. Geometric Hermite interpolation. CAGD, 12 (1995), No.6, 567–580.

    MATH  Google Scholar 

  • Höllig K.; Koch J.: 2. Geometric Hermite interpolation with maximal order and smoothness. CAGD, 13 (1996), No.8, 681–695.

    MATH  Google Scholar 

  • Höllig K.; Marsden M.; Riemenschneider S.: Bivariate cardinal interpolation on the 3 — direction mesh: L p — data. Rocky Mountain J. Math., 19 (1989), No.1, 189–197.

    MathSciNet  MATH  Google Scholar 

  • Höllig K.; Mögerle H.: G — splines. Comput. Aided Geom. Design (special Issue), 7 (1990), No. 1–4, 197–207.

    MATH  Google Scholar 

  • Holmes R.: R — splines in Banach spaces. Interpolation of linear manifolds. J. Math. Anal. Appl., 40 (1972), 574–593.

    MathSciNet  MATH  Google Scholar 

  • Holmström I.: Piecewise quadratic blending of implicitly defined surfaces. Comput. Aided. Geom. Design, 4 (1987), 171–190.

    MathSciNet  MATH  Google Scholar 

  • Holt J.N.: Non — linear least squares inversion of an integral equation using free — knots splines. Lect. Notes Control Inform. Sci., 7 (1978), 51–58.

    Google Scholar 

  • Holt J.N.; Jupp D.L.B.: Free — knot spline inversion of a Fredholm integral equation from astrophysics. J. Inst. Math. Appl., 21 (1978), 429–443.

    MathSciNet  MATH  Google Scholar 

  • Holze G.E.: Knot placement for piecewise polynomial approximation of curves. Computer Aided Design, 15 (1983), 295–296.

    Google Scholar 

  • Homescu R.: 1. Linear optimization in O.D.P. using splines. Proceedings 4th Congr. Internat. of Cybernetics and Systems. Amsterdam, 1978.

    Google Scholar 

  • Homescu R.: 2. On linear optimization in optical data processing. Econ. Comput. and Econ. Cybern. Studies and Research, (Bucharest), 1 (XIII), (1979), 61–70.

    Google Scholar 

  • Homescu R.: 3. Optimization of the signal — to — noise ratio in the Optical Data Processing. Proc. 9th Conf. Warsaw, 1979.

    Google Scholar 

  • Hong Dong: Spaces of bivariate spline functions over triangulation. Approx. Theory Appl., 7 (1991), No.1, 56–75.

    MathSciNet  MATH  Google Scholar 

  • Hoog de F.R.; Hutchinson M.F.: An efficient method for calculating smoothing splines using orthogonal transformations. Numer. Math., 50 (1987), 311–320.

    MathSciNet  MATH  Google Scholar 

  • Hoog F.R. de; Andersen R.S.: Convergence of kernel functions for cubic smoothing splines on non — equispaced grids. Anst. J. Stat, 30 A, Spec. Issue, (1988), 90–99.

    Google Scholar 

  • Hopkins T.R.; Wait R.: Some quadrature rules for Galerkin methods using B — spline basis functions. Comput. Math. Appl. Mech. Eng., 19 (1979), No.3, 401–416.

    MATH  Google Scholar 

  • Horacek J.; Malina L.: Cubic splines and the Lippmann — Schwinger equations. Czech. J. Phys. B, 27 (1977), 1–6.

    MathSciNet  Google Scholar 

  • Horn B.K.P.: The curve of least energy. ACM Trans. Math. Software, 9 (1983), No.4, 441–460.

    MathSciNet  MATH  Google Scholar 

  • Hornung U.: 1. Monotone — Interpolation. Ser. Intern. Anal. Numer. CHE, 42 (1978), 172–191.

    MathSciNet  Google Scholar 

  • Hornung U.: 2. Numerische Berechnung monotoner und Spline interpolierender. ZAMM, 59 (1979), 64–65.

    MathSciNet  Google Scholar 

  • Hornung U.: 3. Interpolation by smooth functions under restrictions on the derivatives. J. Approx. Theory, 28 (1980), 227–237.

    MathSciNet  MATH  Google Scholar 

  • Horsley A.; Parker J.B.; Price J.A.: Curve fitting and — statistical techniques for use in the mechanized evaluation of neutron errors sections. Nuclear Instruments and Methods, 62 (1968), 29–42.

    Google Scholar 

  • Horvath L.: Asymptotics for global measures of accuracy of splines. J. Approx. Theory, 73 (1993), No.3, 270–287.

    MathSciNet  MATH  Google Scholar 

  • Hosaka M.: Theory of curve and surface synthesis and their smooth fitting. Information Processing in Japan, 9 (1969), 60–68.

    MathSciNet  MATH  Google Scholar 

  • Hoschek Josef: 1. Smoothing of curves and surfaces. Comput. Aided Geom. Des., 2 (1985), No.1–3, 97–105.

    MATH  Google Scholar 

  • Hoschek Josef: 2. Algebrische Methoden zum glätten und Schneiden von Spline flächen. Results in Mathematics., 12 (1987), 119–133.

    MATH  Google Scholar 

  • Hoschek Josef: 3. Approximate conversion of spline curves. Comput. Aided Geom. Design, 4 (1987), 59–66.

    MathSciNet  MATH  Google Scholar 

  • Hoschek Josef: 4. Spline approximation of offset curves. Comp. Aided Geom. Design, 5 (1988), No.1, 33–40.

    MATH  Google Scholar 

  • Hoschek Josef: 5. Approximate conversion of spline curves. Proceeds. Second European Symp. Math. Industry, (Oberwolfach), 1987, 239–249. Europ. Consort. Math. Ind. 3, Tenbner, Stuttgart, 1988.

    Google Scholar 

  • Hoschek Josef: 6. Geometric methods in computer aided design. Mtt. Math. Ges. Hamburg, 12 (1991), No.3, 559–578.

    MATH  Google Scholar 

  • Hoschek Josef: 7. Circular splines. Computer Aided Design, 24 (1992), No.11, 611–618.

    Google Scholar 

  • Hoschek Josef: 8. Approximation unstrukturierter Punktwenger durch integrale oder rationale B — Spline — Kurven bzw. B — spline Flächen. In Moschek J. ed.: Was, CAD — Systeme wirklich können. Teubner (1993), 147–156.

    Google Scholar 

  • Hoschek J.; Böhm W.; Seidel H.P.: Mathematical aspects of CAGD. in M. Artin, R. Remmert (eds). Duration and Change, Fifty Years at Oberwolfach, Springer Verlag, (1994), 106–138.

    Google Scholar 

  • Hoschek J.; Dietz R.; Tüttler B.: Rational patches on quartic surfaces. Computer — Aided Design, 27 (1995), 27–40.

    MATH  Google Scholar 

  • Hoschek J.; Hartmann E.; Li jing Gong; Feng Yu Yu: G n-1 — functional splines for interpolation and approximation of surfaces and solides. ISNM, vol. 94, Birkhäuser Verlag, Basel, 141–154.

    Google Scholar 

  • Hoschek J.; Schneider F.J.: 1. Spline approximation of offset curves and offset surfaces. Proceed. Third European Conf. Math. Ind. (Glasgow), 1988, 383–389, Teubner, Stuttgart, 1990.

    Google Scholar 

  • Hoschek J.; Schneider F.J.: 2. Spline conversion for trimmed rational Bézier — and B — spline surfaces. Computer — Aided Design, 22 (1990), 578–590.

    Google Scholar 

  • Hoschek J.; Schneider F.J.: 3. Approximate spline conversion for integral and rational Bézier and B — spline surfaces. Geom. Processing for Design and Manufc. Talks Geom. Des. Conf. Tempe, Arizona, 1989, (1992), 45–86.

    MathSciNet  Google Scholar 

  • Hoschek J.; Schneider F.J.; Wassura P.: Optimal approximate conversion of spline surfaces. Comput. Aided. Geom. Des., 6 (1989), No.4, 293–306.

    MATH  Google Scholar 

  • Hoschek J.; Seemann G.: Spherical splines. RAIRO Math. Modelling and Numer. Analysis, 26 (1992), No.1, 1–22.

    MathSciNet  MATH  Google Scholar 

  • Hoschek J.; Wissel N.: Optimal approximate conversion of spline curves and spline approximation of offset curves. Comput. Aided. Des., 20 (1988), 475–483.

    MATH  Google Scholar 

  • Hoskins W.D.: 1. Algorithm 62. Interpolating quintic splines on equidistant knots. Cornput. J., 15 (1971), 797–801.

    MathSciNet  Google Scholar 

  • Hoskins W.D.: 2. Table of third — degree spline interpolation using equi — spaced knots. Math. Comput., 25 (1971), 797–801.

    MathSciNet  MATH  Google Scholar 

  • Hoskins W.D.: 3. Boundary expansions for spline interpolation. Math. Comput., 27 (1973), 829–830.

    MathSciNet  MATH  Google Scholar 

  • Hoskins W.D.: 4. Cubic spline solutions to fourth — order boundary value problems. Comm. ACM, 16 (1973), 382–385.

    MathSciNet  MATH  Google Scholar 

  • Hoskins W.D.; King P.R.: Algorithm 13. Periodic cubic spline interpolation using parametric splines. Comput. J., 15 (1972), 282–283.

    Google Scholar 

  • Hoskins W.D.; King P.R.; Andres T.H.: Algorithm 74: Interpolation using periodic splines of odd degree with equidistant knots. Comput. J., 15 (1972), 283–285.

    Google Scholar 

  • Hoskins W.D.; Meek D.S.: 1. Succesive polynomial spline functions approximation. BIT, 13 (1973), 401–407.

    MathSciNet  MATH  Google Scholar 

  • Hoskins W.D.; Meek D.S.: 2. Improved estimates for succesive polynomial spline approximation. Utilitas Math., 7 (1975), 25–32.

    MathSciNet  MATH  Google Scholar 

  • Hoskins W.D.; Meek D.S.: 3. Linear dependence relations for polynomial splines in midknots. BIT, 15 (1975), 272–276.

    MathSciNet  MATH  Google Scholar 

  • Hoskins W.D.; Ponso P.J.: 1. Explicit calculation of interpolating cubic splines on equidistant knots. BIT, 12 (1972), 54–62.

    MATH  Google Scholar 

  • Hoskins W.D.; Ponso P.J.: 2. Some approximation properties of periodic cubic splines. BIT, 14 (1974), 152–155.

    MATH  Google Scholar 

  • Hou H.S.; Andrews H.C.: Cubic spline for image interpolation and digital filtering. IEEE Trans. Acoust., Speach, Signal Process, 26 (1978), 508–517.

    MATH  Google Scholar 

  • Hough D.M.; Papamichael N.: The use of splines and singular functions in an integral equations method for conformai mapping. Numer. Math., 37 (1981), 133–147.

    MathSciNet  MATH  Google Scholar 

  • Houstis E.N.: 1. Collocation methods for linear elliptic problems. BIT, 18 (1978), 301–310.

    MathSciNet  MATH  Google Scholar 

  • Houstis E.N.: 2. A collocation method for systems of nonlinear ordinary differential equations. J. Math. Anal. Appl., 62 (1978), 23–37.

    MathSciNet  Google Scholar 

  • Houstis E.N.; Christara C.C.; Rice J.R.: Quadratic — spline collocation methods for two — point boundary value problems. Internat. J. Numer. Methods Engrg., 26 (1988), 935–952.

    MathSciNet  MATH  Google Scholar 

  • Houstis E.N.; Lynch R.E.; Rice J.R.; Papatheodorou J.S.: Evalution of numerical methods for elliptic partial differential equations. J. Comput. Phys., 27 (1978), 323–350.

    MathSciNet  MATH  Google Scholar 

  • Houstis E.N.; Mitchell W.F.; Rice J.R.: 1. Collocation software for second order elliptic partial differential equations. ACM Trans. Math. Software, 11 (1985), 379–412.

    MathSciNet  MATH  Google Scholar 

  • Houstis E.N.; Mitchell W.F.; Rice J.R.: 2. Collocation on general domains with bicubic Hermite polynomials. Algorithm 637, 638, 638, ACM Trans. Math. Software, 11 (1985), 413–418.

    MathSciNet  Google Scholar 

  • Houstis E.N.; Papatheodorou T.S.: A collocation method for Fredholm integral equations of the second kind. Math. Comput., 32 (1978), 159–171.

    MathSciNet  MATH  Google Scholar 

  • Houstis E.N.; Rice J.R.; Vavalis M.: 1. Spline — collocation methods for elliptic partial differential equations. Advances in Computer Meth. for Partial Diff. Eqs. V edited by Vichnevetskij R. and Stepleman R.S. Publ. IMACS, (1984), 191–194.

    Google Scholar 

  • Houstis E.N.; Rice J.R.; Vavalis M.: 2. Parallelization of a new class of cubic spline collocation methods. Advances in Comp. Methods for Partial Diff. Eqs. VI, Vichnevetski R. and Stepleman R.S.(eds), Publ. IMACS, (1987), 167–174.

    Google Scholar 

  • Houstis E.N.; Rice J.R.; Vavalis M.: 3. A Schwarz splitting variant of cubic spline collocation methods for elliptic PDES. Technical Report CSD — TR — 745, Purdue Univ. 1988.

    Google Scholar 

  • Houstis E.N.; Rice J.R.; Vavalis M.: 4. Convergence of O(h 4) cubic spline collocation Jo elliptic partial differential equations. SIAM J. Numer. Anal., 25 (1988), 54–74.

    MathSciNet  MATH  Google Scholar 

  • Howell Gary: 1. Error bounds for two even degree tridiagonal splines. J. Appl. Math. and Stochastic Anal., 3 (1990), 117–133.

    MathSciNet  MATH  Google Scholar 

  • Howell Gary: 2. Derivative error bounds for Lagrange interpolation: an extension of Cauchy’s bounds for the error of Lagrange interpolation. J. Approx. Theory, 67 (1991), No.2, 164–173.

    MathSciNet  MATH  Google Scholar 

  • Howell Gary; Varma A.K.: 1. Best error bounds for quadratic spline interpolation. J. Approx. Theory, 58 (1989), 58–67.

    MathSciNet  MATH  Google Scholar 

  • Howell Gary; Varma A.K.: 2. (0,2) interpolation with quartic splines. Numer. Funct. Anal. and Optimiz., 11 (1990/1991), 929–936.

    Google Scholar 

  • Hřebiček Jiři; Šik Frontišek; Vesely Vitězslav: Discrete smoothing splines and digital filtration. Theory and applications. (russian). Apl. Mat., 35 (1990), No.1, 28–50.

    MathSciNet  Google Scholar 

  • Hsi P.; Lee C.H.: Modified cubic — B —spline interpolation. Proc. IEEE., 69 (1981), 1590–1592.

    Google Scholar 

  • Hsiao G.C.; Prössdorf S.: On the stability of the spline collocation method for a class of integral equations of the first kind. Appl. Anal., 30 (1988), No.4, 249–261.

    MathSciNet  MATH  Google Scholar 

  • Hsiao G.C.; Wenland W.: A finit elemant method for some integral equations to the first kind. J. Math. Anal. Appl., 58 (1977), 449–481.

    MathSciNet  MATH  Google Scholar 

  • Hsieh Hsun—Chang; Chan Wen—Tong: Virtual knot technique for curve fitting of rapidly varying data. CAGD. 11 (1994), No.1, 71–95.

    Google Scholar 

  • Hu Cheng Li: 1. Other classes of quadratic interpolation splines with deficiency 2. (chinese). L. East. China Norm. Univ. Nat. Sci. Ed., (1985), No.4, 1–14.

    Google Scholar 

  • Hu Cheng Li: 2. On assymptotic error estimation for a class of quadratic spline interpolation. (chinese), J. East China Norm. Univ., Nat. Sci. Ed. 1993, No. 4, 103–106.

    Google Scholar 

  • Hu Chiu Li; Schumaker L.L.: Complete spline smoothing. Numer. Math., 49 (1986), 1–10.

    MathSciNet  MATH  Google Scholar 

  • Hu Jianying; Pavlidis Th.: Function plotting using conic splines. IEEE Computer Graphics Apples., 11 (1991), No.1, 89–94.

    Google Scholar 

  • Hu Nai Li; Lu Wenchang: Spline with completely binary second — order index. (chinese). Heilongjiang Daxue Ziran Kexue Xuebao, 1 (1989), 7–9.

    Google Scholar 

  • Hu Qiya: Stieltjes derivvtes and β-polynomial spline collocation for Volterra integrodifferential equations with singularities. SIAM J. Numer. Anal. 33 (1996), No.1, 208–220.

    MathSciNet  MATH  Google Scholar 

  • Hu Ri Zhang: 1. Spline collocation for generalized multipoint boundary value problems. (chinese). Numer. Math. J. Chinese Univ., 5 (1983), 127–138.

    MathSciNet  Google Scholar 

  • Hu Ri Zhang: 2. Spline collocation method for the vibrating string equation with inner point constraint conditions. (chinese). Numer. Math. J. Chin. Univ., 8 (1986), 21–30.

    Google Scholar 

  • Hu Ri Zhang: 3. A new method of constructing natural interpolation splines. (chinese). Acta Sci. Natur. Univ. Sunyatseni, 31 (1992), No.2, 19–24.

    MathSciNet  Google Scholar 

  • Hu Ri Zhang; Mao Ming Zhi: L-shape area spline interpolation and smoothing approximation to scattered data. (chinese), J. Numer. Methods Comput. Appl., 15 (1994), No. 2, 106–113.

    Google Scholar 

  • Hu S.S.; Shao X.M.: Adaptive hybridized spline differentiators for numerical solution of the advection equation. Comput. Math. Appl., 13 (1987), No.9–11, 839–849.

    MathSciNet  MATH  Google Scholar 

  • Hu Y.; Leviatan D.; Yu Xiang Ming: Copositive polynomial and spline approximation. J. Approx. Theory, 80 (1995), 204–218.

    MathSciNet  MATH  Google Scholar 

  • Hu Ying Kang: 1. Convexity preserving approximation by free knots splines. SIAM J. Math. Anal., 22 (1991), No.4, 1183–1191.

    MathSciNet  Google Scholar 

  • Hu Ying Kang: 2. Convex approximation by quadratic splines. J. Approx. Theory, 74 (1993), 69–82.

    MathSciNet  Google Scholar 

  • Hu Ying Kang: 3. An algorithm for data reduction using splines with free knots. IMA J. Numer. Anal., 13 (1993), No.3, 365–381.

    MathSciNet  Google Scholar 

  • Hu Ying Kang: 4. Positive and copositive spline approximation in L P [0, 1]. Concrete analysis. Comput. Math. Appl. 30 (1995), No.3–6, 137–146.

    MathSciNet  Google Scholar 

  • Kang H.E.; Kopotun K.A.; Yu X.M.: On positive and copositive polynomial and spline approximation in L p [-1,1], 0≤p<p<∞. J. Approx. Theory, 86 (1996), No.3, 310–319.

    MathSciNet  Google Scholar 

  • Kang HE; Leviatan D.; Yu Xiang Ming: 1. Convex polynomial and spline approximation in C[-1,1]. Constr. Approx. 10 (1994), No.1, 31–64.

    MathSciNet  Google Scholar 

  • Kang HE; Leviatan D.; Yu Xiang Ming: 2. Composite polynomial and spline approximation. J. Approx. Theory, 80 (1995), No.2, 204–218.

    MathSciNet  Google Scholar 

  • Hu Ying Kang; Yu Xieng Ming: Discrete modulus of smoothness of spline with equally spaced knots. SLAM J. Numer. Anal., 32 (1995), No.5, 1428–1435.

    Google Scholar 

  • Hu Ying Sheng: Lebesgue’s constant for natural cubic splines. TRITA — NA, R. Inst. Techn. Stockholm, 1982, 16.

    Google Scholar 

  • Hu Ying Sheng; Xu Shu Xian: Iterated limit for variation diminishing approximation of spline functions. (chinese). Acta Math. Sinica, 22 (1979), 375–388.

    MathSciNet  MATH  Google Scholar 

  • Huang Da Ren: 1. The general form of the Budan — Fourier theorem for generalized spline functions. J. Zhejiang Univ., 4 (1982).

    Google Scholar 

  • Huang Da Ren: 2. A sufficient conditions of monotone cubic spline. (chinese). Math. Numer. Sinica, 4 (1982), No.2, 214–217.

    MathSciNet  Google Scholar 

  • Huang Da Ren: 3. Lacunary interpolation by quintic splines with nonequal mesh. Math. Numer. Sinica, 5 (1983), 142–148.

    MathSciNet  MATH  Google Scholar 

  • Huang Da Ren: 4. The error expressions and the superconvegence of the cubic interpolation spline. (chinese). Numer. Math. J. Chinese Univ., 5 (1983), 179–184.

    MathSciNet  Google Scholar 

  • Huang Da Ren: 5. Optimal error bounds for quintic Hermitian interpolation splines. (chinese). Acta Math. Sin., 26 (1983), 547–556.

    Google Scholar 

  • Huang Da Ren; Fang Gen Sun: Uniqueness of optimal quadrature formulas for W 1 m and the fundamental theoreme of algebra for periodic monosplines. Chinese Ann. Math. Ser. B, 11 (1990), No.4, 426–437.

    MathSciNet  Google Scholar 

  • Huang Da Ren; Sha Zhen: On mixed interpolation splines. (chinese). Chinesse Ann. Math., 3 (1982), 233–240.

    Google Scholar 

  • Huang Da Ren; Wang Jian Zhong: 1. The Budan — Fourier theorem for spline and its application. (chinese). Chinese Anal. Math., Ser. A, 4 (1983), 349–360.

    Google Scholar 

  • Huang Da Ren; Wang Jian Zhong: 2. Cubic L — spline interpolation at a biinfinite knots sequence. J. Math. Res. Expo., (1983), No.1, 133–134.

    Google Scholar 

  • Huang Da Ren; Wang Jian Zhong: 3. The relations between the boundary conditions and the convergence of interpolation splines. (chinese). Acta Math. Appl. Sinica, 7 (1984), No.1, 63–72.

    MathSciNet  Google Scholar 

  • Huang Da Ren; Wang Jian Zhong: 4. The asymptotic of quintic lacunary interpolation splines. (chinese). Math. Numer. Sinica, 6 (1984), 148–158.

    MathSciNet  Google Scholar 

  • Huang Da Ren; Wang Xiang: On monosplines with odd multiplicity knots. (chinese). J. Math. (Wuhan)., 11 (1991), No.2, 172–182.

    MathSciNet  Google Scholar 

  • Huang Da Ren; Ye Mao Dong: 1. Adjoint interpolation splines and L p — norm error bounds. (chinese). Math. Numer. Sinica, 7 (1985), No.4, 349–355.

    MathSciNet  Google Scholar 

  • Huang Da Ren; Ye Mao Dong: 2. On the lacunary interpolation by spline functions. (chinese). J. Zhejiang Univ., 20 (1986), No.4, 111–121.

    Google Scholar 

  • Huang Duo: Solution of partial differential equations with B — spline collocation. J. Numer. Math. Comput. Appl., 4 (1985), 114–124.

    Google Scholar 

  • Huang Pu Shen: Two — parameter isometric B — splines. (chinese). Honzhong Shiyuan Xuebao Ziran Kexue Ban, (1988), No.2, 25–29.

    Google Scholar 

  • Huang Sha Bai: Gray image interpolation based on spline functions. (chinese). Inform. and Control (Shenyang), 18 (1989), No.2, 48–51.

    MathSciNet  Google Scholar 

  • Huang You Qian: Some remarks concerning spline smooth functions. (chinese). Numer. Math. J. Chinese Univ., 1 (1979), 210–213.

    MathSciNet  MATH  Google Scholar 

  • Huang You Qian; Han Guo-Qiang: 1. Asymptotic expansions of the cubic spline collocation solution for second — order ordinary differential equations. J. Comput. Math., 6 (1988), No.2, 156–163.

    MathSciNet  Google Scholar 

  • Huang You Qian; Han Guo-Qiang: 2. Construction of spline functions in Hilbert spaces. (chinese). Acta Sci. Natur. Univ. Sunyatseni, 30 (1991), No.4, 20–32.

    Google Scholar 

  • Huang Xiao Ling: Approximation of singular integrals by cubic Birkhoff interpolation splines. (chinese). Math. Appl., 6 (1993), No.1, 110–116.

    MathSciNet  Google Scholar 

  • Huang Xu Ming: Bivariate double mixed interpolating splines. (chinese). Fujian Shifan Daxue Xuebao Ziran Kexue Bun., 4 (1988), No.2, 20–22.

    Google Scholar 

  • Huang You Qian; Xie Zhi Yun: The best interpolation points of operator spline functions of order two. (chinese). Acta. Sci. Nat. Univ. Sunyatseni, (1987), No.4, 5–11.

    Google Scholar 

  • Huang Yun Zhong: Acceleration of convergence of quintic spline interpolate solutions. (chinese). Zhejiang Daxue Xuebao, 2 (1981), 101–108.

    Google Scholar 

  • Huizing A.J.; Bakker B.L.G.: The solution of Fadeev integral equations for three — body scattering by means of B — spline. J. Comput. Physics, 90 (1990), 200–218.

    MathSciNet  MATH  Google Scholar 

  • Hulme B.L.: 1. Interpolation by Ritz approximation. J. Math. Mech., 18 (1968), 337–341.

    MathSciNet  MATH  Google Scholar 

  • Hulme B.L.: 2. Piecewise polynomial Taylor methods for initial value problems. Numer. Math., 17 (1971), 367–381.

    MathSciNet  MATH  Google Scholar 

  • Hulme B.L.: 3. A new bicubic interpolation over right triangles. J. Approx. Theory, 5 (1972), 66–73.

    MathSciNet  MATH  Google Scholar 

  • Hulme B.L.: 4. One — step piecewise polynomial Galerkin methods for initial value problems. Math. Comput., 26 (1972), 415–426.

    MathSciNet  MATH  Google Scholar 

  • Hulme B.L.: 5. Discrete Galerkin and related one — step methods for ordinary differential equations. Math. Comput., 26 (1972), 881–891.

    MathSciNet  MATH  Google Scholar 

  • Hummel R.: Sampling for spline reconstruction. SIAM J. Appl. Math., 43 (1983), 278–288.

    MathSciNet  MATH  Google Scholar 

  • Hutchinson M.F.: 1. Algorithm 642, a fast procedure for calculating minimum cross validation cubic smoothing splines. ACM Trans. Math. Software, 12 (1985), 150–153.

    MathSciNet  Google Scholar 

  • Hutchinson M.F.: 2. A fast procedure for calculating minimum cross validation cubic smoothing splines. ACM Trans. Math. Software, 12 (1986), 150–153.

    MathSciNet  MATH  Google Scholar 

  • Hutchinson M.F.: 3. A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines. Comm. Statist. Simula., 19 (1990), No.2, 433–450.

    MathSciNet  MATH  Google Scholar 

  • Hutchinson M.; Gessler P.: Splines-more than just a smooth interpolator. Geodernia, 62 (1994), 45–67.

    Google Scholar 

  • Hutchinson N.S.; F.R. de Hoog: 1. Smoothing noisy with spline functions. Numer. Math., 47 (1985), Fasc. 1, 99–106.

    MathSciNet  MATH  Google Scholar 

  • Hutchinson N.S.; F.R. de Hoog: 2. An efficient method for calculating smoothing splines using orthogonal transformations. Numer. Math., 50 (1987), 311–319.

    MathSciNet  MATH  Google Scholar 

  • Huynh Hung T.: Accurate monotone cubic interpolation. SIAM J. Numer. Anal., 30 (1993), No.1, 57–100.

    MathSciNet  MATH  Google Scholar 

  • Hyman J.M.: Accurate monotonicity preserving cubic interpolation. SLAM J. Sci. Stat. Comput., 4 (1983), 645–654.

    MathSciNet  MATH  Google Scholar 

  • Iancu C.: 1. Asupra unei funcţii spline cubice. Stud. Cerc. Mat., 36 (1984), No.3, 221–226.

    MathSciNet  MATH  Google Scholar 

  • Iancu C.: 2. The error analysis in interpolation by complex spline functions. Studia Univ. Babeş-Bolyai, Mathematica, 34 (1989), No.1, 71–76.

    MathSciNet  MATH  Google Scholar 

  • Iancu C.: 3. Interpolation by cubic spline with fixed points. Studia Univ. Babeş-Bolyai, Mathematica, 41 (1996), No.2, 53–58.

    MathSciNet  MATH  Google Scholar 

  • Iancu C.; Mustăţa C.: Error estimation in the approximation of functions by interpolating cubic splines. Mathematica-Revue d’Analyse Numer. et de Théorie de l’Approx., 29 (52),(1987), No.1, 33–40.

    Google Scholar 

  • Ibrahim M.A.K.; El-Safty A.; Abo-Hasha S.M.: 2h-step method for solution of delay differential equations. Comput. Math. Appl., 29 (1995), No.8, 1–6.

    MathSciNet  MATH  Google Scholar 

  • Ibrahim A. Kh.; Schumaker L.L.: Superspline spaces of smoothness r and degree d ≥ 3r + 2. Constr. Approx., 7 (1991), 401–423.

    MathSciNet  MATH  Google Scholar 

  • Ichida Kozo; Yoshimoto F.; Kiyomo T.: Data fitting by a spline. Mem. Fac. Eng. Kyoto Univ., 35 (1973), 237–250.

    Google Scholar 

  • Ignatov Z.G.; Kaishev V.K.: A probabilistic interpretation of multivariate B — splines and some applications. Serdica Bulgaricae Math. Publ., 15 (1989), No.2, 91–99.

    MathSciNet  MATH  Google Scholar 

  • Ignatov M.I.; Malozëmov V.N.; Revnîi A.B.: Smoothing. (russian). Vestnik Leningrad Univ. Math. Mekh. Astronom.,(1989), Vyp. 2, 7–11.

    Google Scholar 

  • Ignatov M.I.; Pevnîi A.B.: 1. Splain approximaţii plavnîh poverhnostei. Naurin. Dokl. Romi fil. A.N. SSR,(1986), No.149, 20 pp.

    Google Scholar 

  • Ignatov M.I.; Pevnîi A.B.: 2. Curve fitting by a piecewise cubic polynomial. Computing, 16 (1976), 329–339.

    MathSciNet  Google Scholar 

  • Ignatov M.I.; Pevnîi A.B.: 3. Surface smoothing with B — spline finite elements. Math. Comput. Modelling, 16 (1992), No.10, 93–100.

    MathSciNet  MATH  Google Scholar 

  • Ikaunieks E.A.; Ermuša A.E.: Concave piecewise — polynomial interpolation. (russian). Latviun Math. Yearbook 4, 149–163.

    Google Scholar 

  • Ikebe Y.: The Galerkin method for the numerical solution of Fredholm integral equations of the second kind. SIAM Rev., 14 (1972), 465–491.

    MathSciNet  MATH  Google Scholar 

  • Iliev G.; Pollul Walter: Convex interpolation with minimal L — norm of the second derivative. Math. Z., 186 (1984), 49–56.

    MathSciNet  Google Scholar 

  • Iliev I.G.: Spline mit Laguerreschen ganzen Funktionen. Comptes Rendus, Acad. Bulg. Sci., 35 (1982), 11–12.

    MathSciNet  MATH  Google Scholar 

  • Iliev I.G.; Scherer K.: Direct and converse theorems for approximation of curves by polygons. Serdica Bulg. Math. Publ., 9 (1983), 407–413.

    MathSciNet  MATH  Google Scholar 

  • Iliev L.: Spline with respect to Laguerre functions. (russian). Tr. Mat. Inst. Steklova, 163 (1984), 90–94.

    MathSciNet  MATH  Google Scholar 

  • Ilin I.A.: Spline — difference schemes for elliptic equations. (russian). Numer. Anal. Meth. for Solving Boundary Value Problems, 59–62, 86, Kazakh. Gos. Univ. Alma — Ata,(1986).

    Google Scholar 

  • Ilin I.A.; Iskakov S.B.: 1. Metodî splain kollocaţii dlja uravvenia Poissona na osnove B — splainov. Karagand. Univ. Karaganda, (1985), 34 pp.

    Google Scholar 

  • Ilin I.A.; Iskakov S.B.: 2. Splain — raznostnîe dlja uravnenii Navier — Stokes algorithmî i programî. Karagand. Univ. Karaganda, (1985), 54 pp.

    Google Scholar 

  • Ilin I.A.; Lukianov A.T.: 1. The application of splines to numerical solution of heat conduction type equations. Sb. po voprosî mat. i meh; Kazahsk. Univ., 2 (1973), 80–86.

    Google Scholar 

  • Ilin I.A.; Lukianov A.T.: 2. Ob adnom metode vychislenia koeffiţientov interpoliationovo kubiccescovo splaina. Sb. po voprosi mat. i meh. Kazahsk. Univ., 2 (1973), 87–92.

    Google Scholar 

  • Ilin I.A.; Lukianov A.T.: 3. On a method for solving boundary value problem of nonlinear equations of fourth order. (russian). Idem, 7 (1975), 50–55.

    Google Scholar 

  • Ilin I.A.; Lukianov A.T.: 4. Application of cubic halfsplines to numerical solution of heat conduction of hyperbolic equations. (russian). In Differenţ uravnenie i ih pril. Alma — Ata, Nauka, (1975), 86–91.

    Google Scholar 

  • Ilin I.A.; Lukianov A.T.: 5. Application of cubic semi — splines to numerical solution of first boundary value problem for systems of two partial differential equations of parabolic type.(russian). Idem, 103–111.

    Google Scholar 

  • Ilin I.A.; Lukianov A.T.: 6. Spline — difference schemes of high precision for the parabolic equations. (russian). Voprosî Prikl. Mat. Meh. Alma — Ata, 2 (1975), 180–183.

    Google Scholar 

  • Ilin I.A.; Lukianov A.T.: 7. Application of cubic splines to numerical solution of second boundary value problem for the heat conduction equation with discontinuous coefficients. Cislenie met. Mex. sploş. spedy (Novosibirsk), 7 (1976), No.1, 62–71.

    Google Scholar 

  • Ilin V.P.: 1. Spline-difference schemes for nonlinear parabolic equations. Vychisl. Sistemî. (Novosibirsk), 72 (1977), 131–135.

    Google Scholar 

  • Ilin V.P.: 2. Spline solutions of ordinary differential equations. (russian). Z. Vyëisl. Mat. i Mat. Fiz., 18 (1978), 620–627.

    Google Scholar 

  • Inamov A.: 1. Spline functions of two variable. (russian). Voprosî Vyčisl. i Prikl. Mat. (Tashkent), 57 (1979), 7–18.

    Google Scholar 

  • Inamov A.: 2. Spline-functions of two variable. (russian). Vyëisl. Sistemy, No.115 (1986), 85–92.

    Google Scholar 

  • Indoleanu I.: On the numerical integration of linear differential equations of higher order using spline functions. (rumanian). Bul. Sti. Inst. Politehn. Cluj, 13 (1970), 29–31.

    MathSciNet  Google Scholar 

  • Inglese G.: A property of piecewise linear approximants in a finite moment problem. J. Inverse Ill-Posed Probl., 2 (1994), No.1, 77–84.

    MathSciNet  MATH  Google Scholar 

  • Innanen K.A.: An exemple of precise interpolation with a spline function. J. Comput. Phys., I (1966), 303–304.

    Google Scholar 

  • Inselberg A.: Cubic spline with infinite derivatives at some knots. IBM J. Res. Develop., 20 (1976), 430–436.

    MathSciNet  MATH  Google Scholar 

  • Ionescu D.V.: 1. Introduction à la théorie des ”fonctions spline”. Acta Math. Acad. Sci. Hungar., 21 (1970), 21–26.

    MathSciNet  MATH  Google Scholar 

  • Ionescu D.V.: 2. La différence divisée d’une fonction de trois variables et sa représentation par une intégrale triple. Rev. Roumaine Math. Pures. Appl., 15 (1970), 1425–1436.

    MathSciNet  MATH  Google Scholar 

  • Ionescu D.V.: 3. La différence divisée d’ordre n d’une fonction de p variables et sa représentation par une intégral multiple. An. Sti. Univ. ”Al. I. Cuza” Iaşi, Sect. Mat., 18 (1972), 87–92.

    MATH  Google Scholar 

  • Iqbal M.: 1. Numerical solution of a Fredholm convolution type integral equation of the first kind with maximum Likelihood method using cardinal cubic B — spline. J. Mat. Sci. Math., 24 (1984), No. 2, 201–232.

    MathSciNet  MATH  Google Scholar 

  • Iqbal M.: 2. Turckin — Klein regularization method using B — splines for illposed problems. Punjab. Univ. J. Math. (Lahore), 22 (1989), 55–83.

    MathSciNet  MATH  Google Scholar 

  • Iqbal M.: 3. A one — pass algorithm for shape — preserving quadratic spline interpolation. J. Sci. Comput., 7 (1992), No.4, 359–376.

    MathSciNet  MATH  Google Scholar 

  • Iqbal M.: 4. On comparision of spline regularization with exponential sampling method for Laplace transformation inversion. Comput. Phys. Comm., 88 (1995), No.1, 43–50.

    MathSciNet  MATH  Google Scholar 

  • Iqbal M.: 5. On spline regularized inversion of noisy Laplace transforms. J. Comput. Appl. Math., 83 (1997), No.1, 39–54.

    MathSciNet  MATH  Google Scholar 

  • Iqbal Rafhat: A one — pass algorithm for shape — preserving quadratic spline interpolation. J. Sci. Comput. 7 (1992), No.4, 359–376.

    MathSciNet  MATH  Google Scholar 

  • Irodoton-Ellina M.; Houstis E.N.: An O(h 6) quintic spline collocation method for fourth order two — point boundary value problems. BIT, 28 (1988), 288–301.

    MathSciNet  Google Scholar 

  • Irvine L.D.; Martin S.P.; Smith P.W.: Constrained interpolation and smoothing. Constr. Approx., 2 (1986), 129–151.

    MathSciNet  MATH  Google Scholar 

  • Isaev V.K.: Printzip maximuma Pontriaghina i P — Splainî. Dokl. A.N. SSSR, 256 (1981), 22–25.

    MathSciNet  Google Scholar 

  • Isaev V.K.; Djurakulov R.: Application of Hermite-spline for the calculation of Cauchy integrals and singular integrals. Dokl. A.N. Uz. SSr, 9 (1977), 9–11.

    Google Scholar 

  • Isaev V.K.; Grigorev E.A.: On the representation by a parametric cubic spline of a curve with given inclinations of tangents and with radiiof curvature at the end. (russian). Vycisl. Sistemy, No.108 (1985), 63–77.

    Google Scholar 

  • Isaev V.K.; Plotnikov S.A.: 1. On the approximation of functions by first degree splines. (russian). Vyčisl. Sist., 98 (1983), 27–34.

    MathSciNet  MATH  Google Scholar 

  • Isaev V.K.; Plotnikov S.A.: 2. An invers problem of Chebysev approximation on a class of splines of the first degree. (russian). Vyčisl. Sistemy, No.108 (1985), 44–62.

    Google Scholar 

  • Isaev V.K.; Plotnikov S.A.: 3. The invers Chebyshev problem and Chebyshev splines. (russian). Trudy Mat. Inst. Steklov, 211 (1995), 164–185.

    MathSciNet  Google Scholar 

  • Isaev V.K.; Sonin V.V.; Shustova L.I.: Local splines and its applications to projection machine problems. (russian). Vyčisl. Sistemî, 72 (1977), 49–55.

    MATH  Google Scholar 

  • Ismagulov M.R.: 1. Estimates of approximation by interpolation rational splines on certain classes of function. (russian). Izv. Akad. Nauk. Kazakh. SSR, Ser. Fiz. — Mat., 5 (1983), 64–66.

    MathSciNet  Google Scholar 

  • Ismagulov M.R.: 2. Tocinîe otzenki priblijenia neprerîvnîh funcţii reguljarnami splainami. Matem. Zamet., 42 (1987), No.1, 9–20.

    MathSciNet  Google Scholar 

  • Ismagulov M.R.: 3. Estimates for the approximation by interpolation regular splines of twice differentiable functions. (russian). Izv. Akad. Nauk. SSR Ser. Fiz. — Mat., 1 (1988), 23–25.

    MathSciNet  Google Scholar 

  • Ismail M.S.: Finite difference method with cubic spline for solving nonlinear Schrödinger equation. Intern. J. Comput. Math., 62 (1996), No.1–2, 101–112.

    MATH  Google Scholar 

  • Isomoto Yukuo: Numerical integration by bicubic spline functions. Information Processing in Japan, 15 (1975), 16–20.

    MathSciNet  MATH  Google Scholar 

  • Israilov S.M.: 1. Construction of quadrature formulas for singular integrals by means of Ryaben’ku’s cubic spline. (russian) Voprosy Vychisl. i Prikl. Mat., No.94, (1992), 84–96.

    Google Scholar 

  • Israilov S.M.: 2. Construction of quadrature formulas for singular integrals by means of cubic modified Hermitian spline. (russian), Voprosy Vychisl. i Prikl. Mat., No.95, (1993), 57–76.

    Google Scholar 

  • Ito K.; Kappel F.: 1. A uniform differentiale approximation scheme for delay systems using splines. Report No.94, Inst. für Math. T.U. Graz und Univ. Graz, 1987.

    Google Scholar 

  • Ito K.; Kappel F.: 2. A uniformly differentiable approximation scheme for delay systems using splines. Appl. Math. Optim., 23 (1991), No.3, 217–262.

    MathSciNet  MATH  Google Scholar 

  • Ivanov G.K.; Popov B.: On convex approximation by quadratic splines. J.Approx. Theory, 85 (1996), No.1, 110–114.

    MathSciNet  MATH  Google Scholar 

  • Ivanov V. I.: 1. Priblijenie funkţii iz C r — splainami minimalnogo defekta. Mat. Zametki, 43 (1988), No.6, 746–756.

    Google Scholar 

  • Ivanov V. I.: 2. Splain — raznostnaia shema dlja uravnenio teploprovodnosti srazrîvnmi koefficţientami na vnutrenei podvijno graniţe. In Met. reşen. zadaci. mat. fziki. Jakutsk, 1980, 51–55.

    Google Scholar 

  • Izumino Saichi: Convergence of generalized inverses and spline projectors. J. Approx. Theory, 38 (1983), 269–278.

    MathSciNet  MATH  Google Scholar 

  • Iyengar S.R.K.; P. Jain: Spline finite defference methods for singular two point boundary value problems. Numer. Math., 50 (1987), 363–376.

    MathSciNet  MATH  Google Scholar 

  • Jablonski Zdzislaw: 1. Solution of the Fredholm integral equation on the second kind using spline functions. (polish.). Mat. Stos., 19 (1982), 15–21.

    MathSciNet  MATH  Google Scholar 

  • Jablonski Zdzislaw: 2. Solution of the first interior Fourier problem using spline functions. Mat. Stos., 25 (1985), 111–127.

    MathSciNet  MATH  Google Scholar 

  • Jablonski Zdzislaw: 3. Erratum: “Solution of the first interior Fourier problem using spline functions”. Mat. Stas., 32 (1990), 120.

    MathSciNet  Google Scholar 

  • Jaffard S.; Laurencot Ph.: Orthonormal wavelets. Analysis of operators and applications to numerical analysis. In C. K. Chui (ed). Wavelets — A Tutorial in Theory and Applications, Accad. Press., (1992), 543–601.

    Google Scholar 

  • Jakubczyk Kazimierz: 1. Approximation by circular splines for solutions of ordinary differential equations. Zastosow. Mat., 16 (1978), 283–292.

    MathSciNet  Google Scholar 

  • Jakubczyk Kazimierz: 2. Interpolation by polynomial spline functions of second degree. Zeszyty Nauk. Politech. Slask. Mat. — Fiz., 30 (1979), 309–322.

    MathSciNet  Google Scholar 

  • Jain M.K.: Spline function approximations in discrete mechanics. Internat. J. Non—Linear Mech., 14 (1979), 341–348.

    MATH  Google Scholar 

  • Jain M.K.; Aziz T.: 1. Spline function approximations for differential equations. Comput. Meth. Appl. Mech. Eng., 26 (1981), 129–143.

    MathSciNet  MATH  Google Scholar 

  • Jain M.K.; Aziz T.: 2. Numerical solution of stiff and convection — diffusion equations using adaptive spline function approximations. Appl. Math. Modelling, 7 (1983), 57–62.

    MathSciNet  MATH  Google Scholar 

  • Jain M.K.; Aziz T.: 3. Cubic spline solution of two point boundary value problems with significant first derivatives. J. Comput. Math. Appl. Mech. Engrg., 39 (1983), 83–91.

    MathSciNet  MATH  Google Scholar 

  • Jain M.K.; Jyengar S.R.K.; Pillai A.C.R.: Difference schemes based on splines in compression for the solutions of conservation laws. Comput. Meth. Appl. Mech. Eng., 38 (1983), 137–151.

    MATH  Google Scholar 

  • Jain P.C.; Holla D.N.: General finite difference approximation for the wave equations with variable coefficients using a cubic spline technique. Computer Meth. Appl. Mech. Eng., 15 (1978), 175–180.

    MATH  Google Scholar 

  • Jain P.C.; Lobar B.L.: 1. Cubic spline technique for coupled nonlinear parabolic equations. Comput. Math. Appl., 5 (1979), 179–185.

    MathSciNet  MATH  Google Scholar 

  • Jain P.C.; Lobar B.L.: 2. Variable mesh cubic spline technique forN — wave solution of Burgér’s equation. J. Comput. Phys., 39 (1981), 433–442.

    MathSciNet  MATH  Google Scholar 

  • Jain P.C.; Shankar Rama; Singh T.V.: Cubic spline technique for solution of Burgér’s equation with a semi — linear boundary condition. Comm. Appl. Numer. Methods, 8 (1992), No.4, 235–242.

    MathSciNet  MATH  Google Scholar 

  • James W.D.: Convergence of a discretization for constrained spline function problems. SIAM J. Control, 9 (1971), 83–96.

    MathSciNet  MATH  Google Scholar 

  • Jameson L.: On the spline-based wavelet differentiation matrix. Applied numer. Maths., 17 (1995), No.1, 33–45.

    MathSciNet  MATH  Google Scholar 

  • Janenko N.N.; Kvasov B.I.: 1. An iterative method for the construction of polycubic spline functions. (russian). Dokl. Acad. Nauk. SSSR, 195 (1970), 1055–1057.

    MathSciNet  Google Scholar 

  • Janenko N.N.; Kvasov B.I.: 2. An iterative method for the construction of polycubic spline functions. (russian). Cysl. Met. Meh. Splosi Sredi Inform. Bjul., 1 (1970), 84–89.

    MathSciNet  Google Scholar 

  • Jeeawock-Zedek Fatma: 1. Interpolation scheme by C 1 cubic splines on a non uniform type — 2 triangulation of a rectangular domain. C.R. Acad. Sci. Paris, 314 (1992), Ser. I, 413–418.

    MathSciNet  MATH  Google Scholar 

  • Jeeawock-Zedek Fatma: 2. Interpolation de Lagrange par des splines quadratiques sur un quadrilatere de ℝ 2. RAIRO. Model Math. Anal. Numer., 26 (1992), No.5, 575–593.

    MathSciNet  Google Scholar 

  • Jeeawock-Zedek Fatma: 3. Operator norm and error bounds for interpolating quadratic splines on a nonuniform type — 2 triangulation of a rectangular domain. Approximation Theory Appl. 10 (1994), No.2, 1–16.

    MathSciNet  MATH  Google Scholar 

  • Jeltsch R.: Multistep methods using higher dervatives and damping at infinity. Math. Comput., 31 (1977), 124–138.

    MathSciNet  MATH  Google Scholar 

  • Jen E.; Srivastav R.P.: Cubic splines and approximate solution of singular integral equation. Math. Comput., 37 (1981), 417–423.

    MathSciNet  MATH  Google Scholar 

  • Jensîkbaev A.A.: 1. Priblijenie differenţuriremîh periodiceskih funcţij splainami po ravnomernomu razbieniu. Matem. Zamet., 13 (1973), 807–816.

    Google Scholar 

  • Jensîkbaev A.A.: 2. Tocinîc otenki ravnomernogo priblijenih neprerîvnih periodiceskih funcţii splainami r — ogo poriadca. Matem. Zamet., 13 (1973), 217–228.

    Google Scholar 

  • Jensîkbaev A.A.: 3. The approximation of periodic differentiable functions by interpolation splines. Izd. Inst. Mat. Akad. Nauk. Ukrain. SSR., Kiev. (1974).

    Google Scholar 

  • Jensîkbaev A.A.: 4. Spline — interpoliaţia, i nailučişee proiblijenie trigonometriceskimi mnogocilenami. Mat. Zamet., 26 (1979), 355–366.

    Google Scholar 

  • Jensîkbaev A.A.: 5. Monosplines and optimal quadrature formulas for some classis of nonperiodical functions. Anal. Math., 5 (1979), No.4, 301–331.

    MathSciNet  Google Scholar 

  • Jensîkbaev A.A.: 6. Monosplines with least deviating of zero and the best quadrature formulas. (russian). Dokl. Akad. Nauk. SSSR., 249 (1979), 278–281.

    MathSciNet  Google Scholar 

  • Jensîkbaev A.A.: 7. Les monosplines de norme minimale et les meilleurs formules de quadrature. (russian). Uspehi Mat. Nauk., 36 (1981), 107–159.

    Google Scholar 

  • Jensîkbaev A.A.: 8. Ob extremalnosti monosplainov minimalnovo defekta. Izv. Akad. Nauk. SSSR., 46 (1982), 1175–1198.

    Google Scholar 

  • Jensîkbaev A.A.: 9. O monosplainah minimalnovo defekta. Izv. Akad. Nauk. Kazansk. SSR., 5 (108), (1982), 16–24.

    Google Scholar 

  • Jensîkbaev A.A.: 10. Monosplines of minimal L 1 — norm. (russian). Mat. Zam., 33 (1983), No.6, 863–879.

    Google Scholar 

  • Jensîkbaev A.A.: 11. Theorems on zeros for a monosplines with multiple knots. (russian). Vestnik Akad. Nauk Kazakh. SSR, 10 (1986), 62–64.

    Google Scholar 

  • Jensîkbaev A.A.: 12. On monosplines with nonnegative coefficients. J. Approx. Theory, 55 (1988), No.2, 172–182.

    MathSciNet  Google Scholar 

  • Jensîkbaev A.A.: 13. Chebyskev monosplines and best quadrature formula. (russian). Vestn. Akad. Nauk. SSR, (1988), No.4, 73–76.

    Google Scholar 

  • Jensîkbaev A.A.: 14. The fundamental theorem of algebra for monosplines with multiple nodes. J. Approx. Theory, 56 (1989), 121–133.

    MathSciNet  Google Scholar 

  • Jensîkbaev A.A.: 15. Optimal reconstruction of operators and spline approximation. Doklady Akad. Nauk Respub. Kazakhstan, (1992), No.2, 8–13.

    Google Scholar 

  • Jensîkbaev A.A.: 16. Information — nuclear splines in recovery problems. (russian). Dokl. Akad. Nauk., 328 (1993), No.3, 285–288.

    Google Scholar 

  • Jensîkbaev A.A.: 17. Spline approximation and optimal reconstruction of operators. (russian). Mat. Sb. 184 (1993), No.12, 3–22.

    Google Scholar 

  • Jensîkbaev A.A.: 18. Spline approximation and optimal recovery of operators. Russian Acad. Sci. Sb. Math. 80 (1995), No.2, 393–409.

    MathSciNet  Google Scholar 

  • Jerome J.W.: 1. Linear self — adjoint multipoint boundary value problems and related approximation schemes. Numer. Math., 15 (1970), 433–449.

    MathSciNet  MATH  Google Scholar 

  • Jerome J.W.: 2. Minimization problems and linear and non — linear spline functions. I. Existence. II. Convergence. SIAM. J. Numer. Anal., 10 (1973), 808–819, 820–830.

    MathSciNet  MATH  Google Scholar 

  • Jerome J.W.: 3. On uniform approximation by certain generalized spline functions. J. Approx. Theory, 7 (1973), 143–154.

    MathSciNet  MATH  Google Scholar 

  • Jerome J.W.: 4. Smooth interpolating curves of prescribed length and minimum curvature. Proc. Amer. Math. Soc., 51 (1975), 62–66.

    MathSciNet  MATH  Google Scholar 

  • Jerome J.W.: 5. On spline functions derivable from singular differential operators with compact rezolvents. J. Math. Anal. Appl., 55 (1976), 567–577.

    MathSciNet  Google Scholar 

  • Jerome J.W.; Pierce J.: On spline functions determined by singular self — adjoint differential operators. J. Approx. Theory, 5 (1972), 15–40.

    MathSciNet  MATH  Google Scholar 

  • Jerome J.W.; Schumaker L.L.: 1. A note on obtaining natural spline functions by the abstract approach of Atteia and Laurent. SIAM J. Numer. Anal., 5 (1968), 657–663.

    MathSciNet  MATH  Google Scholar 

  • Jerome J.W.; Schumaker L.L.: 2. On Lg — spline. J. Approx. Theory, 2 (1969), 29–49.

    MathSciNet  MATH  Google Scholar 

  • Jerome J.W.; Schumaker L.L.: 3. Characterizations of functions with higher order derivatives in Lp. Trans. Amer. Math. Soc., 143 (1969), 363–371.

    MathSciNet  MATH  Google Scholar 

  • Jerome J.W.; Schumaker L.L.: 4. Local basis and computation on g — splines. Meth. und Verfahren der Math. — Physik, 5 (1971), 171–199.

    MathSciNet  Google Scholar 

  • Jerome J.W.; Schumaker L.L.: 5. Characterizations of absolute continuity and essential boundedness for higher order derivatives. J. Math. Anal. Applic., 42 (1973), 452–465.

    MathSciNet  MATH  Google Scholar 

  • Jerome J.W.; Schumaker L.L.: 6. Local support bases for a class of spline functions. J. Approx. Theory, 16 (1976), 16–27.

    MathSciNet  MATH  Google Scholar 

  • Jetter K.: 1. Optimale Quadraturformeln mit semidefiniten Peano — Kernen. Numer. Math., 25 (1976), 239–249.

    MathSciNet  MATH  Google Scholar 

  • Jetter K.: 2. Duale Hermite — Birkhoff — Probleme. J. Approx. Theory, 17 (1976), 119–134.

    MathSciNet  MATH  Google Scholar 

  • Jetter K.: 3. Nullstellen von Splines. Lect. Notes Math., 556 (1976), 291–304.

    MathSciNet  Google Scholar 

  • Jetter K.: 4. L 1 — Approximation verallgemeinerter konvexer Funktionen durch Splinen mit freien Knoten. Math. Z., 164 (1978), 53–66.

    MathSciNet  MATH  Google Scholar 

  • Jetter K.: 5. The Bernoulli spline and approximation by trigonometric blending polynomials. Result. der Mathematics., 16 (1989), No.3–4, 243–252.

    MathSciNet  MATH  Google Scholar 

  • Jetter K.; Binev P.: Cardinal interpolation with shifted 3 — directional box splines. Proc. Royal Soc. Edinburg, 122 A (1992), 205–220.

    MathSciNet  Google Scholar 

  • Jetter K.; Lange G.: Die Eindentigkeit L 2 — optimaler polynomialer Monosplines. Math. Z., 158 (1978), 23–34.

    MathSciNet  Google Scholar 

  • Jetter K.; Lorentz G.G.; Riemensehneider S.D.: Rolle theorem method in spline interpolation. Analysis, 3 (1983), 1–37.

    MathSciNet  MATH  Google Scholar 

  • Jetter K.; Riemenschneider S.: Cardinal interpolation, submodules and the 4 — direction mesh. Constr. Approx., 3 (1987), 169–188.

    MathSciNet  MATH  Google Scholar 

  • Jetter K.; Riemenschneider S.D.; Sivakumar N.: Schoenberg’s exponential Euler spline curves. Proc. Roy. Soc. Edinburgh Sect. A, 118 (1991), No.1–2, 21–33.

    MathSciNet  MATH  Google Scholar 

  • Jetter K.; Stöckler J.: 1. Algorithms for cardinal interpolation using box — splines and radial basis functions. Numer. Math., 60 (1991), No.1, 97–114.

    MathSciNet  MATH  Google Scholar 

  • Jetter K.; Stöckler J.: 2. Riesz bases of splines and regularized splines with multiple knots. J.Approx.Theory, 87 (1996), No.3, 338–359.

    MathSciNet  MATH  Google Scholar 

  • Jeronim B.: Über glutende Spline — Funktionen. Wiss. Z. Techn. Univ. Dresden, 30 (1981), 109–112.

    Google Scholar 

  • Jia Rong Qing: 1. Cubic spline interpolation for functions of the class Lip. (chinese). Zhejiang Daxue Kuebao, 4 (1979), 157–171.

    Google Scholar 

  • Jia Rong Qing: 2. Cubic spline interpolation at a bi — infinite knot sequence. (chinese). Math. Numer. Sinica, 2 (1980), 345–349.

    MathSciNet  MATH  Google Scholar 

  • Jia Rong Qing: 3. B — splines associated with a linear differential operator, I, II. (chinese). Math. Numer. Sinica, 4 (1982), 128–138, II. 264–271.

    MathSciNet  MATH  Google Scholar 

  • Jia Rong Qing: 4. On local linear functionals for L — splines. J. Approx. Theory, 33 (1982), 96–110.

    MATH  Google Scholar 

  • Jia Rong Qing: 5. L -upper bounds of L 2 — projections onto splines at a geometric mesh. J. Approx. Theory, 37 (1983), 293–310.

    MathSciNet  MATH  Google Scholar 

  • Jia Rong Qing: 6. Total positivity of the discrete spline collocation matrix. J. Approx. Theory, 39 (1983), 11–23.

    MathSciNet  MATH  Google Scholar 

  • Jia Rong Qing: 7. On a conjecture of C.A. Micchelli concerning cubic spline interpolation at a bi — infinite knot sequence. J. Approx. Theory, 38 (1983), 284–292.

    MathSciNet  MATH  Google Scholar 

  • Jia Rong Qing: 8. Linear independence of translates of a Box — spline. J. Approx. Theory, 40 (1984), 158–160.

    MathSciNet  MATH  Google Scholar 

  • Jia Rong Qing: 9. Local linear independence of the translates of a box spline. Constructive Approximation, 1 (1985), 175–182.

    MathSciNet  MATH  Google Scholar 

  • Jia Rong Qing: 10. Spline interpolation at a bi — infinit knot sequence. SIAM J. Numer. Anal., 23 (1986), No.3, 653–662.

    MathSciNet  MATH  Google Scholar 

  • Jia Rong Qing: 11. Approximation order from certain spaces of smooth bivariate splines on a three — direction mesh. Trans. Amer. Math. Soc., 295 (1986), 199–212.

    MathSciNet  MATH  Google Scholar 

  • Jia Rong Qing: 12. B-mesh representation of multivariate splines. (chinese). Kexue Tongbao, 32 (1987), No.11, 804–807.

    MathSciNet  Google Scholar 

  • Jia Rong Qing: 13. L — boundedness of L 2 — projections on splines for a multiple geometric mesh. Math. Comput., 48 (1987), No.178, 675–690.

    MATH  Google Scholar 

  • Jia Rong Qing: 14. Recent progress in the study of box splines. (chinese). Appl. Math., J. Chin. Univ., 2 (1987), Nr.3, 330–342.

    MATH  Google Scholar 

  • Jia Rong Qing: 15. B — net representation of multivariate splines. Kexue Tongbao Sci. Bull., 33 (1988), No.10, 807–811.

    MATH  Google Scholar 

  • Jia Rong Qing: 16. Local approximation order of box splines. (chinese). Sci. Sin. Ser.A, 31 (1988), No.3, 274–285.

    MATH  Google Scholar 

  • Jia Rong Qing: 17. Spline interpolation at knot averages. Constructive Approximation, 4 (1988), 1–7.

    MathSciNet  MATH  Google Scholar 

  • Jia Rong Qing: 18. Translation — invariant subspaces and dual basis for box splines. (chinese). Chinese Ann. Math. Ser. A, 11 (1990), No.6, 733–743.

    MathSciNet  MATH  Google Scholar 

  • Jia Rong Qing: 19. A dual basis for the integer translates of an exponential box spline. Rocky Montain. J. of Math., 23 (1993), No.1, 223–242.

    MATH  Google Scholar 

  • Jia Rong Qing: 20. Multivariate discrete splines and linear diophantine equations. Transaction AMS, 340 (1993), No.1, 179–198.

    MATH  Google Scholar 

  • Jia Rong Qing: 21. Symmetric magic squares and multivariate splines. Linear Algebra Appl., 250 (1997), 69–103.

    MathSciNet  MATH  Google Scholar 

  • Jia Rong Qing; Sivakumar N.: On the linear independence of integer translates of box splines with rational directions. Liniar Algebra Appl., 135 (1990), 19–31.

    MathSciNet  MATH  Google Scholar 

  • Jiang Da Wei; Fu Hui: Fair spline approximation of offset curves of space curves. (chinese). Pure Appl. Math., 8 (1992), No.2, 84–90.

    MathSciNet  MATH  Google Scholar 

  • Jiang Hang Yi; Cai Yuan Long: Laplacian of spline for edge detection. Sci. China Ser. A, 33 (1990), No.2, 220–227.

    MathSciNet  Google Scholar 

  • Jiang Shou Shan: On space local cubic splines. (chinese). J. Numer. Methods Comput. Appl., 7 (1986), No.3, 169–179.

    MathSciNet  Google Scholar 

  • Jiang Shou Shan; Yang Peng-Ji: C 1 — rational interpolating surface under local cardinate systems. Appl. Math. und Mech., 8 (1987), No.6, 503–508.

    MathSciNet  MATH  Google Scholar 

  • Jiang Yu Ming: Random bisection of uniform B — spline curve segments and surface patches. (chinese). J. Chengdu Univ. Sci. Tech., (1992), No.2, 77–88.

    Google Scholar 

  • Jianzhong Wang: 1. Quartic lacunary polynomial splines interpolation. (chinese). Zhejiaing Daxue Xuebao, 1 (1981), 122–127.

    Google Scholar 

  • Jianzhong Wang: 2. On optimal error bounds for interpolating splines. Scientia Sinica (seria A), 25 (1982), 1056–1065

    MATH  Google Scholar 

  • Jianzhong Wang: 3. Optimal error bounds for hyperbolic spline interpolation of order 4. (chinese). J. Math. (Wuham), 2 (1982), 371–378.

    MATH  Google Scholar 

  • Jianzhong Wang: 4. Optimal error L p — bounds for polynomial interpolating splines. (chinese). J. Zhejiang Univ., 4 (1982), 98–105.

    Google Scholar 

  • Jianzhong Wang: 5. On dual basis of bivariate box spline. Approx. Theory Appl., 3 (1987), 153–163.

    MathSciNet  MATH  Google Scholar 

  • Jianzhong Wang; Daren Huang: On quatric and quintic interpolation splines and their optimal error bounds. Scientia Sinica (Series A), 25 (1982), 1130–1141.

    MathSciNet  MATH  Google Scholar 

  • Jiménez Pozo M.A.: Modelization of trajéctories of inclined oil wells by parametric quadratic splines with free knots. (spanish). Cienc. Mat. (Havana), 9 (1988), No.1, 13–18.

    MathSciNet  MATH  Google Scholar 

  • Jin Tong Guang; Shen Yau; Jin De An: A spline of biarcs. (chinese), Zhejiang Daxue Xuebao, 3 (1981), 82–91.

    MathSciNet  Google Scholar 

  • Joe Barry: 1. Discrete beta — spline. Comput. Graphics, 21 (1987), 137–144.

    MathSciNet  Google Scholar 

  • Joe Barry: 2. Multiple — knot and rational cubic B — splines. ACM Trans. Graph., 8 (1989), No.2, 100–120.

    MathSciNet  MATH  Google Scholar 

  • Joe Barry: 3. Knot insertion for Beta-spline curves and surfaces. ACM Trans. Graph., 9 (1990), 41–65.

    MathSciNet  MATH  Google Scholar 

  • Joe Barry: 4. Quartic β-splines. ACM Trans. Graph., 9 (1990), No.3, 301–337.

    MATH  Google Scholar 

  • Joe B.; Wang. W.; Cheng F.:Reduced-knot NURBS representation of rational G 1 composite Bézier curves. Computer Aided Design, 26 (1994), No.5, 393–399.

    MATH  Google Scholar 

  • Joe S.: Collocation methods using piecewise polynomials for second kind integral equations. Comput. and Appl. Math., 12–13, (1985), 351–400.

    MathSciNet  Google Scholar 

  • Johnson Diane L.: 1. Fundamental theorem of algebra for generalized polynomial monosplines. Studia Univ. Babeş — Bolyai, Math., 31 (1986), No.2, 55–69.

    MATH  Google Scholar 

  • Johnson Diane L.: 2. On generalized polynomial monosplines of minimal uniform norm. Mathematica — Revue d’Analyse. Numer. Théorie de l’Approx. (Cluj), 31 (1989), 143–152.

    Google Scholar 

  • Johnson Diane L.: 3. On polynomial monosplines with fixed point evaluations. J. Math. Anal. Appl., 147 (1990), No.2, 486–497.

    MathSciNet  MATH  Google Scholar 

  • Johnson O.G.: Error bounds for Sturm — Liouville eingen — value approximations by several piecewise cubic Rayleigh — Ritz methods. SIAM J. Numer. Anal., 6 (1969), 317–333.

    MathSciNet  MATH  Google Scholar 

  • Johnson R.S.: On monosplines of least deviation. Trans. Amer. Math. Soc., 96 (1960), 457–477.

    Google Scholar 

  • Joly J.L.: 1. Utilisation des fonctions spline pour le lissage. Actes du 5e Congrès de l’AFIRO (Lille 1966). Assoc. Franc. d’Inform. et de Rech. Opérat. Paris, (1967), 349–352.

    Google Scholar 

  • Joly J.L.: 2. Théorèmes de convergence des fonctions spline générales d’interpolation et d’ajustement. C.R. Acad. Sci., Paris, 264 (1967), 126–128.

    MathSciNet  MATH  Google Scholar 

  • Joly J.L.; Laurent P.J.: Stability and duality in convex minimisation problems. Rev. Franc. Informat. Rech. Opérat., 5 (1971), R-2, 3–42.

    MathSciNet  MATH  Google Scholar 

  • Jones A.:An algorithm for convex parametric splines. Tech. Rep. ETA-TR-29, Boeing Computer Services, 1985.

    Google Scholar 

  • Jong Kwang Ho: Existence, uniqueness and a method of construction of interpolationsmoothing splines. (Korean). Su-hak, No.1 (1995), 21–22.

    Google Scholar 

  • Joshi C.; Saxena R.B.: On quartic spline interpolation. Ganifa, 33 (1982), 97–111.

    MathSciNet  MATH  Google Scholar 

  • Jou Emery; Han Weimin: 1. Minimal — energy splines: I. Plane curves with angle constraints. Math. Methods Appl. Sci., 13 (1990), 351–372.

    MathSciNet  MATH  Google Scholar 

  • Jou Emery; Han Weimin: 2. Minimal — energy spline: II. Mixed and natural plane curves. UMIACS TR, 90–120. (CS TR 2534), Univ. of Maryland, 1990.

    Google Scholar 

  • Jou Emery; Han Weimin: 3. Elastica and minimal — energy splines. In Curves and Surfaces, P.J. Laurent e. al. (eds), Academic Press, (1991), 247–250.

    Google Scholar 

  • Ju Sang-Yoon: Extending of cubic parametric splines. (corean). U.O.U. Rep., 17 (1986), 53–57.

    MATH  Google Scholar 

  • Juk V.V.; Natanson G.J.: Nekatorîe zameçania o periodiceskih ekvidistanîh splainah. Vestnik Leningradsk. Univ., 8 (1985), 12–17.

    Google Scholar 

  • Jupp D.L.B.: 1. Curve fitting by splines as an application of unconstrained optimization. In Optimization (R.S. Anderson e. all. eds.), St. Lucia, Univ. of Queensland Press., (1972), 49–59.

    Google Scholar 

  • Jupp D.L.B.: 2. B — splines for smoothing and differentiating data sequences. J. Internat. Assoc. Mathematical Geol., 8 (1976), 243–266.

    MathSciNet  Google Scholar 

  • Jupp D.L.B.: 3. Approximation to data by splines with free knots. SIAM J. Numer. Anal., 15 (1978), 328–343.

    MathSciNet  MATH  Google Scholar 

  • Juferev V.S.: Localnaia approximatija cubiceskimi splainami. J. Vyčisl. Mat. i Mat. Fiz., 21 (1981), 5–10.

    MathSciNet  Google Scholar 

  • Jüttler B.: Shape preserving least-squares approximation by polynomial parametric spline curves. CAGD, 14 (1997), No.8, 731–737.

    MATH  Google Scholar 

  • Jyh-Jen; Horng Shiou: A note on MSE coverage intervale in a partial spline model. Comm. Statist. Theory Meth., 16 (1987), 1851–1856.

    MATH  Google Scholar 

  • Kachnova T.I.: 1. Approximation by splines of certain stockastic processes. (russian). Issled. Prikl. Mat., (1984), No.10, 206–211.

    Google Scholar 

  • Kachnova T.I.: 2. Spline approximation of some stockastic processes. (russian). J. Sov. Math., 44 (1989), No.5, 714–718.

    MathSciNet  MATH  Google Scholar 

  • Kadalbajoo R.K.; Bawa R.K.: 1. Third — order variable — mesh cubic spline methods for nonlinear two — point singularly perturbed boundary value problems. J. Optim. Theory Appl., 77 (1993), No.2, 429–451.

    MathSciNet  Google Scholar 

  • Kadalbajoo R.K.; Bawa R.K.: 2. Cubic spline method for a class of nonlinear singularly — perturbed boundary — value problems. J. Optim. Theory Appl. 76 (1993), No.3, 415–428.

    MathSciNet  MATH  Google Scholar 

  • Kadalbajoo R.K.; Bawa R.K.: 3. Third — order variable — mesh cubic spline methods for singularly — perturbed boundary value problems. Appl. Math. Comput. 59 (1993), No. 2–3, 117–129.

    MathSciNet  MATH  Google Scholar 

  • Kadalbajoo R.K.; Bawa R.K.: 4. Variable-mesh difference scheme for singularly-perturbed boundary-value problems using splines. J. Comput. Math., 14 (1996), No.2, 120–134.

    MathSciNet  Google Scholar 

  • Kadalbajoo Mohan K.; Raman K. Santhana: Cubic spline and invariant imbedding for solving singular two — point boundary poblems. J. Math. Anal. and Appl., 112 (1985), No.1, 22–25.

    MathSciNet  MATH  Google Scholar 

  • Kajfez D.: Numerical integration by deficient splines. Proc. I.E.E.E., 60 (1972), 1015–1016.

    Google Scholar 

  • Kajshev V.K.: 1. Optimal exponential design for the B — spline regression. Comput. Statist. Data Anal., 8 (1989), No.1, 39–47.

    MathSciNet  Google Scholar 

  • Kajshev V.K.: 2. A Gaussian cubature formula for the computation of generalized B — splines and its application to serial correlation. Statistical Multiple Integration (Arcata Ca, 1989), Contemp, Math. 115, AMS, Providence, R.I. (1991), 219–237.

    Google Scholar 

  • Kaklis P.D.; Ginnis A.I.:Sectional — curvature preserving skinnig surfaces. CAGD, 13 (1996), No.7, 601–619.

    MathSciNet  MATH  Google Scholar 

  • Kaklis P.D.; Pandelis D.G.: Convexity — preserving polynomial splines of nonuniform degree. IMA J. on Numer. Analysis, 10 (1990), 223–234.

    MathSciNet  MATH  Google Scholar 

  • Kaklis P.D.; Sapidis N.S.: 1. Curvature — sign — type boundary conditions in parametric cubic — spline interpolation. Comput. Aided Geom. Design. 11 (1994), No.4, 425–450.

    MathSciNet  MATH  Google Scholar 

  • Kaklis P.D.; Sapidis N.S.: 2. Convexity — preserving interpolatory parametric splines of nonuniform polynomial degree. CAGD, 12 (1995), No.1, 1–26.

    MathSciNet  MATH  Google Scholar 

  • Kalik C.: 1. Une propriété de minimum des fonctions spline. Studia Univ. Babeş — Bolyai Cluj, 15 (1970), 34–46.

    MathSciNet  Google Scholar 

  • Kalik C.: 2. Les fonctionelles génératrices des fonctions splines. Studia Univ. Babeş — bolyai Cluj, 16 (1971), 61–64.

    MathSciNet  Google Scholar 

  • Kalik C.: 3. The approximate solution of differential equations by a class of spline functions. Studia Univ. Babeş — Bolyai Cluj, 16 (1971), 21–26.

    MathSciNet  MATH  Google Scholar 

  • Kalik C.: 4. Interpolating spline elements in Banach space. Mathematica (Cluj), 18 (4) (1976), 153–164.

    MathSciNet  Google Scholar 

  • Kalik C.: 5. Sur deux problèmes de la meilleurs approximation dans les espaces de Banach. Anal. Numér. Theor. Approx., 11 (1982), 89–97.

    MathSciNet  MATH  Google Scholar 

  • Kalitkin N.N.; Terihova N.I.: 1. Estestvenîe paraboliceskie interpoljationî splainî. Preprint 131, (1985), Inst. of Applied Mat. Acad. Nauk. SSSR, Moskva.

    Google Scholar 

  • Kalitkin N.N.; Terihova N.I.: 2. Self — natural quadratic interpolating splines. Mathematical Modelling, 1/11, (1989), 100–106.

    MATH  Google Scholar 

  • Kaliev P.U.: An algorithm for obtaining the exact constants in error estimates of approximation by splines of an odd degree on a uniform grid. (russian). Vychisl. Sist., 128 (1988), 3–31.

    MathSciNet  MATH  Google Scholar 

  • Kallay M.: 1. Plan curves of minimal energy. ACM Trans. Math. Software, 12 (1986), No.3, 219–222.

    MathSciNet  MATH  Google Scholar 

  • Kallay M.: 2. General B — spline Hermite interpolation. Comput. Aided Geom. Design, 8 (1991), 159–161.

    MathSciNet  MATH  Google Scholar 

  • Kamada Masaru; Toraichi Kazuo; Ikebe Yasukiho: A note on error estimation for spline interpolation method with sampling based. Electron. Comm. Japan Part III Fund. Electron Sci., 74 (1991), No.4, 51–60.

    MathSciNet  Google Scholar 

  • Kamada Masaru; Toraichi Kazuo; Mori Ryoichi: 1. An orthonormal basis in the space of periodic spline functions. Tensor. New. Ser., 45 (1987), 116–121.

    MATH  Google Scholar 

  • Kamada Masaru; Toraichi Kazuo; Mori Ryoichi: 2. Periodic spline orthonormal bases. J. Approx. Theory, 55 (1988), No.1, 27–34.

    MathSciNet  MATH  Google Scholar 

  • Kaminskii V.A.; Makarov V.I.: On the least spline with free knots for a convex functions. (russian). Appl. Funct. Anal. to Approx. Theory, Kalinin Gos. Univ., 158 (1980), 45–52.

    MathSciNet  Google Scholar 

  • Kamytov T.: Approximate solution of initial value problems for the Barbashin integrodifferential equations using spline functions. Trudi Kirk. Univ. Ser. Mat. Nauki, 2 (1976), 46–50.

    Google Scholar 

  • Kammerer W.J.; Reddien Jr. G. W.: Local convergence of smooth cubic spline interpolates. SIAM J. Numer. Anal., 9 (1972), 687–694.

    MathSciNet  MATH  Google Scholar 

  • Kammerer W.J.; Reddien Jr. G.W.; Varga R.S.: Quadratic interpolatory splines. Numer. Math., 22 (1974), 241–259.

    MathSciNet  MATH  Google Scholar 

  • Kaneko H.; Noren R.: An application of approximation theory to numerical solutions for Fredholm integral equations of second kind. Numer. Funct. Anal. and Optimiz., 12 (1991), No.5–6, 517–523.

    MathSciNet  MATH  Google Scholar 

  • Kaneko H.; Noren R.; Padilla P.A.: Superconvergence of the iterated collocation methods for Hammerstein equations. J. Comput. Appl. Math., 80 (1997), 335–349.

    MathSciNet  MATH  Google Scholar 

  • Kaneko H.; Xu Yuesheng:Superconvergence of the iterated Galerkin methods for Hammerstein equations. SIAM J. Numer. Anal., 33 (1996), No.3, 1048–1064.

    MathSciNet  MATH  Google Scholar 

  • Kang C.M.: Piecewise polynomial approximations for the point kinetice equations. Trans. Amer. Nuclear Soc., 14 (1971), 201–202.

    Google Scholar 

  • Kangro Urve: The spline — collocation method for solving a two — dimensional integral equation with a logarithmic kernel. (russian). Tartu Rükl. Ül. Toimetised, (1990), No.913, 18–23.

    Google Scholar 

  • Kantorowicz E.; Schechner Y.: Managing the shape of planar splines by their control polygons. Comput — Aided Des. 25 (1993), No.6, 355–364.

    Google Scholar 

  • Kappel F.: Spline approximation for nonlinear autonomous functional differential equations. Nonlinear Anal. Theory, Meth. and Apl., 10 (1986), No.5, 503–513.

    MathSciNet  MATH  Google Scholar 

  • Kappel F.; Kunisch K.: Spline approximations for neutral functional differential equations. SIAM J. Numer. Anal., 18 (1981), 1058–1080.

    MathSciNet  MATH  Google Scholar 

  • Kappel F.; Salamon D.: Spline approximation for retarded systems and the Riccati equation. SIAM J. Control Optimization, 25 (1987), 1082–1117.

    MathSciNet  MATH  Google Scholar 

  • Kappel F.; Schmidt: Periodic solutions of systems of ordinary differential equations which approximate delay equations. Diff. and Integral Equations, 1 (1988), No.2, 183–212.

    MATH  Google Scholar 

  • Karaballi A.A.; EL Tarazi M.N.: Solving second order initial value problems by cubic splines. J. Inst. Math. Comput. Sci. Math. Ser., 5 (1992), No.2, 133–145.

    MathSciNet  MATH  Google Scholar 

  • Karaballi A.A.; Sallam S.: Lacunary interpolation by quartic splines on uniform meshes. J. Comput. Appl. Math., 80 (1997), 97–104.

    MathSciNet  MATH  Google Scholar 

  • Karipilovskaia E.B.: O metode splain — collocaţij. (russian). Cyssl. Metodi v gidromeh. Leningrad, (1981), 86–92.

    Google Scholar 

  • Karlin S.: 1. Total pozitivity, interpolation by splines and Green’s functions of differential operators. J. Approx. Theory, 4 (1971), 91–112.

    MathSciNet  MATH  Google Scholar 

  • Karlin S.: 2. Best quadrature formulas and splines. J. Approx. Theory, 4 (1971), 59–90.

    MathSciNet  MATH  Google Scholar 

  • Karlin S.: 3. On a class of best nonlinear approximation problems. Bull. Amer. Math. Soc., 78 (1972), 43–49.

    MathSciNet  MATH  Google Scholar 

  • Karlin S.: 4. Some variational problems on certain Sobolev spaces and perfect splines. Bull. Amer. Math. Soc., 79 (1973), 124–128.

    MathSciNet  MATH  Google Scholar 

  • Karlin S.; Karon J.M.: 1. A variation — diminishing generalized spline approximation method. J. Approx. Theoy, 1 (1968), 255–268.

    MathSciNet  MATH  Google Scholar 

  • Karlin S.; Karon J.M.: 2. A remark on B — splines. J. Approx. Theory, 3 (1970), 455–456.

    Google Scholar 

  • Karlin S.; Karon J.M.: 3. On Hermite — Birkhoff interpolation. J. Approx. Theory, 6 (1972), 90–115.

    MathSciNet  MATH  Google Scholar 

  • Karlin S.; Karon J.M.: 4. Poised and non — poised Hermite — Birkhoff interpolation. Indiana Univ. Math. J., 21 (1972), 1131–1170.

    MathSciNet  MATH  Google Scholar 

  • Karlin S.; Karon J.M.: 5. Interpolation properties of generalized perfect splines and the solution of certain extremal problems. Trans. Amer. Math. Soc., 206 (1975), 25–66.

    MathSciNet  MATH  Google Scholar 

  • Karlin S.; Lee J.: Periodic boundary — value problems with cyclic totally positive Green’s functions with applications to periodic spline theory. J. Diff. Eqs., 8 (1970), 374–396.

    MathSciNet  MATH  Google Scholar 

  • Karlin S.; Micchelli C.: The fundamental theorem of algebra for monosplines satisfying boundary conditions. Israel J. Math., 11 (1972), 405–451.

    MathSciNet  MATH  Google Scholar 

  • Karlin S.; Micchelli C.A.; Rinott Y.: Multivariate splines: a probabilistic perspective. J. Multivariate Anal., 20 (1986), No.1, 69–90.

    MathSciNet  MATH  Google Scholar 

  • Karlin S.; Pinkus A.: Oscillation properties of generalized characteristic polynomials for totally positive and positive definite matrix. Linear Algebra and its Applications, 8 (1974), 281–312.

    MathSciNet  MATH  Google Scholar 

  • Karlin S.; Schumaker L.L.: The fundamental theorem of algebra for Tchebycheffian monosplines. J. Anal. Math., 20 (1967), 235–270.

    Google Scholar 

  • Karlin S.; Ziegler Z.: Tchebycheffian spline functions. SIAM. J. Numer. Anal., 3 (1966), 514–543.

    MathSciNet  MATH  Google Scholar 

  • Karon J.M.: The sign — regularity properties of a class of Green’s functions for ordinary diff. eqs. J. Diff. Eqs., 6 (1969), 484–502.

    MathSciNet  MATH  Google Scholar 

  • Karpilovskaja E.B.: O metode splain kollocaţij v probleme sobstvenîh znacenij. Cisl. met. v kraev. zadaci mat. fiz., 4 (1985), 7–10.

    Google Scholar 

  • Kasi Viswanadham K.N.S.; Koneru S.R.: Finite element method for one — dimensional and two — dimensional time dependent problems with B — splines. Comput. Methods Appl. Mech. Engrg. 108 (1993), No.3–4, 201–222.

    MathSciNet  MATH  Google Scholar 

  • Kashin B.S.: 1. The widths of certain finite dimensional sets and classes of smooth functions. Izv. Akad. Nauk. SSSR., Ser. Math., 41 (1977), 334–335.

    MATH  Google Scholar 

  • Kashin B.S.: 2. Orders of the widths of certain classes of smooth functions. Uspehi Math. Nauk., 32 (1977), 191–192.

    MATH  Google Scholar 

  • Katrakhova A.A.: Spline interpolation in weighted spaces. (russian). Appl. of new meth. of analysis to the theory of boundary value problems. (russian). Kach. Met. Kraev. Zadach., Voronezh. Gos. Univ., (1990), 35–39.

    Google Scholar 

  • Kaufmann E.; Klass R.: Smoothing surfaces using reflection lines for families of splines. Comput. Aided Des., 20 (1988), No.6, 312–316.

    MATH  Google Scholar 

  • Kaufman E.H.; Junior; Taylor G.D.: Approximation and interpolation by convexity — preserving rational splines. Constructive Approximation, 10 (1994), No.2, 275–283.

    MathSciNet  MATH  Google Scholar 

  • Kawasaki Hidefumi: A second — order property of spline functions with one free knot. J. Approx. Theory 78 (1994), No.2, 293–297.

    MathSciNet  MATH  Google Scholar 

  • Kauthen J.P.: Continuous time collocation methods for Volterra — Fredholm integral equations. Numer. Math., 56 (1989), 409–424.

    MathSciNet  MATH  Google Scholar 

  • Kauthen J.P.; Brunner H.: Continuous collocation approximations to solutions of first kind Volterra equations. Math. of Comput. 66 (1997), No.220, 1441–1459.

    MathSciNet  MATH  Google Scholar 

  • Kautsky J.: Optimal quadrature formulae and minimal monosplines in L q. J. Austral. Math. Soc., 11 (1970), 48–56.

    MathSciNet  MATH  Google Scholar 

  • Kazakos D.; Dimitriadis B.: Eficient cubic spline fit. I.E.E.E. Int. Conf. Aconst. Speech and Signal. Proc. Hartford Conn. 1977, New York, (1977), 109–111.

    Google Scholar 

  • Kazakov V.A.: Computation of viscous flow by B — splines. Uch. zap. TSAGI, 14 (1984), No.4, 58–66.

    MathSciNet  Google Scholar 

  • Kazakov V.A.: 2. On construction of schemes of improved order of accuracy for computing viscous flow by B — splines. Zh. Vyčisl. Mat. Mat. Fiz., 24 (1984), No.6, 916–924.

    MathSciNet  Google Scholar 

  • Kazakov V.A.: 3. On a way of utilizing the B — splines in splitting schemes for solving the Navier — Stokes equations. (russian). Jurnal Vyčisl. Mat. i Mat. — Fiz., 28 (1988), No.7, 1038–1046.

    MathSciNet  Google Scholar 

  • Kazno H.; Jchizo Ninomiya: An algorithm and error analysis of bivariate interpolating splines. Dzéxo. cëpn., 19 (1978), 196–203.

    Google Scholar 

  • Kemper G.A.: Spline functions approximation for solution of functional differential equations. SIAM J. Numer. Anal., 12 (1975), 73–88.

    MathSciNet  Google Scholar 

  • Kershaw D.: 1. A note on the convergence of interpolatory cubic splines. SLAM. J. Numer. Anal., 8 (1971), 67–74.

    MathSciNet  MATH  Google Scholar 

  • Kershaw D.: 2. The orders of approximation of the first derivative of cubic splines at the knots. Math. Comput., 26 (1972), 191–198.

    MathSciNet  MATH  Google Scholar 

  • Kershaw D.: 3. Sard’s best quadrature formulas of order two. J. Approx. Theory, 6 (1972), 466–474.

    MathSciNet  MATH  Google Scholar 

  • Kershaw D.: 4. The two interpolatory cubic splines. J. Inst. Math. Applics., 11 (1973), 329–333.

    MathSciNet  MATH  Google Scholar 

  • Kershaw D.: 5. A bound of the inverse of a band — matrix which occurs in interpolation by periodic odd splines. J. Inst. Math. Appl., 20 (1977), 217–228.

    MathSciNet  Google Scholar 

  • Khaang Van Laj: Application of splines to the approximate determination of the classical solution of the Cauchy problem for a first — order quasiliniar equation. Ukr. Math. J., 39 (1984), No.4, 405–410.

    Google Scholar 

  • Khalif A.K.; Eilbeck J.C.: Collocation with quadratic and cubic splines. IMA J. Numer. Anal., 2 (1982), 111–121.

    MathSciNet  Google Scholar 

  • Khalifa A.K.; Noor M.A.: Quintic spline solutions of a class of contact problems. Math. and Comput. Modell., 13 (1990), No.2, 51–58.

    MathSciNet  MATH  Google Scholar 

  • Khamaysek A.; Hamann Bernd.:elliptic, grid generation using NURBS surfaces. CAGD, 13 (1996), No.4, 369–386

    Google Scholar 

  • Khanin A.G.: A spline estimate for the integral from the square of a general density, and its asymptotic properties. (russian). Akad. Ukrain SSR. Inst. Mat. Preprint, (1989), No.9, 51.

    Google Scholar 

  • Khao Yujbin: Explicit approximation by fifth — degree splines with interpolation near the boundary. (russian). Zh. Vyčisl. Mat. Mat. Fiz., 29 (1989), No.8, 1236–1241.

    MathSciNet  MATH  Google Scholar 

  • Khatamov A.: 1. Approximation spline des fonctions à derivée convex. (russian). Dokl. Akad. Nauk. Uz. SSR, 3 (1980), 4–6, and Matem. Zamet., 31 (1982), 877–887.

    MathSciNet  Google Scholar 

  • Khatamov A.: 2. Spline — approximations of functions. (russian). Dokl. Akad. Nauk. Uz. SSR., 7 (1989), 11–13.

    MathSciNet  Google Scholar 

  • Khizha A.L.: 1. Stability estimates of certain methods of approximaton by local splines. (russian). Ukrains. Matem. J., 40 (1988), 263–267.

    MathSciNet  Google Scholar 

  • Khizha A.L.: 2. On approximation of differenti able functions by local splines. (russian). Approx. theory and related questions of anal. and topology, Collect. Sci. Works, Kiev, (1987), 97–104.

    Google Scholar 

  • Khlobystov V.V.: Some properties of extremal parabolic splines. (russian). Vychisl. Prikl. Mat. (Kiev), (1982), No.48, 23–26.

    Google Scholar 

  • Khodzhaniyazov Sh.F.: 1. On the error of interpolation by cubic splines on a uniform grid. (russian). Numer.Integration and Related Problems (russian), Fan.Taskkent, 136 (1990), 62–76.

    MathSciNet  Google Scholar 

  • Khodzhaniyazov Sh.F.: 2. On the error of interpolation by cubic splines on an arbitrary grid. Uzbek. Mat. Zh., No.2 (1994), 58–65.

    Google Scholar 

  • Kilberth K.: 1. Eine Randbedingung für kubische Splinefunktionen. Computing, 11 (1973), 59–67.

    MathSciNet  MATH  Google Scholar 

  • Kilberth K.: 2. Über Typen von kubischen Splinefunktionen. ZAMM, 54 (1974), 224–225.

    MathSciNet  Google Scholar 

  • Kilberth K.; Weidner P.: Berechnung dünner Rechteck und Paralelogrammplatten mittels Splines. Ingenier — Archiv., 43 (1974), 247–254.

    MATH  Google Scholar 

  • Kim H.O.; Kim S.D.; Lee Y.H.: Finite difference preconditioning cubic spline collocation method of eliptic equations. Numer. Math., 77 (1997), No.1, 83–104.

    MathSciNet  MATH  Google Scholar 

  • Kim M.J.; Kim M.S.; Shin S.: A C 2 -continnous B-spline quaternion curve interpolating a given sequance of solid orientations. Proc. of Computer Animation’95, (1995), 72–81.

    Google Scholar 

  • Kim S.D.:Preconditioning collocation method using quadratic splines with applications to 2 nd -order separable elliptic equations. J. Austral Math. Soc. Ser B., 37 (1996), No.4, 549–578.

    MathSciNet  MATH  Google Scholar 

  • Kim S.D.; Kim S.: Exponential decay of C 1 — cubic splines vanishing at two symmetric points in each knot interval. Numer. Math., 76 (1997), No.4, 479–488.

    MathSciNet  MATH  Google Scholar 

  • Kim S.D.; Parter S.V.: Preconditioning cubic spline collocation discretizations of elliptic equations. Numer. Math., 72 (1995), 39–72.

    MathSciNet  MATH  Google Scholar 

  • Kime Ha Jine: 1. Numerical construction of cubic — quatic (second order) spline fits. J. Korean Math. Soc., 17 (1980/81), 249–258.

    MathSciNet  Google Scholar 

  • Kime Ha Jine: 2. Une caracterisation de la fonction spline de lissage. Bull. Korean. Math. Soc., 19 (1982), 27–33.

    MathSciNet  Google Scholar 

  • Kimeldorf G.S.; Wahba G.: 1. A correspondence between Bayesian estimation on stochastic processes and smoothing by splines. Ann. Math. Statist., 41 (1970), 495–502.

    MathSciNet  MATH  Google Scholar 

  • Kimeldorf G.S.; Wahba G.: 2. Spline functions and stochastic processes. Indian J. Statistica, Sankhya Ser. A, 32 (1970), 173–180.

    MathSciNet  MATH  Google Scholar 

  • Kimeldorf G.S.; Wahba G.: 3. Some results on Tchebycheffian spline functions. J. Math. Anal. Appl., 32 (1971), 82–95.

    MathSciNet  Google Scholar 

  • Kimn Ha Jen: 1. Numerical construction of cubic — quartic (second order) spline fits. J. Korean Math. Soc., 17 (1981), 249–258.

    MATH  Google Scholar 

  • Kimn Ha Jen: 2. Une characterization de la fonction spline de lissage. J. Korean Math. Soc., 19 (1982/83), No.1, 27–33.

    MATH  Google Scholar 

  • Kimn Ha Jen: 3. On the numerical behaviour of cubic — quartic spline fits. J. Korean Math. Soc., 21 (1984), No.2, 207–217.

    MathSciNet  MATH  Google Scholar 

  • Kimn Ha Jen: 4. On the construction and the existence of parametric cubic g 2 B-spline. Commun. Korean Math. Soc., 10 (1995), No.2, 483–490.

    MathSciNet  MATH  Google Scholar 

  • Kimn Ha Jen; Hong Gi: On the error analysis of some piecewise cubic interpolating polynomials. Kyungpook Math. J., 24 (1984), 63–67.

    MathSciNet  MATH  Google Scholar 

  • Kimura M.; Saito T.; Shinya M.: Surface deformations with differential geometric structures. CAGD, 13 (1996), No.3, 243–256.

    MathSciNet  MATH  Google Scholar 

  • Kindalev B.S.: 1. Asymptotic formulas for a fifth — degree spline and their applications. (russian). Vyčsl. Sistemy, 87 (1981), 18–24.

    MathSciNet  MATH  Google Scholar 

  • Kindalev B.S.: 2. Asymptotic formulas for splines of odd degree and approximation of higher — order derivatives. (russian). Vychisl. Sistemy, (1982), No.93, 39–52.

    Google Scholar 

  • Kindalev B.S.: 3. Error asymptotic and superconvergence of periodic interpolation splines of even degree. (russian). Vychisl. Sistemy, (1986), No.115, 3–25.

    Google Scholar 

  • Kionstelidis J.B.; Spyropoulos K.J.: L 1 — approximations of strictly convex functions by means of first degree spline. Computing, 20 (1978), No.1, 35–45.

    MathSciNet  Google Scholar 

  • Kirov G.: 1. Approximatija na funkţij a K — splainami. Mat. i matematiceskovo obraz. Dokladî. Na VII — II. K.Na S.N.B.S1. Bpiag. 5 — 8, IV. 1978, Sofia, B.A.N., (1978), 361–368.

    Google Scholar 

  • Kirov G.: 2. Tocinîe oţenki priblijenia differenţiruemîn funkţii K — splainami. Dokl. Bulg. A.N., 32 (1979), No.7, 871–874.

    MathSciNet  MATH  Google Scholar 

  • Kirov G.: 3. Some extremal problems for K — splines. (russian). Serdica, 6 (1980), 16–20.

    MathSciNet  MATH  Google Scholar 

  • Kirov G.: 4. Approximation of functions by rational quasisplines in L p [0,1]. Comput. R. Acad. Bulgare Sci., 37 (1984), No.11, 1455–1458.

    MathSciNet  MATH  Google Scholar 

  • Kirov G.; Basselkov M.: Some optimal problems for continuous functions in two variables with K — spline, I, II. Mat. and Educ. In Math. Proc. Spring. Conf. Union. Bulg. Math. Sunny Beach, (1979), 313–322; II. (1981), 142–146.

    Google Scholar 

  • Kirov G.; Fesčiev I.H.; Vekova G.H.: Approximation of the solutions of linear integral equations by means of spline functions. Vyčisl. Ped. Inst. Plovdiv Naučn. Trad., 10 (1972), 49–56.

    Google Scholar 

  • Kirrmann G.: A short proof of an algorithm by Boehm. Comput. Aided Geom. Des., 9 (1992), No.1, 69–71.

    MathSciNet  MATH  Google Scholar 

  • Kirsanova N.N.: 1. Superprograms smooth trigonometric splines. (russian). Cisl. Analiz. na FORTRAN (Moskva), 7 (1974), 111–114.

    Google Scholar 

  • Kirsanova N.N.: 2. Trigonometric splines and applications to approximation of functions. Idem., 6 (1974), 67–78.

    Google Scholar 

  • King J.T.: The approximate solution of parabolic initial boundary value problems. SIAM J. Numer. Anal., 9 (1972), 215–229.

    MathSciNet  MATH  Google Scholar 

  • Kjellander A.P.: 1.Smoothing of cubic parametric spline. Computer — Aided Design, 15 (1983), 288–293 and 175–178.

    Google Scholar 

  • Kjellander A.P.: 2. Smoothing of bicubic parametric surfaces. Computer Aided Design, 15 (1983), No.5, 175–179.

    Google Scholar 

  • Klass R.: An offset spline approximation for plane cubic splines. Computer Aided Design, 5 (1983), 297–299.

    Google Scholar 

  • Klassen Victor R.:Drawing antialiased cubic spline curves. ACM Trans. on Graphics, 10 (1990), No.1, 92–108.

    Google Scholar 

  • Klaus R.L.; Nes H.C. van: An extension of the spline fit technique and applications to thermodynamic data. A.I.Ch.E.J., 13 (1967), 1132–1133.

    Google Scholar 

  • Klein G.: 1. On spline functions and statistical regularization of illpoised problems. J. Comput. Appl. Math., 5 (1979), 259–264.

    MATH  Google Scholar 

  • Klein G.: 2. Fitting simple non — tensior product splines to scattered moisy data on Euclidean d — space. J. Comput. Appl. Math., 18 (1987), No.3, 347–352.

    MathSciNet  MATH  Google Scholar 

  • Klimenko N.S.: Smoothing by convex cubic splines. (russian). Akad. Nauk. Ukrain. SSR. Preprint 26, Splainî v. Zadaciah Approx. ii Sglazivan, (1978), 3–10.

    Google Scholar 

  • Klimenko V.T.: 1. Application of splines to the solution of plane elliptic poblems for some bounded domains. (russian). Vychisl. i Prikl. Mat. (Kiev), 3 (1979), 10–16.

    MathSciNet  Google Scholar 

  • Klimenko V.T.: 2. Reconstruction of a surface from incomplet data by two dimensional Hermite type splines. (russian). Priklad. Geom. i Inžener. Grafica, 30 (1980), 73–76.

    MathSciNet  Google Scholar 

  • Klimenko V.T.: 3. Two — dimensional Hermite splines on a curvilinear grid. (russian). Current problems in Approx. Theory and Complex Analysis, Akad. Nauk. Ukrain. SSR, Inst. Mat. Kiev, (1990), 58–65.

    Google Scholar 

  • Klimenko V.T.: 4. Approximation of functions of two variables by harmonic splines. (russian). Ukrain. Mat. Zh., 47 (1995), No.11, 1506–1518.

    MathSciNet  Google Scholar 

  • Klimenko V.T.; Orziev M.: Construction of spline — surfaces of given curviliniar data sets. (russian). Voprosî Vychisl. i Priklad. Mat. (Tashkent), 59 (1980), 32–37.

    MATH  Google Scholar 

  • Klucewicz I.M.: A piecewise C 1 interpolant to arbitrarily spaced data. Computer Graphics Image Proc., 8 (1977), 92–112.

    Google Scholar 

  • Knapp L.C.: A design scheme using coons surfaces with nonuniform basis B — spline curves. Comput. Ind., 3 (1982), 27–33.

    MathSciNet  Google Scholar 

  • Knudson W.; Nagy D.: Discrete data smoothing by spline interpolation with application to imal geometry of cable nets. Comput. Meth. Appl. Mech. and Eng., 4 (1974), 321–348.

    MATH  Google Scholar 

  • Kobbelt L.:Stable evaluation of box-splines. Numer. Algorithms, 14 (1997), No.4, 377–392.

    MathSciNet  MATH  Google Scholar 

  • Kobkov V.V.: O shodimosti kubičeskih splainov dopolnitelnîmi uslami. Cysl. Analis, Novosibirsk, (1978), 60–74.

    Google Scholar 

  • Kobza J.: 1. An algorithm for biparabolic spline. Aplikace Math., 32 (1987), No.5, 401–413.

    MathSciNet  MATH  Google Scholar 

  • Kobza J.: 2. On algorithms for parabolic splines. Acta. Univ. Palack. Olomuc. Fac. Rerum Nat. Math., 26 (1987), 169–185.

    MathSciNet  MATH  Google Scholar 

  • Kobza J.: 3. Some properties of interpolating quadratic spline. (russian). Acta Univ. Palack. Olomuc. Fac. Rerum. Natur. Math., 29 (1990), 45–64.

    MathSciNet  MATH  Google Scholar 

  • Kobza J.: 4. Quadratic splines interpolating derivatives. Acta Univ. Palack. Olomuc. Fac. Rerum. Natur. Math., 30 (1991), 219–233.

    MathSciNet  MATH  Google Scholar 

  • Kobza J.: 5. Quadratic splines interpolating derivatives. Acta Univ. Palack. Olomuc. Fac. Rerum. Natur. Math. 30 (1991), 219–233.

    MathSciNet  MATH  Google Scholar 

  • Kobza J.: 6. Quadratic splines smoothing the first derivatives. Appl. Math., 37 (1992), 149–156.

    MathSciNet  MATH  Google Scholar 

  • Kobza J.: 7. Error estimate for quadratic spline interpolating the first derivatives. Acta. Univ. Palack. Olomuc. Fac. Rerum Nat. Math., 31 (1992), 101–108.

    MathSciNet  MATH  Google Scholar 

  • Kobza J.: 8. B — spline representation of interpolating and smoothing quadratic spline. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 32 (1993), 69–79.

    MathSciNet  MATH  Google Scholar 

  • Kobza J.: 9. Biquadratic spline smoothing mean — values. Math. 33, Vol. 114, (1994), 51–61.

    MathSciNet  Google Scholar 

  • Kobza J.: 10. Some algorithm for computing local parameters of quartic interpolatory splines. Acta Univ. Palack. Olomuc, Faculty Rerum Natur. Math. XXXIII, Vol. 114, (1994), 63–73.

    MathSciNet  Google Scholar 

  • Kobza J.: 11. Spline recurrences for quartic splines. Acta Univ. Palack. Olomuc, Faculty Rerum Natur. Math. 34 (1995), 75–89.

    MathSciNet  MATH  Google Scholar 

  • Kobza J.: 12. Algorithm for computing local parameters of biquartic interpolatory splines. J. of Comput. and Applied Math., 63 (1995), 229–236.

    MathSciNet  MATH  Google Scholar 

  • Kobza J.: 13. Quartic smoothing splines. Proc. Conf. SANM, Zel. Ruda, (1995).

    Google Scholar 

  • Kobza J.: 14. Computing local parameters of biquartic interpolatory splines. J. Comput. Appl. Math., 63 (1995), No.1–3, 229–236.

    MathSciNet  MATH  Google Scholar 

  • Kobza J.: 15. Quartic and biquartic interpolatory splines on simple grid. Acta Univ. Palacki. Olomuc. Fac. Rer. Nat. Mathematica, 35 (1996), 61–72.

    MathSciNet  MATH  Google Scholar 

  • Kobza J.; Mlčak J.: 1. Biquadratic splines interpolating mean — values. Appl. Math. 39, No.5, (1994), 339–356.

    MathSciNet  MATH  Google Scholar 

  • Kobza J.; Mlčak J.: 2. Biquadratic spline smooting mean values. Acta. Univ. Palack. Olomuc, Faculty Rerum Natur. Math. XXXIII, Vol. 114, (1994), 51–61.

    Google Scholar 

  • Kobza J.; Zapalka D.: Natural and smoothing quadratic spline. Appl. Math., 36 (1991), No.3, 187–204.

    MathSciNet  MATH  Google Scholar 

  • Kobza J.; Kučera R.: Fundamental quadratic splines and applications. Acta Univ. Palack. Olomuc. Fac. Perum. Natur. Math, 32 (1993), 81–98.

    MATH  Google Scholar 

  • Koçak Z.F; Phillips G.M.: 1. B — splines with geometric knots spacing. BIT, 34 (1994), 388–399.

    MathSciNet  MATH  Google Scholar 

  • Koçak Z.F; Phillips G.M.: 2. A one-parameter class of B-splines. Approx. Theory, Wavelets and Applications. (Maratea, 1994), 169–176, NATO Adv. Sci. Inst. Ser. C Math. Phys¿ Sci., 454, Kluwer Acad. Publ. 1995.

    Google Scholar 

  • Koch P.E.: 1. Collocation by L — Splines at transformed Gaussian points. SIAM. J. Numer. Anal., 21 (1984), No.6, 1107–1114.

    MathSciNet  MATH  Google Scholar 

  • Koch P.E.: 2. Multivariate Trigonometric B — splines. J. Approx. Theory, 54 (1988), 162–168.

    MathSciNet  MATH  Google Scholar 

  • Koch P.E.; Lyche T.: Interpolation with exponential B — spline in tension. Geometric Modelling, Comput. Suppl., 8, Springer, Vienna, (1993), 173–190.

    Google Scholar 

  • Koch P.E.; Lyche T.; Neamtu M.:Control curves and knot insertion for trigonometric splines. Adv. Comput. Math., 3 (1995), 405–424.

    MathSciNet  MATH  Google Scholar 

  • Kochanek D.; Bartels R.:Interpolating splines with local tensiors, continuity and bias control. Computer Graphics, 18 (1984), No.3, 33–41.

    Google Scholar 

  • Kochevar P.: An application of multivariate B — splines to computer aided geometrical design. Rouchy Mountain, J. Math., 14 (1974), 159–175.

    MathSciNet  Google Scholar 

  • Kocic L.M.; Milovanovic G.V.; Djordjevié D.R.: Spline approximation via convex programming. Wiss. Z. der T.H. Ilmenau, 6 (1989), 161–164.

    Google Scholar 

  • Kocié L.M.; Oklobdzija D.J.: B — spline shape control by knots transformation. Automatika, 31 (1990), 89–94.

    Google Scholar 

  • Kocic L.M.; Simoncelli A.C.; Della Veechia B.: Blending parametrization of polynomial and spline interpolants. Facta Univ. Ser. Math. Inform., (1990), No.5, 95–107.

    Google Scholar 

  • Kocsis J.: An inventory model by spline approximation. Probl. of Control and Inform. Theory, Budapest, 6 (1977), 437–448.

    MATH  Google Scholar 

  • Kodama Yoshiaki: Use of spline functions in CFD. Spec. Publ. Nat. Aerospace Lab., (1989), No.SP-10, 209–213.

    Google Scholar 

  • Koh Y. W.; Lee S.L.; Tan H.H.: Periodic orthogonal splines and wavelets. Appl. Cornput. Harmon. Anal., 2 (1995), No.3, 201–218.

    MathSciNet  MATH  Google Scholar 

  • Kohanovskij I.N.; Japakova F.N.: Priminenie splain approximaţij c reşeniju nelineinoi zadaci zapodnoi zaşcity sistemî priboprovodov of korozij. Vyčisl. Prikladn. Mat., 35 (1978), 34–41.

    Google Scholar 

  • Kohn R.; Ansley C.: 1. A new algorithm for spline smoothing and interpolation based on smoothing a stochastic process. J. Optimiz. Theo. and Applications, 30 (1980), 255–268.

    Google Scholar 

  • Kohn R.; Ansley C.: 2. A new algorithm for spline smoothing based on smoothing a stochastic process. SIAM J. Sci. Statist. Comput., 8 (1987), 33–48.

    MathSciNet  MATH  Google Scholar 

  • Köhler P.: 1. Estimates for Sard’s best formulas for linear functionals on C s[a,b]. J. Comput. Appl. Math., 28 (1988), 259–267.

    Google Scholar 

  • Köhler P.: 2. Dual approximation methods and Peano kernels. Analysis, 11 (1991), 323–343.

    MathSciNet  MATH  Google Scholar 

  • Köhler P.: 3. Error estimates for polynomial and spline interpolation by the modulus of continuity.In: ”Approximation Theory, eds: Müller M.W. Feeten M., Mache D.H., Akaedemie Verlag Berlin, 1995, 141–150.

    Google Scholar 

  • Köhler P.; Nikolov G.: 1. Error bounds for Gauss tpe quadratur formulae related to space of splines with equidistant knots. J. Approx. Theory, 81 (1995), No.3, 368–388.

    MathSciNet  MATH  Google Scholar 

  • Köhler P.; Nikolov G.: 2. Error bounds for optimal definite quadrature formulae. J. Approx. Theory, 81 (1995), No.3, 397–405.

    MathSciNet  MATH  Google Scholar 

  • Kojima T.: 1. Representation of a curve using a spline function. Trans. Soc. Instrum. and Control Eng. (Japan), 14 (1978), No.2, 144–148.

    Google Scholar 

  • Kojima T.: 2. Some geometric relations between the cubic B — spline curve and its associated characteristic polygon. Memo N o C G P 78/2, Comput. Geom. Project., Univ. of East Anglia, (1978).

    Google Scholar 

  • Kolesnikova E.N.; Yuferev V.S.: Difference approximations of derivatives and polynomial splines. (russian). J. Vychisl. Mat. i Mat. Fiz., 22 (1982), 1241–1245.

    MathSciNet  MATH  Google Scholar 

  • Kolkov V.V.: Monoton and convex quadratic splines with additional nodes. (russian). Some problem of diff. eqs. and discrete mathematics. Internmin. Collect. Sci. Works., (1986), 94–104.

    Google Scholar 

  • Kolobov B.P.: One — dimensional and two — dimensional cubic interpolation splines with additional nodes. (russian). Cysl. Metody Mekh. Sploshn. Sredi., 13 (1982), 63–70.

    MathSciNet  Google Scholar 

  • Kolobov B.P.; Kolobov P.P.: A variational method for constructing nonlocal cubic splines in C 2 for describing curves and surfaces in three dimensions. (russian). Model. Mekh., 6 (1992), No.3, 343–346.

    MathSciNet  Google Scholar 

  • Kon M.A.; Raphael L.A.: Generalized multiresolution analysis and convergence of spline approximation in ℝ d. AMS, Contemporary Mathematics, 190 (1995), 209–220.

    MathSciNet  Google Scholar 

  • Kon M.A.; Tempo R.: On linearity of spline algorithms. J. Complexity, 5 (1989), No.2, 251–259.

    MathSciNet  MATH  Google Scholar 

  • Kondratev V.N.; Kravchenko V.F.; Rvachev V.L.: Representation on multidimensional splines by superpositions in some basis system. (russian). Dokl. Akad. Nauk. SSSR, 289 (1986), 559–563.

    MathSciNet  Google Scholar 

  • Konno K.; Chiyokura H.: An approach of desgning and controlling free-form surfaces by using NURBS boundary Gregory patches. CAGD, 13 (1996), No.9, 825–844.

    MathSciNet  MATH  Google Scholar 

  • Kooperberg C.; Stone J.C.: A study of logspline density estimation. Comput. Statistics and Data Analysis, 12 (1991), 327–347.

    MathSciNet  MATH  Google Scholar 

  • Korakianitis T.; Pantazopoulos G.I.: Improved turbine — blade design technique using 4th — order parametric — spline segments. Comput — Aided Des. 25 (1993), No.5, 289–299.

    MATH  Google Scholar 

  • Korneičuk N.P.: 1. On extremal subspaces and approximation of periodic functions by splines of minimal defect. Analysis Math. 1 (1975), 91–102.

    Google Scholar 

  • Korneičuk N.P.: 2. Meilleure approximation par des functions — splines dans les classes de fonctions périodiques dans la métrique L. Matem. Zamet., 20 (1976), 655–664.

    Google Scholar 

  • Korneičuk N.P.: 3. Exact error bound of approximation by interpolating splines in L — metric on the classes W rp (1 ≤ p < ∞) of periodic functions. Analysis Math., 3 (1977), 109–117.

    Google Scholar 

  • Korneičuk N.P.: 4. Extremal properties of spline. In ”Teorii priblijenii funcţii”. (russian). (Nauka), (1977), 237–248.

    Google Scholar 

  • Korneičuk N.P.: 5. On uniform approximation by splines with fixed knots. (russian). Funcţ. Analiz., II (1978), 92–102.

    Google Scholar 

  • Korneičuk N.P.: 6. Sharp inequalities for the best approximation by splines. (russian). Dokl. Akad. Nauk. SSSR, 242 (1978), 280–283.

    MathSciNet  Google Scholar 

  • Korneičuk N.P.: 7. Neravenstvo dlia nailucşevo priblijenia splainami differenţunemîh periodiceskih funcţij. Ukrain. Mat. J., 31 (1979), 380–389.

    Google Scholar 

  • Korneičuk N.P.: 8. Approximation by local splines of minimum defect. (russian). Ukrain. Mat., J. 34 (1982), 617–623.

    Google Scholar 

  • Korneičuk N.P.: 9. Approximation of functions and their derivatives by interpolation splines. (russian). Dokl. Akad. Nauk. SSSR, 264 (1982), No.5, 1063–1066.

    MathSciNet  Google Scholar 

  • Korneičuk N.P.: 10. Nekatorîe tocnîe neravenstva dlia diff. funcţij i oţenka priblijenia funcţij i ih preizvodnîh interpoliaţionîmi kubiceskimi splainami. Sibirsk. Mat. J., 24 (1983), 94–108.

    Google Scholar 

  • Korneičuk N.P.: 11. On differentiable functions and their derivatives approximation by the parabolic splines. Ukrain. Mat. J., 35 (1983), 702–710.

    Google Scholar 

  • Korneičuk N.P.: 12. Comparison of permutations and error estimations in interpolation by splines. (russian). Doklady Akad. Nauk. Ukransk. SSR, A, (1983), 11–21.

    Google Scholar 

  • Korneičuk N.P.: 13. Some strict inequalities for differentiable functions and an estimate for the approximation of functions and their derivatives by cubic interpolation splines. (russian). Sib. Math. Zh., 24 (141) (1983), No.5, 94–108.

    Google Scholar 

  • Korneičuk N.P.: 14. On error estimates for interpolating splines with minimal defect. Approximation and function spaces. (Warsaw, 1986), 223–240, Banach Center Publ. 22, P.W.N., Warsaw, (1989).

    Google Scholar 

  • Korneičuk N.P.: 15. O povedenii proizvodnîh pogreşnosti splain — interpoljaţia. Ukrain. Mat. Zh., 43 (1991), No.1, 67–72.

    MathSciNet  Google Scholar 

  • Korneičuk N.P.: 16. On obtaining exact estimates for the derivative of the error of spline interpolation. (russian). Ukrain. Mat. Zh., 43 (1991), No.12, 206–210.

    Google Scholar 

  • Korneicuk N.P.; Fet K.K.: Algoritm B — spline dlja reşenia dvumernîh kraevîh zadaci matematiceskoi fiziki metodom splain — colokaţia. Met. i spredstva mat. modelir. procesov perenoso. Alma — Ata, (1985), 21–29.

    Google Scholar 

  • Korneičuk N.P.; Ligun A.A.: Ob otţenke progreşnosti splain — interpoljaţii v integralnovo metrike. Ukrain. Mat. J., 33 (1981), 391–394.

    Google Scholar 

  • Korneičuk N.P.; Luspain E.: Best quadrature formulas for classes of differentiable functions and piecewise — polynomial approximation. Izv. Akad. Nauk. SSSR, Ser., Mat., 33 (1969), 1416–1437.

    MathSciNet  Google Scholar 

  • Korobkova M.B.: On a existence theorem for spline polynomials with a prescribed sequence of extrema. Matem. Zamet., 11 (1972), 251–258.

    MathSciNet  MATH  Google Scholar 

  • Kosachevskaja L.L.; Romanovstev V.V.; Shparlinski I.E.: On the spline — based method for experimental data deconvolution. Comput. Phys. Comm., 29 (1983), 227–230.

    MathSciNet  Google Scholar 

  • Kösters H.W.: Zur Characterisierung und Berechnung von L — Spline — funktionen. ZAMM, 55 (1975), 249–251.

    Google Scholar 

  • Kösters H.W.; Schempp V.: L — Splines als schwache Lösungen verallgemeinerten Randwertproblemen. J. Approx. Theory, 22 (1978), 206–222.

    MATH  Google Scholar 

  • Kösters H.W.; Schlosser K.H.: Berechnung von L — Splines zu Operatoren zweiter Ordnung mit Konstanten Koeffizienten. Computing, 15 (1975), 205–216.

    MathSciNet  MATH  Google Scholar 

  • Koukal S.: Piecewise polynomial interpolation and its applications to partial differential equations. Czechoslovak. Sb. VAAZ B., 18 (1970), 29–38.

    Google Scholar 

  • Kounchev O.Iv.: 1. Definition and basis properties of polysplines. C.R. Acad. Bulgar. Sci., 44 (1991), No.4, 323–343.

    Google Scholar 

  • Kounchev O.Iv.: 2. Basic properties of polysplines. C.R. Acad. Bulgare Sci., 44 (1991), No.8, 13–16.

    MathSciNet  MATH  Google Scholar 

  • Kovacěvić M.A.; Milovanovici M.G.: 1. Moment preserving splines approximation and generalized Turan quadratures. DC Conf. Appl. Math. (Budva, 1994), 37–45, Univ. Novi Sad, 1995.

    Google Scholar 

  • Kovacěvić M.A.; Milovanovici M.G.: 2. Spline approximation and generalized Turan quadratures. Portugal Math., 53 (1996), No.3, 355–366.

    MathSciNet  MATH  Google Scholar 

  • Kovalev V.A.: 1. Resenie kraevoi zadaci dlja obîknovenovo differentialnovo uravnenia 2-ovo periodka metodom intergralnîh splainov. Diff. i Integral, upravlenia, Gorkii, (1984), 129–134.

    Google Scholar 

  • Kovalev V.A.: 2. Metod integralnth splainov v zadaciah dinamiki. Prikl. Probl. Teor. Kolebanii, Gorkii, (1989), 99–108.

    Google Scholar 

  • Kovalkov A.V.: The structure and characteristic properties of variational splines satisfying constraints of inequality type. (russian). Sov. Math. Dokl., 36 (1988), No.2, 321–325.

    MathSciNet  MATH  Google Scholar 

  • Kowalski J.K.: Application of box splines to the approximation of Sobolev spaces. J. Approx. Theory, 61 (1990), 53–73.

    MathSciNet  MATH  Google Scholar 

  • Kozak J.: 1. Splines and interpolation. (Slovenian). Obzernik Mat. Fiz., 18 (1971), 59–64.

    MathSciNet  Google Scholar 

  • Kozak J.: 2. On the choice of the exterior knots in the B-spline basis. J. China Univ. Sci., 25 (1995), No.2, 172–178.

    MathSciNet  MATH  Google Scholar 

  • Kozma Z.: On a special type of cubic splines. Bull. Acad. Polon. Sci. Techn., 26 (1978), 373–382.

    Google Scholar 

  • Kramarz Luis: 1. The collocation solution of nonlinear differential equations by spline functions. ZAMM, 57 (1977), 163–164.

    Google Scholar 

  • Kramarz Luis: 2. Global approximations to solutions of initial value problems. Math. Comput., 32 (1978), 35–59.

    MathSciNet  MATH  Google Scholar 

  • Kramarz Luis: 3. Hermites methods for the numerical solution of ordinary initial value problems. Lect. Notes. Math., 701 (1979), 134–148.

    MathSciNet  Google Scholar 

  • Kramarz Luis: 4. Stability of collocation methods for the numerical solutions of y″ = f(x,y). BIT, 20 (1980), 215–222.

    MathSciNet  MATH  Google Scholar 

  • Krebs Friedhelm: The dimension of the space of periodic splines on the regular hexagonal lattice. Progress in Approx. Theory, Academic Press, Boston, MA, (1991), 535–549.

    Google Scholar 

  • Krokos M.A.; Slater M.: Interactive shape control of interpolaing B — splines. Comput. Graph. Forum, 2 (1992), No.3, 434–447.

    Google Scholar 

  • Krylova T.V.; Ligun A.A.: 1. O vîbore uzlov pri priblijennom reşemikraevîh zadaci metodom splain — colocaţim. Differenţ Uravnenia (Minsk), 20 (1984), No.9, 1529–1534.

    MathSciNet  Google Scholar 

  • Krylova T.V.; Ligun A.A.: 2. Choise of nodes of a spline for approximate solution of differentiate equations. (russian). Izv. Vysch. Uchebn. Zaved Mat., (1985), No.9, 27–31.

    Google Scholar 

  • Kuboi Fujie:A simple method of generating spline curves under tension. Technol. Rep. Kansai Univ., 29 (1987), 141–149.

    MathSciNet  MATH  Google Scholar 

  • Kučeva R.:Interpolating and smoothing biquadratic splines. Applications of Maths., 40 (1995), No.5, 339–356.

    Google Scholar 

  • Kujii L.I.: Algoritm priblijenia konturov defektnîh oblastei lineinîmi splainami. Otbor i Obrab. Inf. (Kiev), 3 (1989), 95–98.

    Google Scholar 

  • Kujii L.I.; Popov B.A.: 1. Formulî dlja ravnomernogo priblijenia funkţii splainami. VI Vsesoinz. şkole-Geminur. Tez. dokl. Lvov, (1987), 57–58.

    Google Scholar 

  • Kujii L.I.; Popov B.A.: 2. Parabolic and cubic splines with given link member. (russian). In ”Algoritmi i progr. dlja vychisl. funkţ. Ma E.T.V.M.

    Google Scholar 

  • Kulkarni R.; Laurent P.J.: Q — splines. Numerical Algorithms, 1 (1991), No.1, 45–73.

    MathSciNet  MATH  Google Scholar 

  • Kumar Arun; Govil L.K.: 1. On deficient cubic spline interpolants. J. Approx. Theory, 68 (1992), No.2, 175–182.

    MathSciNet  MATH  Google Scholar 

  • Kumar Arun; Govil L.K.: 2. Interpolation by natural cubic spline. Internat. J. Math. and Math. Sci., 15 (1992), No.2, 229–234.

    MathSciNet  MATH  Google Scholar 

  • Kunkle T.: Multivariate difference, polynomials and splines. J. Approx. Theory, 84 (1996), No.3, 290–314.

    MathSciNet  MATH  Google Scholar 

  • Kuo Chên Hsiang: Surface design using rational cubic splines and cross — sectional design techniques. J. Chinese Inst. Engrs., 15 (1992), No.4, 449–457.

    MathSciNet  Google Scholar 

  • Kuoc C.S.: 1. Computer methods for ship surface design. Longman, London, (1971), 51–62.

    Google Scholar 

  • Kuoc C.S.: 2. On the boundary values of the derivatives of spline of degree three. Acta. Math. Sinica, 17 (1974), 234–241.

    MathSciNet  Google Scholar 

  • Kuoc C.S.: 3. Lacunary interpolation using splines. Acta Math. Sinica, 18 (1975), 247–253.

    MathSciNet  Google Scholar 

  • Kurchiatov E. Yu; Snighirev V.F.: Nailuchsii vybor uzlov splaina pri avtomatizaţii projektirovania obvodov. Mat. i Exper. Metody Sinteza Tehn. Syst. Kazan, (1989), 38–43.

    Google Scholar 

  • Kurkchiev N.V.: A class of parabolic interpolation splines having tangents of a special forms. (russian). Serdica, 7 (1981), 343–347.

    MathSciNet  Google Scholar 

  • Kuzhii L.I.: Algorithms of contour approximation of special domains by linear splines. (russian). Otbor i Obrab. Inf. Kiev, (1989), No.3, 95–98.

    Google Scholar 

  • Kuzhii L.I.; Popov B.A.: Investigation of the accuracy of an approximation by uniform polynomial splines. (russian). Otbor i Peredacha Informatsii, (1984), No.70, 39–44.

    Google Scholar 

  • Kuzin V.I.; Kolobov A.G.: A numerical model of a baroclinc vartex on the basis of spline collocation and splitting methods. (russian) Vychisl. Sistemy No.142, Splainy i ikh Prilozhen (1991), No.140, 96–115.

    Google Scholar 

  • Kvasov B.I.: 1. On the construction of L — splines. (russian). Sb. Chisl. Metody Meh. Sploshn. Sredi (Novosibirsk), 3 (1972), 64–71.

    MathSciNet  Google Scholar 

  • Kvasov B.I.: 2. Obtaining splines by averaging step functions splines with supplementary nodes. Numer. Math. Cont. Mech. Novisibirsk, 4 (1973), 39–55.

    MathSciNet  Google Scholar 

  • Kvasov B.I.: 3. Ob Interpolaţionîh splainah pervoi stepeni. Vyčisl. Sistemy, 65 (1975), 50–59.

    MathSciNet  Google Scholar 

  • Kvasov B.I.: 4. Spline solution of a mixed Lagrange — Hermite problem. (russian). Cisl. Metody Meh. Splosn. Sredy Mat. Modelirovanie, 8 (1977), 59–82.

    MathSciNet  Google Scholar 

  • Kvasov B.I.: 5. Boundary conditions in parabolic spline interpolations. (russian). Vyčisl. Sistemy, 87 (1981), 11–17.

    MathSciNet  MATH  Google Scholar 

  • Kvasov B.I.: 6. On the realization of the interpolation by parabolic splines. (russian). Chislennye Metody Mekh. Sploshnoj. Sredy, 13 (1982), No.4, 35–51.

    Google Scholar 

  • Kvasov B.I.: 7. Priminenie paraboliceskih B — splainov dlia reşenia zadaci interpoliaşij. J. Vyčisl. Mat. i Mat. Fiz., 23 (1983), 278–289.

    MathSciNet  MATH  Google Scholar 

  • Kvasov B.I.: 8. Numerical differentiation and integration on the basis of interpolation parabolic splines. (russian). Chisl. Metody Mekh. Sploshn. Sredy, 14 (1983), 68–80.

    MathSciNet  Google Scholar 

  • Kvasov B.I.: 9. Parabolic B — splines in interpolation problems. U.S.S.R. Comput. Math. Math. Phys., 23 (1983), No.2, 13–19.

    MathSciNet  MATH  Google Scholar 

  • Kvasov B.I.: 10. Chyslennoe differenţirovanie na osnove diskretnîh cubiceskih splainov. Sb. ”Chysl. Met. Mekh. Splosh, Sredy”, Novosibirsk, 14 (1983), 84–96.

    MathSciNet  Google Scholar 

  • Kvasov B.I.: 11. Paraboliceskie X — splainî. ”Metody Splain Funkţii”. Vyčisl. Systemy, Novosibirsk, 98 (1983), 3–19.

    MathSciNet  MATH  Google Scholar 

  • Kvasov B.I.: 12. Ob adnom Spasobe interpoljaţii razrîvnîh funkţii. Sb. ”Metody Splain Funkţii”. Vyčisl. Systemî, Novosibirsk, 98 (1983), 20–26.

    MathSciNet  MATH  Google Scholar 

  • Kvasov B.I.: 13. Interpoljatia Ermitovîmi paraboliceskimi splainami. Matematika Izv. Vys. Ucebn. Zav., 5 (1984), 25–33.

    MathSciNet  Google Scholar 

  • Kvasov B.I.: 14. Discrete quadratic splines. (russian). Chislennye Metody Mekh. Sploshnoj Sredy, 15 (1984), No.6, 94–109.

    MathSciNet  Google Scholar 

  • Kvasov B.I.: 15. Interpoljatia by means of discrete parabolic splines. (russian). Zhurnal Vychisl. Mat. i Mat. Fiz., 24 (1984), No.5, 640–649.

    MathSciNet  MATH  Google Scholar 

  • Kvasov B.I.: 16. Interpolation by rational parabolic splines. (russian). Chisl. Metody Mekh. Sploshn. Sredy, 15 (1984), No.4, 60–70.

    MathSciNet  Google Scholar 

  • Kvasov B.I.: 17. Prodoljenie setocinîh reşenii uravnenii s razrîvnîmi coeffìţientami paraboliceskimi splainami. Sb. Variaţionnoraznosti metody v Matem. Fizike, Moskva, (1984), 144–150.

    Google Scholar 

  • Kvasov B.I.: 18. Boundary conditions for interpolation by parabolic splines on a nonuniform net. (russian). Vyčisl. Sistemy, (1986), No.115, 60–71.

    Google Scholar 

  • Kvasov B.I.: 19. Local bases for generalized cubic splines. Russian J. on Numer. Anal. and Math. Modeling, 10 No.1, (1995), 49–80.

    MathSciNet  MATH  Google Scholar 

  • Kvasov B.I.: 20. Methods for constructing generalized B-splines and their properties. (russian), Dokl. Akad. Nauk, 341 (1995), No. 6, 744–748.

    MathSciNet  Google Scholar 

  • Kvasov B.I.: 21. Isogeometric interpolation by generalized splines. Russ. J. Numer. Anal. Math. Modelling, 11 (1996), No.3, 223–246.

    MathSciNet  MATH  Google Scholar 

  • Kvasov B.I.: 22. GB-splines and their properties. Ann. Numer. Math., 3 (1996), No.1–4, 139–149.

    MathSciNet  MATH  Google Scholar 

  • Kvasov B.I.: 23. Algorithms for izometric approximation by generalized cubic splines. Comput. Math. Math. Phys., 36 (1996), No.2, 1637–1653.

    MathSciNet  MATH  Google Scholar 

  • Kvasov B.I.; Jatzenko S.A.: 1. Izogeometriceskaia interpoljaţiraţionalnîmi splainami. SB. ”Aproksimaţia Splainami”, Vyčisl. Systemy, Novosibirsk, 121 (1987), 11–36.

    MATH  Google Scholar 

  • Kvasov B.I.; Jatzenko S.A.: 2. Reşenie zadaci izogeometriceskoi interpoljaţii v klasse raţionalnîh splainov. Inst. Teor. i Prikl. Meh. S O, Akad. Nauk. SSSR, (1988), No.3, 3–60.

    Google Scholar 

  • Kvasov B.I.; Kobkov V.V.: 1. Nekatorîe stvoistva cubiceskih Hermitovîh splainov a dopolnitelnimi uzlami. Dokladîj Akad. Nauk. SSSR, 217 (1974), 1007–1010.

    MathSciNet  Google Scholar 

  • Kvasov B.I.; Kobkov V.V.: 2. Izogeometric interpolation by rational splines. Vycisl. Sist., 121 (1987), 11–36.

    MATH  Google Scholar 

  • Kvasov B.I.; Vanin L.A.: Rational B — splines and algorithms of isogeometric local approximation. Russian J. Numer. Anal. Math. Modelling 8 (1993), No.6, 483–506.

    MathSciNet  MATH  Google Scholar 

  • Kyriazis G.C.: Approximation orders of principal shift-invariant spaced generated by box splines. J. Approx. Theory, 85 (1996), No.2, 218–232.

    MathSciNet  MATH  Google Scholar 

  • Ladygin V.S.: A high — speed algorithm for spline calculation. (russian). Akad. Nauk. SSSR Inst. Prikl. Mat. Prepr., (1991), No.25, 15.

    Google Scholar 

  • Lafata P.; Rosen J.B.: An interactive display for approximation by linear programming. Comm. ACM, 13 (1970), 651–659.

    MathSciNet  MATH  Google Scholar 

  • Laghchim-Lahlou M.; Sablonnière P.: Triangular finite elements of HCT tupe and class C P. Adv. Comput. Math., 2 (1994), No.1, 101–122.

    MathSciNet  MATH  Google Scholar 

  • Lahtinen A.: 1. On the construction of monotony preserving taper curves. Acta For. Fennica, 203 (1988), 1–34.

    Google Scholar 

  • Lahtinen A.: 2. Shape preserving interpolation by quadratic splines. J. Comput. Appl. Math., 29 (1990), 15–24.

    MathSciNet  MATH  Google Scholar 

  • Lahtinen A.: 3. On the choice of parameters in shape — preserving quadratic spline interpolation. J. Comput. Appl. Maths., 39 (1992), 109–113.

    MathSciNet  MATH  Google Scholar 

  • Lahtinen A.: 4. Positive Hermite interpolation by quadratic splines. SLAM J. Math. Anal., 24 (1993), No.1, 223–233.

    MathSciNet  MATH  Google Scholar 

  • Lahtinen A.: 5. On the choice of the initial value of a quadratic spline in positive interpolation. J.Comput. Appl. Maths., 69 (1996), No.1, 13–25.

    MathSciNet  MATH  Google Scholar 

  • Lahtinen A.; Laasasenaho J.:On the construction of taper curves by spline functions. Commun. Inst. for. Fenniae, 95 (1979), 1–63.

    Google Scholar 

  • Lai Ming Jun: 1. A remark on translates of a box spline. Approx. Theory Appl., 5 (1989), No.1, 97–104.

    MathSciNet  MATH  Google Scholar 

  • Lai Ming Jun: 2. A characterization theorem of multivariate splines in blossoming form. Computer Aided Geometric Design, 8 (1991), No.6, 513–521.

    MathSciNet  MATH  Google Scholar 

  • Lai Ming Jun: 3. Fortran subroutines for B — nets of box splines on three — and four — directional meshes. Numer. Algorithms, 2 (1992), No.1, 33–38.

    MathSciNet  MATH  Google Scholar 

  • Lai Ming Jun: 4. On Strömberg’s spline — wavelets. Appl. and Comput. Harmonic Analysis, 1 (1994), 188–193.

    MATH  Google Scholar 

  • Lai Ming Jun: 5. A serendipity family of locali supported splines in S 2(Δ) . Approx. Theory Appl. 10 (1994), No.2, 43–53.

    MathSciNet  MATH  Google Scholar 

  • Lai Ming Jun: 6. Approximation order for bivariate C 1 — cubics on a four directional mesh is full. CAGD 11 (1994), No.2, 215–223.

    MATH  Google Scholar 

  • Lai Ming Jun: 7. Scattered data interpolation and approximation using bivariate C 1 piecewise cubic polynomials. CAGD, 13 (1996), No.1, 81–88.

    MATH  Google Scholar 

  • Lai Ming Jun: 8. On C 2 -quintic spline functions over triangulation of Powell — Sabin’s type. J. Comput. Appl.Maths., 73 (1996), 135–155.

    MATH  Google Scholar 

  • Lai Ming-Jun; Schumaker L.L.: Scattered data interpolation using C 2 supersplines of degree six. SIAM J. Numer. Anal., 34 (1997), No.3, 905–921.

    MathSciNet  MATH  Google Scholar 

  • Lai Hoang Van:Splines and numerical solutions with accurasy O(h 3) for a hyperbolic differential — integral equations. Mathematica Balkanica, 5 (1991), Fasc. 4, 279–296.

    MathSciNet  MATH  Google Scholar 

  • Lainiotis D.G.; Deshpande J.G.: Parameter estimation using splines. Estimation theory, Information Sci., 7 (1974), 291–315.

    MathSciNet  MATH  Google Scholar 

  • Lamour R.: Splineapproximation für ein nichtlineares nichtantonomes Schwingungsproblem. Abh. Akad. Wissensch. D.D.R. Math. Naturwissensch. Techn., 4 (1977), 17–22.

    Google Scholar 

  • Lamousin H.J.; Waggenspack Waren N.:NURBS-based free-form deformations. IEEE Computer Graphics and Apples., Nov. 1994, 59–65.

    Google Scholar 

  • Lane J.M.; Riesenfeld R.F.: 1. The application of total positivity to computer aided curve and surface design. Rpt. Univ. of Utah, 1977.

    Google Scholar 

  • Lane J.M.; Riesenfeld R.F.: 2. A theoretical development for the computer generation and display of piecewise polynomial surfaces. IEEE Trans. Pattern Anal. Mach. Intellig., 2 (1980), 35–45.

    MATH  Google Scholar 

  • Lane J.M.; Riesenfeld R.F.: 3. A geometric proof for the variation diminishing property of B — spline approximation. J. Approx. Theory, 37 (1983), 1–4.

    MathSciNet  MATH  Google Scholar 

  • Lane J.M.; Riesenfeld R.F.: 4. Truncated cardinal spline functions. Approx. Theory and its Applics., 4 (1988), No.1, 87–102.

    Google Scholar 

  • Langner W.: Die Lösung des Strakproblems bei empirischen Funktionen mittels stückweiser kubischer Polynome. Elektron. Rechenanl., 12 (1970), 262–269.

    MATH  Google Scholar 

  • Langhaar K.L.; Chui S.C.: Piecewise polynomials and the partition method for ordinary differential equations. Proc. Southeastern Conf. New Orleans, 1968, ed. by D. Frederich, Pergamont Press, Oxford, (1970), 553–564.

    Google Scholar 

  • Largo R.H.; Gasser Th.; Prader A.; Stuetzle W.; Huber P.J.: Analysis of the adolescent growth spurt using smoothing spline functions. Ann. Human Biology, 5 (1978), 421–434.

    Google Scholar 

  • Larkin F.M.: 1. Optimal estimation of bounded linear junctionals from noisy data. Inform. Processing 71. (Proc. IFIP Congress, Ljubliana, 1971), ed. by C.V. Freiman, Vol 2 North-Holland Publ. Co. Amsterdam, (1972), 1335–1345.

    Google Scholar 

  • Larkin F.M.: 2. On further optimal property of natural polynomial splines. J. Approx. Theory, 22 (1977), 360–367.

    MathSciNet  Google Scholar 

  • Larsen R.D.; Smith P.W.; Voges P.: Spline function representation of the radial distribution function. Computers and Chem. G.B., 1 (1976), 25–29.

    Google Scholar 

  • Lau K.H.: Conditions fac avoiding loss of geometric continuity on spline curves. C.A.G.D., 5 (1988), 209–214.

    MATH  Google Scholar 

  • Laurent-Gengoux P.; Mekhilef M.: Optimization of a NURBS representation. Computer-Aided Des. 25 (1993), No.11, 699–710.

    MATH  Google Scholar 

  • Laurent P.J.: 1. Représentation de données expérimentales à l’aide de Jonction — spline d’ajustement et évaluation optimale de fonctionnelles linéaires continues. Appl. Mat., 13 (1968), 154–162.

    MathSciNet  MATH  Google Scholar 

  • Laurent P.J.: 2. Théorèmes de charactérisation en approximation convexe. Mathematica (Cluj), 10 (1968), 95–111.

    MathSciNet  Google Scholar 

  • Laurent P.J.: 3. Inf — convolution spline pour l’approximation de donées discontinues. RAIRO, Math. modelling and Numer. Anal., 20 (1986), No.1, 89–111.

    MathSciNet  MATH  Google Scholar 

  • Laurent P.J.: 4. Trucated cardinal spline functions. Approximation Theory Appl., 4 (1988), No.1, 87–101.

    MathSciNet  MATH  Google Scholar 

  • Laurent P.J.: 5. Inf — Convolution Splines. Constr. Approx., 7 (1991), 469–484.

    MathSciNet  MATH  Google Scholar 

  • Laurent P.J.; Utreras F.I.: Optimal smoothing of noisy broken data. Approx. Theory and its Applic., 2 (1986), 17–43.

    MathSciNet  Google Scholar 

  • Lautsch M.: A spline inversion formula for the Radon transform. SIAM J. Numer. Anal., 26 (1989), No.2, 456–467.

    MathSciNet  MATH  Google Scholar 

  • Lawson C.L.: 1. Least squares fit of bivariate cubic spline surfaces to discrete data. I.P.L. 1972.

    Google Scholar 

  • Lawson C.L.: 2. C 1 surface interpolation for scattered data on a sphere. Rocky Mt., J., 14 (1984), 177–202.

    MATH  Google Scholar 

  • Lawton Wayne; Lee S.L.; Shen Znowei: Characterization of compactly supported refinable splines. Adv. Comput. Math., 3 (1995), No.1–2, 137–145.

    MathSciNet  MATH  Google Scholar 

  • Lax M.; Agrawal G.L.: Evaluation of Fourier Integrals using B-splines. Math. Comput., 1 (1982), 535–548.

    MathSciNet  Google Scholar 

  • Lebedev N.A.; Lazinskii S.M.: Estimation of the number of zeros of a certain class of functions containing. Matem. Zametki, 16 (1974), 57–64.

    MATH  Google Scholar 

  • Ledneczki P.: Conic section — on introduction to the rational splines. Period. Polytech. Mech. Engrg. 36 (1992), No. 3–4, 265–271.

    MathSciNet  MATH  Google Scholar 

  • Lee Daniel: 1. On remainders and asymptotic error expansions in cardinal spline interpolation. SIAM J. Numer. Anal., 22 (1985), 1238–1242.

    MathSciNet  MATH  Google Scholar 

  • Lee Daniel: 2. A note of bivariate box splines on a k — direction mesh. J. Comput. Appl. Math., 15 (1986), 117–122.

    MathSciNet  MATH  Google Scholar 

  • Lee Daniel: 3. A simple approach to cardinal Lagrange and periodic Lagrange splines. J. Approx. Theory, 47 (1986), No.2, 93–100.

    MathSciNet  MATH  Google Scholar 

  • Lee Daniel: 4. On a minimal property of cardinal and periodic Lagrange spline. J. Approx. Theory, 70 (1992), No.3, 335–338.

    MathSciNet  MATH  Google Scholar 

  • Lee David; Shian Iyh Jen Horng: Thin plate splines with discontinuities and fast algorithms for their computation. SIAM J. Sci. Comput. 15 (1994), No.6, 1311–1330.

    MathSciNet  MATH  Google Scholar 

  • Lee E.T.Y.: 1. A simplified B — spline computaton routine. Computing, 29 (1982), 365–371.

    MathSciNet  MATH  Google Scholar 

  • Lee E.T.Y.: 2. Some remarks concerning B — splines. Comput. Aided Geom. Design, 2 (1985), No.4, 307–311.

    MathSciNet  MATH  Google Scholar 

  • Lee E.T.Y.: 3. Comments on some B — spline algorithms. Computing, 36 (1986), No.3, 229–238.

    MathSciNet  MATH  Google Scholar 

  • Lee E.T.Y.: 4. Yet another proof of knot insertion. Computer Aided Geometric Design, 6 (1989), 83–84.

    MathSciNet  MATH  Google Scholar 

  • Lee E.T.Y.: 5. A note on blossoming. Comput. Aided Design, 6 (1989), 359–362.

    MATH  Google Scholar 

  • Lee E.T.Y.: 6. Choosing nodes in parametric curve interpolation. Computer-Aided Design, 21 (1989), 363–370.

    MATH  Google Scholar 

  • Lee E.T.Y.: 7. Energy, fairness, and counter exemple. Comput. Aided Des., 22 (1990), No.1, 37–40.

    MATH  Google Scholar 

  • Lee E.T.Y.: 8. Corners, eusps and parametrizations: variations on a theorem of Epstein. SIAM J. Numer. Anal., 29 (1992), No.2, 553–565.

    MathSciNet  MATH  Google Scholar 

  • Lee E.T.Y.: 9. Remarks on an identity relateds to degree elevation. CAGD 11 (1994), No.6, 597–620.

    Google Scholar 

  • Lee E.T.Y.: 10. Computing a chain of blossoms, with application to products of splines. CAGD 11 (1994), No.6, 597–620.

    Google Scholar 

  • Lee E.T.Y.: 11. Marsden’s identity. CAGD, 13 (1996), No.4, 287–305.

    MATH  Google Scholar 

  • Lee E.T.Y.; Lucian M.L.: Möbius reparametrizations of rational B — splines. Comput. Aided Geom. Design, 8 (1991), 213–215.

    MathSciNet  MATH  Google Scholar 

  • Lee Luo Luo: Smooth biharmonic splines on a circular domain. (chinese). Acta Sct. Natur. Univ. Sunyatseni, (1986), No.2, 87–92.

    Google Scholar 

  • Lee S.L.: 1. A class of cardinal lacunary interpolation problems by spline functions I–II. Aeq. Math., 18 (1978), 64–76, II. 16, (1970), 320–321.

    MATH  Google Scholar 

  • Lee S.L.: 2. B — spline for cardinal Hermite interpolation. Linear Algebra and Appl., 12 (1975), 269–280.

    MathSciNet  MATH  Google Scholar 

  • Lee S.L.: 3. Exponential Hermite — Euler splines. J. Approx. Theory, 18 (1976), 205–212.

    MATH  Google Scholar 

  • Lee S.L.: 4. Fourier transforms on B — splines and fundamental splines for cardinal Hermite interpolation. Proc. Amer. Math. Soc., 57 (1976), 241–296.

    Google Scholar 

  • Lee S.L.; Majid A.A.: Closed smooth piecewise bicubic surfaces. ACM Trans, on Graphics, 10 (1991), No.4, 342–365.

    MATH  Google Scholar 

  • Lee S.L.; Micchelli C.A.; Sharma A.; Smith P.W.: Some properties of periodic B — spline collocation matrices. Proc. R. Sco. Edinburg, Sect A, Math., 94 (1983), 235–346.

    MathSciNet  MATH  Google Scholar 

  • Lee S.L.; Osman R.:Asymptotic formulas for convolution operators with spline kernels. J. Approx. Theory, 83 (1995), No.2, 182–204.

    MathSciNet  MATH  Google Scholar 

  • Lee S.L.; Sharma A.: Cardinal lacunary interpolation by g — splines. The characteristics polynomials. J. Approx. Theory, 16 (1976), 85–96.

    MathSciNet  MATH  Google Scholar 

  • Lee S.L.; Sharma A.; Tzimbalario J.: A class of cardinal splines with Hermite type interpolation. J. Approx. Theory, 18 (1976), 31–38.

    MathSciNet  Google Scholar 

  • Lee S.L.; Tang W.S.: 1. Complex homogeneous splines on the torus. Approx. Theory and its Appl., 5 (1989), 31–42.

    MathSciNet  MATH  Google Scholar 

  • Lee S.L.; Tang W.S.: 2. Approximation and spectral properties of periodic spline operators. Proc. Edinburg Math. Soc., 34 (1991), 363–382.

    MathSciNet  MATH  Google Scholar 

  • Lee S.L.; Tang W.S.; Tan C.E.: L 2 — approximation by the translater of a function and related attenuation factors. Numer. Math., 60 (1992), No.4, 549–568.

    MathSciNet  MATH  Google Scholar 

  • Lee E.H.; Forsythe G.E.: Variational study of nonlinear spline curves. SIAM Rev., 15 (1973), 120–133.

    MathSciNet  MATH  Google Scholar 

  • Lee J.W.: Best quadrature formulas and spline. J. Approx. Theory, 20 (1977), 378–384.

    Google Scholar 

  • Lee Zhi-Xian: Interpolation with boundary condition using bivariate quartic splines connected with triangular partition. Appl. Math. and Mech. (engl. edition), 5 (1984), No.6, 1783–1789.

    MathSciNet  MATH  Google Scholar 

  • Leeuw Jan de; Rijckeevarsel Jan van: Wenden Haus der: Nonlinear principal components analysis with B — splines. Meth. of Operations Reserch., 43 (1981), 379–384.

    MATH  Google Scholar 

  • Lei Junjiang; Jia Rong-Qing: Approximation by piecewise exponentials. SIAM J. Math. Anal., 22 (1991), No.6, 1776–1789.

    MathSciNet  MATH  Google Scholar 

  • Lelgemann D.: Collocation with analytic (harmonic) splines and stability conditions. 4th Internat. Sympos. Geodesy and Physics of the Earth. Part. I, II, III, (Karl Marx Stadt 1980), Akad. Wiss. DDR, Postdam (1981), 376–400.

    Google Scholar 

  • Lemarié-Rieusset; Pierre-Gilles: Une remarque sur les propriétés multi — resolution des fonctions splines. C.R. Acad. Sci. Paris, SerK. I, 317 (1993), No.12, 1115–1117.

    MATH  Google Scholar 

  • Lemordant J.: Developable splines. Inst. Ser. Numer. Math., 76 (1986), 67–73.

    MathSciNet  Google Scholar 

  • Lempel A.; Seoussi G.: Systematic derivation of spline basis. GAGD, 9 (1992), No.5, 349–365.

    MATH  Google Scholar 

  • Lénârd Margit: 1. Approximation and short time prediction of economic time series by spline functions. Studia Sci. Math. Hungarica, 17 (1982), 235–241.

    MATH  Google Scholar 

  • Lénârd Margit: 2. Spline interpolation in two variables. Studia Sci. Math. Hungar., 20 (1985), No.1–4, 145–154.

    MathSciNet  MATH  Google Scholar 

  • Lénârd Margit: 3. On the two dimensional spline interpolation of Hermite — type. Proceed. Haar Memorial Conf. Budapest, 1985, I-II, Colloq. Math. Soc. J. Bolyai, Vol.49, North — Holland, Amsterdam, (1987), 531–541.

    Google Scholar 

  • Lénârd Margit: 4. Lacunary spline interpolation in L p. Publicationes Math. Debrecen, 36 (1989), 161–166.

    MATH  Google Scholar 

  • Lénârd Margit: 5. On a n-dimensional quadratic spline approximation. J. Approx. Theory, 68 (1992), No.2, 113–135.

    MathSciNet  MATH  Google Scholar 

  • Lénârd Margit: 6. On reduced n — cubic spline interpolation of Hermite type. Publ. Math. Debrecen, 41 (1992), No.3–4, 243–257.

    MathSciNet  MATH  Google Scholar 

  • Lénârd Margit: 7. Multiple quadrature formulas by splines. Annales. Univ. Sci. Budapest, Sect. Computatorica.

    Google Scholar 

  • Lénard Margit; Székelyhidi L.: Functional differential equations by spline functions. Anal. Univ. Sci. Budapestiensis, Computatorica, 3 (1982), 25–32.

    MATH  Google Scholar 

  • Lenth R.V.: Robust spline. Commun. Statist. A, 6 (1987), 847–854.

    Google Scholar 

  • Lenze Burkhard: 1. On the explicit solution of a time optimal control problem by means of one — sided spline — approximation. J. Approx. Theory, 56 (1989), 297–305.

    MathSciNet  MATH  Google Scholar 

  • Lenze Burkhard: 2. On one — sided spline approximation operators. Numer. Funct. Anal. and Optimiz., 10 (1989), 167–180.

    MathSciNet  MATH  Google Scholar 

  • Leonov A.I.: Spline — methods for solution of a class of integro — differential equations. (russian). Differ. Uravn., 24 (1988), No.3, 527–530.

    Google Scholar 

  • Leung Chun Ming; Quan Ralph W.: The use of quadrature weights in cubic spline integration. Int. J. Math. Educ. Sci. Tehn., 15 (1984), 305–313.

    MathSciNet  MATH  Google Scholar 

  • Levesley J.: 1. Local stability of translated of polyharmonic splines in even space dimension. Numer. func. anal. and optimiz., 15 (1994), 327–333.

    MathSciNet  MATH  Google Scholar 

  • Levesley J.: 2. Convolution kernels based on thin-plate splines. Numer. Algorithms, 10 (1995), No. 3–4, 401–419.

    MathSciNet  MATH  Google Scholar 

  • Leviatan D.: 1.On the representation of the remainder in the variation — diminishing spline approximation. J. Approx. Theory, 7 (1973), 63–70.

    MathSciNet  MATH  Google Scholar 

  • Leviatan D.: 2. Shape preserving approximation by polynomials and splines. In: Vertesi P. (ed.), Approx. Theory and Function Series, J. Bolyai Math. Soc., Bolyai Soc. Math. Stud., 5 (1996), 63–84.

    Google Scholar 

  • Leviatan D.; Mhaskar H.N.: 1. Comonotone approximation by splines of piecewise monotone functions. J. Approx. Theory, 35 (1982), 364–369.

    MathSciNet  MATH  Google Scholar 

  • Leviatan D.; Mhaskar H.N.: 2. The rate of monotone spline approximation in L p — norm. SIAM J. Math. Anal., 13 (1982), 866–874.

    MathSciNet  MATH  Google Scholar 

  • Leviatan D.; Shadrin A.: On monotone and convex approximation by splines with free knots. Ann. Numer. Math., 4 (1997), No.1–4, 415–434.

    MathSciNet  MATH  Google Scholar 

  • Levina M.: 1. On the convergence of the approximation by splines of piecewise monotone functions.(russian). Trudy Talhin. Politehn. Inst. Ser.A, 293 (1970), 3–9.

    Google Scholar 

  • Levina M.: 2. On the mean — root — square error for some spline functions. (russian). Trudy Talhin. Politehn. Inst. Ser. A, 293 (1970), 11–14.

    MathSciNet  Google Scholar 

  • Lewis P.A.W.; Stevens J.G.: Nonlinear modeling of time series using multivariate adaptive regression splines. J. Amer. Statistical Association, 86 (1992), No.416, 864–877.

    Google Scholar 

  • Li Chun: Some extremal problems for cardinal L — splines. (chinese). Acta Math. Sinica, 33 (1990), No.3, 330–343.

    MathSciNet  MATH  Google Scholar 

  • Li Hua; Liu Shen-Quan:Shape controls in rational beta-splines. Comput. and Graphics, 15 (1991), No.1, 25–28.

    Google Scholar 

  • Li Jian Ping: Convergence and error estimation of bivariate cardinal interpolation on a three — directional mesh. (chinese). J. Northwest. Univ., 20 (1990), No.4, 7–12.

    MathSciNet  Google Scholar 

  • Li Jinggong; Hoschek J.; Hartmann: G n-1 — functional splines for interpolation and approximation of curves, surfaces and solids. Comput. Aided. Geom. Des., 7 (1990), 209–220.

    MathSciNet  MATH  Google Scholar 

  • Li K.C.: Asymptotic optimal of C L and generalized cross — validation in ridge regression with application to spline smoothing. Ann. Statist., 14 (1986), 1101–1112.

    MathSciNet  MATH  Google Scholar 

  • Li Luo Luo: 1. Volume matching splines on a rectangle. (chinese). Acta Sci. Natur. Univ. Sunyatseni, 28 (1989), No.2, 5–9.

    MathSciNet  MATH  Google Scholar 

  • Li Luo Luo: 2. Ratio — slope rational spline interpolation. (chinese). Acta Sci. Natur. Univ. Sunyatseni, 29 (1990), No.2, 38–43.

    MathSciNet  MATH  Google Scholar 

  • Li W: Linearly convergent descendent methods for the uniconstrained on inimization of convex quadratic splines. J. Optimiz. Theory and Appls. 86 (1995), No.1, 145–172.

    MATH  Google Scholar 

  • Li Wu: A conjucate gradient method for the unconstrained minimization of strictly convex quadratic splines. Math. Programming, 72 (1996), No.1, 17–32.

    MathSciNet  MATH  Google Scholar 

  • Li Wei; Li Xian Ping; Asano Chooichiro: A polynomial algorithm on computing LAD spline. Mem. Fac. Sci. Kyushn Univ. Ser. A, 45 (1991), No.2, 309–322.

    MathSciNet  MATH  Google Scholar 

  • Li W.; Naik D.; Swetitis J.:A data smoothing technique for piecewise convex/concav curves. SIAM J. Sci. Comput., 17 (1996), No.2, 517–537.

    MathSciNet  MATH  Google Scholar 

  • Li Xin Can: An analysis of the convexity of a circular spline and its improvements. (chinese). Numer. Math. J. Chinese. Univ., 3 (1981), 258–269.

    MathSciNet  MATH  Google Scholar 

  • Li Yue Sheng: 1. S — splines defined by ordinary differential operators with constant coefficients. (chinese). Math. J. Chinese Univ., 1 (1979), 123–124.

    Google Scholar 

  • Li Yue Sheng: 2. Smoothing methods by differential operators spline function. (chinese). Math. Numer. Sin., 3 (1981), 309–319.

    MATH  Google Scholar 

  • Li Yue Sheng: 3. Multipoint boundary value problem and spline interpolation. Sci. Sinica Ser. A, 5 (1983), 460–470.

    Google Scholar 

  • Li Yue Sheng: 4. On the recurrence relation for B — splines defined by certain L — splines. J. Approx. Theory, 43 (1985), No.4, 359–369.

    MathSciNet  MATH  Google Scholar 

  • Li Yue Sheng: 5. The two-scale relation of exponential B-splines and exponential Haar wavelets. (chinese), Natur. Sci. J., Xiangtan Univ., 15 (1993), Suppl. 1–9.

    Google Scholar 

  • Li Yue-Sheng; Guan Lu-Tai: Bivariate polynomial natural spline interpolation to scattered data. J. Comput. Math., 8 (1990), 135–146.

    MathSciNet  MATH  Google Scholar 

  • Li Yue-Sheng; Hu Ri Zhang: A spline interpolation method for multivariate scattered data. (chinese). Numer. Math. J. Chinese Univ., 12 (1990), No.3, 215–226.

    MathSciNet  MATH  Google Scholar 

  • Lian Jian Ao; Chen Zeng Xing: 1. Calculation of bivariate splines I, II. I. Truncated powers and BM — splines in S 12 and S 24 . Acta Math. Sci., 12 (1992), No.2, 203–214. II. BM — splines in S 0k , S 13 and S 24 . Acta Math. Sci., 12 (1992), No.2, 215–229.

    MathSciNet  MATH  Google Scholar 

  • Liang Qiwei: Applications of B — spline interpolation to finite element analysis. J. Nanjing Aeronaut. Inst. Engl. Ed., 6 (1989), No.1, 41–54.

    MATH  Google Scholar 

  • Liang Zhen Shan: Matrix representation and the estimation of the remainder term of the cardinal spline interpolating formulae. (chinese). Acta. Sci. Natur. Univ. Jilin, 2 (1982), 1–7.

    Google Scholar 

  • Liang Xubiao; Jian Baidun; Ni Guangzheng: The B — spline finit element method. (chinese). Proc. C.S.E.E., 7 (1987), No.6, 9–20.

    MATH  Google Scholar 

  • Liang Xue Zhang: 1. A note on spline interpolation formulas with high exactness. Numer. Math. J. Chinese Univ., 3 (1981), No.1, 83–87.

    MathSciNet  MATH  Google Scholar 

  • Liang Xue Zhang: 2. A new class of spline interpolation formulas with equidistant nodes. Acta Sci. Natur. Univ. Jilinesis, 1 (1982), 17–25.

    Google Scholar 

  • Liang Xue Zhang: 3. Matrix representation and the estimation of the remainder of the cardinal spline interpolating formulae. (chinese). Acta Sci. Natur. Univ. Jilinesis, 2 (1982), 17–25.

    Google Scholar 

  • Liang Xue Zhang: 4. On a bivariate quartic spline interpolation. (chinese). Acta Sci. Nat. Univ. Jilinensis, 4 (1987), 19–28.

    Google Scholar 

  • Liang You Dong: Algebraic construction of discrete B — splines I, II. (chinese). Zhejiang Daxue Xuebao (Special issue on computational geometry), (1984), I. 13–23, II. 24–33.

    Google Scholar 

  • Lie I.; Norsett S.P.: Superconvergence for multistep collocation. Math. Comput., 52 (1989), 65–79.

    MathSciNet  MATH  Google Scholar 

  • Liepins Nicolas; Sekino Junipei: Application of cubic splines to contour plotting. Math. Mag., 63 (1990), No.5, 343–345.

    MathSciNet  MATH  Google Scholar 

  • Ligget J.A.; Salmon J.R.: Cubic spline boundary elements. Int. J.Numer. Meth. Engng., 17 (1981), 543–556.

    Google Scholar 

  • Ligun A.A.: 1. Ob adnom neravenstvo dlia splain — funcţii minimalnovo defekta. Matem. Zamet., 24 (1978), 547–552.

    MathSciNet  MATH  Google Scholar 

  • Ligun A.A.: 2. Best quadrature formulas for some classes of periodioc functions. Mat. Zamet., 24 (1978), 661–669.

    MathSciNet  MATH  Google Scholar 

  • Ligun A.A.: 3. Tocinîe neravenstva dlia splain — funcţii i nailucisee cvadraturnţe formulî dlia nekatorîh clasov funcţii. Matem. Zamet., 19 (1979), 913–926.

    MathSciNet  Google Scholar 

  • Ligun A.A.: 4. O priblijenij periodiceskih funcţii splainami minimalnovo defekta. Ucrain. Mat. J., 32 (1980), 388–392.

    MathSciNet  Google Scholar 

  • Ligun A.A.: 5. A property of interpolation spline — functions. (russian). Ukrain. Mat. J., 32 (1980), 507–514.

    MathSciNet  MATH  Google Scholar 

  • Ligun A.A.: 6. Tocinîe neravenstva dlia soverşenîh splainov i ih prilojenia. Matematika, Izv. Vys. Ucebn. Zaved., 5 (1984), 32–38.

    MathSciNet  Google Scholar 

  • Ligun A.A.; Karmazina V.V.: 1. Reconstruction on empirical functional of the density of a distribution by local splines. (russian). Current probl. in Approx. Theory and Complex. Anal. Akad. Nauk. Ukrain SSR, Inst. Mat. Kiev, (1990), 78–87.

    Google Scholar 

  • Ligun A.A.; Karmazina V.V.: 2. Reconstruction of a probability distribution function by means of spline — normal distribution (russian). Model. Mekh., 5 (1991), No.5, 61–69.

    MathSciNet  Google Scholar 

  • Ligun A.A.; Maliseva A.D.: Ob otklanenii splain — funkţii polucenîh osredneniem — cusocino — lineinîe. Izv. Vyc. Ucebn. Zaved. Matematika, 1 (176), (1971), 137–140.

    Google Scholar 

  • Ligun A.A.; Shumejko A.A.: 1. Optimal choise of knots for the approximation of functions by splines. (russian). Dokl. Akad. Nauk. Ukr. SSR, Ser A, (1984), No.6, 18–22.

    Google Scholar 

  • Ligun A.A.; Shumejko A.A.: 2. On optimal choice of nodes when approximating functions by interpolation splines. (russian). Zhurnal Vyčisl. Mat. i Mat. — Fiz., 24 (1984), No.5, 1–7.

    MATH  Google Scholar 

  • Ligun A.A.; Storčai V.F.: 1. The best selection of nodes in the approximation by splines in the L p — metric. (russian). Matem. Zamet., 20 (1976), 611–618.

    MATH  Google Scholar 

  • Ligun A.A.; Storčai V.F.: 2. The best choice of nodes in the interpolation of functions by Hermite splines. Anal. Math., 2 (1976), 267–275.

    MathSciNet  MATH  Google Scholar 

  • Ligun A.A.; Storčai V.F.: 3. O nailucişem vîbore pri priblijenii funcţii localnîmi Hermitovîmi splainami. Ukrain. Mat. J., 32 (1980), 824–830.

    MATH  Google Scholar 

  • Ligun A.A.; Storčai V.F.: 4. Interpolation of functions by cubic Hermitian splines. (russian). Izv. Vyssh. Ucebn. Zaved. Mat., 6 (1982), 26–29.

    Google Scholar 

  • Lijašenko I.N.; Bailyev K.N.: 1. Application of the spline functions — method to determinate eigenvalues and eigenfunctions of the Laplace operator for polygonal domain, (russian). Izv. Akad. Nauk. Turkmen SSR. Ser. Fiz. Tehn. Him Geol. Nauk, 6 (1980), 3–11.

    Google Scholar 

  • Lijašenko I.N.; Bailyev K.N.: 2. O cislennom reşenii zadaci Dirichlet dlia uravnenija Helmholtza s pomoşcin splainov. Vyccisl. Prikladn. Mat. (Kiev), 43 (1981), 53–60.

    Google Scholar 

  • Lijašenko I.N.; Bailyev K.N.: 3. Determination of eigenvalues and eigenfunctions of second order selfadjoint differential operator with piecewise constant coefficent by the spline — function method. (russian). Izv. Akad. Nauk. Turkmen SSR, Ser Fiz. — Tekn. Khim. Geol. Nauk, 5 (1982), 24–33.

    Google Scholar 

  • Lii K.S.: A global measure of a spline density estimate. Annals of Statistics, 6 (1978), 1138–1148.

    MathSciNet  MATH  Google Scholar 

  • Lii Ken Shin; Rosenblat M.: 1. Asymptotic behaviar of a spline estimate of a density function. Commput. Math. Appl., 1 (1975), 223–235.

    MATH  Google Scholar 

  • Lii Ken Shin; Rosenblat M.: 2. Asymptotic results on a spline estimate of a probability density. Stochastic Processes and Their. Appl., 2 (1975), 77–86.

    Google Scholar 

  • Lin Fang Hua: On the convergence of a class of quadratic interpolation splines. (chinese). Zhejiang Daxue Xuebao, 2 (1981), 139–143.

    Google Scholar 

  • Lin Fenqiang; Hewit W.T.: Expressing Coons — Gordon surfaces as NURBS. Computer — Aided Des. 26 (1994), No.2, 145–155.

    MATH  Google Scholar 

  • Lin Miao Ng.: A note on spline functions and intermediate best quadrature formulas. J. Nat. Chiao Tung. Univ., 1 (1976), 175–184.

    MathSciNet  Google Scholar 

  • Lin Q.; Sloan I.H.; Xie R.: Extrapolation of the iterated — collocation method for integral equations of the second kind. SIAM J. Numer. Anal., 27 (1990), No.6, 1535–1541.

    MathSciNet  MATH  Google Scholar 

  • Lin Qin Chong: Constructions on a type of C 2 continue and convex interpolation parametric cubic spline curve. (chinese). Math. Pract. and Theory, 4 (1989), 32–35.

    Google Scholar 

  • Lin Qun; Rokne J.G.:Smoothing of piecewise liniar splines and the applications to piecewise linear fat splines. Computer-Aided Design, 28 (1996), No.6/7, 439–449.

    Google Scholar 

  • Lin Wei; Liu Mingsheng: On semi-orthogonal wavelet bases of periodic splines and their duals. Led. Notes Pure Appl. Math., 176 (1996), Marcel Dekker N.Y., 503–520.

    Google Scholar 

  • Linde van der, A: 1.A note on smoothing spline as Bayesian estimates. Statistics and Decisions, 11 (1993), 62–67.

    Google Scholar 

  • Linde van der, A: 2. On cross-validation for smoothing splines in the case of dependent observations. Austral, J. Statist, 36 (1994), 67–73.

    MathSciNet  MATH  Google Scholar 

  • Linde van der, A: 3.Smoothing splines with linear constraints. Proceed Interregional Meeting of German and Netherlands Region of the International Biometric Society, Münster, Germany, March 15–18, 1994.

    Google Scholar 

  • Linde van der, A: 4. Computing the error for smoothing splines. Computational Statistic, 10 (1995), 143–154.

    MATH  Google Scholar 

  • Linde van der, A: 5. Splines from a Bayesian point of view. Test 4 (1995), No.1, 63–81.

    MathSciNet  MATH  Google Scholar 

  • Linde van der, A; Witzko K.H.; Jöckel K.H.:Spatial-temporal analysis of mortuality using splines. Biometrics, 51 (1995), 1352–1360.

    MATH  Google Scholar 

  • Link R.: Asymptotische Fehlerdarstellung bei Approximationsverfahren mit Spline — Funktionen. Bonner Math. Schriften. Tagungsband des Sonderfdorschungsbereiches 72–89 (1976), 42–52.

    MathSciNet  Google Scholar 

  • Linkares O.L.; Pereiva M.S.: Spline functions and the initial value problem for ordinary differential equations. Naturalia, 2 (1976), 133–141.

    MathSciNet  Google Scholar 

  • Linnér A.: Unified representation of nonlinear splines. J.Approx. Theory, 84 (1996), No.3, 315–350.

    MathSciNet  MATH  Google Scholar 

  • Lipow R.P.: 1. Spline functions and intermediate best quadrature formulas. SIAM J. Numer. Anal., 10 (1973), 127–136.

    MathSciNet  MATH  Google Scholar 

  • Lipow R.P.: 2. Uniform bounds for cardinal Hermite spline operators with double knots. J. Approx. Theory, 16 (1976), 372–383.

    MathSciNet  MATH  Google Scholar 

  • Lipow R.P.; Schoenberg I.I.: Cardinal interpolation and spline functions III. Cardinal Hermite interpolation. Linear Algebra Appl., 6 (1973), 273–304.

    MathSciNet  MATH  Google Scholar 

  • Lirkov I.: Circulant preconditi oners for spline finite element elliptic systems. C.R. Acad. Bulgare Sci. 46 (1993), No.3, 21–24.

    MathSciNet  MATH  Google Scholar 

  • Lis B.F.: 1. Sur une mèthod d’approximation par des fonctions splines d’interpolation à l’aide des relations integrales. Matern. Zamet. SSSR, 22 (1977), 593–600.

    MathSciNet  MATH  Google Scholar 

  • Lis B.F.: 2. The fundamental cubic spline. Funct. Approx. Comment. Math., 13 (1982), 95–100.

    MathSciNet  MATH  Google Scholar 

  • Lis B.F.: 3. An application to the fundamental spline — functions of an odd degree to an approximate solution of integral equations. Funct. Approximation, Comment. Math., 16 (1988), 3–8.

    MathSciNet  Google Scholar 

  • Litvin O.N.; Fediko V.V.: Obobşcenia Kusočno — Hermitova interpolaţia. Ukrain. Mat. J., 28 (1976), 812–818.

    MATH  Google Scholar 

  • Litvinov V.G.: 1. Approximation of functions by a tensor product of splines and trigonometric polynomials. (russian). Ucrain. Mat. J., 33 (1981), 252–257.

    MathSciNet  Google Scholar 

  • Litvinov V.G.: 2. Ob odnoi modificaţi metoda Ritza dlia variaţionîh uravnenii i eio prilojenii k kraevîm zadača so smeşannîmi graničnîmi usloviami. Diff. Uravnenie, 27 (1981), 519–526.

    MathSciNet  Google Scholar 

  • Litvinov V.; Nesvoval A.G.: The use of spline theory for the construction of discrete differentiating algorithms. Math. Fiz. Vyp., 17 (1975), 137–143.

    MathSciNet  Google Scholar 

  • Liu Dingyaan; Zhao Yugi; Zhan Tingxiong; Xiao Hongen:Fair fitting methods using Bézier curves and B — spline curves. (chinese). Math. Numer. Sin., 6 (1984), 360–365.

    MathSciNet  MATH  Google Scholar 

  • Liu Gheng Zhang; Ye Zheng Lin: A class of quintic regular H — B interpolating splines. (chinese). Numer. Math. J. Chinese Univ., 8 (1986), No.3, 204–212.

    MathSciNet  MATH  Google Scholar 

  • Liu Jinghua: On interpolation by S 14 (Δ (1)mn ). (chinese). Nat. Sci. J. Xiangtan Univ., 13 (1991), No.4, 29–35.

    MATH  Google Scholar 

  • Liu Huan Wen: 1. The algebraic structure of the S 12 (Δ (2)m,n ) of double periodic spline functions. (chinese). Numer. Math. J. Chinese Univ., 12 (1990), No.4, 335–341.

    MathSciNet  MATH  Google Scholar 

  • Liu Huan Wen: 2. Double — periodic spline space S 12 (Δ (2)m,n ). (chinese). Natur. Sci. J. Xiangtan Univ., 12 (1990), No.1, 19–26.

    MathSciNet  MATH  Google Scholar 

  • Liu Huan Wen: 3. The double periodic spline space with degree ≥ 4 on the — 1 triangulation. Calcolo, 29 (1992), No.3–4, 269–289.

    MathSciNet  MATH  Google Scholar 

  • Liu Huan Wen: 4. Interpolation and approximation by double periodic quadratic splines. Math. Numer. Sinica, 14 (1992), 152–156.

    MATH  Google Scholar 

  • Liu Huan Wen: 5. Point — evaluation interpolation and approximation by double — periodic quadratic splines. (chinese). Numer. Math. Nanjing 15 (1993), No.3, 195–206.

    MATH  Google Scholar 

  • Liu Huan Wen: 6. A note on the recurrence relations of multivariate truncated powers and box splines. Numer. J. Chin. Univ. 3 (1994), No. 1, 10–17.

    MATH  Google Scholar 

  • Liu Huan Wen: 7. An integral representation of bivariate splines and the dimension of quadratic spline space over stratified triangulation. (chinese). Acta Math. Sinica 37 (1994), No.4, 534–543.

    MathSciNet  MATH  Google Scholar 

  • Liu Huan Wen: 8. The dimension of cubic spline space over stratified triangulation. J. Math. Res. Exposition, 16 (1996), No.2, 199–208.

    MathSciNet  Google Scholar 

  • Liu Ke Jian: Strong consistency of the periodic smoothing splines. Systems Sci. Math. Sci., 4 (1991), No.2, 173–185.

    MathSciNet  MATH  Google Scholar 

  • Liu Songtao; Cao Yuan; Liu Genhong: A proof on the convexity of functional splines. J. Math. Res. Exposition, 17 (1997), No.3, 357–360.

    MathSciNet  MATH  Google Scholar 

  • Liu Songtao; Liu Genhong:Degree-raising formulas and a conversion algorithm for generalized Ball spline curves for surfaces over a triangle. (chinese). Acta Math. Appl. Sinica, 19 (1996), No.2, 243–253.

    MathSciNet  MATH  Google Scholar 

  • Liu Wayne:A simple efficient degree raising algorithm for B-spline curves. CAGD, 14 (1997), No.7, 693–698.

    MATH  Google Scholar 

  • Liu Yu Ming:Double periodic quadratic splines on type — II triangulations. (chinese). Math. Appl., 4 (1991), No.1, 75–82, Southampton-Berlin, (1988), 167–175.

    MathSciNet  Google Scholar 

  • Liu Yung Kang: Quadratic and cubic splines which satisfy a general boundary condition. (chinese). Math. Practice Theory, 3 (1990), 43–47.

    Google Scholar 

  • Liu X.Y.; Zheng J.J.:Spline integral equation method for rotating disc of variable thickness. BEM X (Ed. C.A. Brebia), Comput. Mech. Publications, Southampton and Springer-Verlag, Berlin, 1988.

    Google Scholar 

  • Lizarev A.D.; Lipskii L.A.: Metod splain — kollokaţii dlja issledovania svobodnîh kolebanii termocinvstitelnîi kolyţevoi plastipi. Vesţi. A.N. BSSR, Ser. fiz. — mat., 1 (1990).

    Google Scholar 

  • Loach P.D.; Wathen A.J.: On a best least square approximation of continuous functions using linear splines with free knots. IMA J. Numer. Anal., 11 (1991), 393–409.

    MathSciNet  MATH  Google Scholar 

  • Loe K.F.: 1. αB-spline: a liniar singular blending B-spline. Visual Computer, 12 (1996), No.1, 18–25.

    Google Scholar 

  • Loe K.F.: 2. A sinusoidal polynomial spline and its Bezier blended interpolant. J. Comput. Appl. Math., 71 (1996), No.2, 383–393.

    MathSciNet  MATH  Google Scholar 

  • Loginov A.E.: 1. Approximation of continuous functions by broken lines. Matem. Zamet., 6 (1969), 149–160.

    MathSciNet  MATH  Google Scholar 

  • Loginov A.E.: 2. Estimates for the approximation by polygonal lines of continuous functions of class H. Vestnik — Mosk. Univ. — Ser. Mat. Meh., 25 (1970), 47–55.

    MathSciNet  MATH  Google Scholar 

  • Loginov A.E.: 3. On a limit relation in spline — function approximation. Ukrain. Mat. Z., 24 (1972), 695–699.

    MathSciNet  MATH  Google Scholar 

  • Loginov A.E.: 4. Best approximation of continuous functions by piecewise monotonic functions. Izv. Akad. Nauk. SSSR, Ser. Mat., 38 (1974), 995–1011.

    MathSciNet  MATH  Google Scholar 

  • Loh Hong: 1. B — spline convex surfaces. (chinese). Beijing Daxue Xuebao, (1980), No.1, 1–16.

    Google Scholar 

  • Loh Hong: 2. Convex B — spline surfaces. Comput. Aided Des., 13 (1981), 145–149.

    Google Scholar 

  • Lohar B.L.; Jain P.C.: Variable mesh cubic spline technique for N — wave solution of Burger’s equation. J. Comput. Phys., 39 (1981), 433–442.

    MathSciNet  MATH  Google Scholar 

  • Loop C.: A G triangular spline surface of arbitary topological type. CAGD 11 (1994), No.3, 303–330.

    MathSciNet  MATH  Google Scholar 

  • Loop C.T.; DeRose T.: Generalized B — spline surfaces of arbitrary topology. Comput. Graph. 24 (1990), 347–356.

    Google Scholar 

  • Lopez de Süanes M.C.; Apprate D.: Estimations de l’erreur d’approximation sur un domain borné de ℝ n par D m — splines d’interpolation et d’ajustement discrètes. Numer. Math., 53 (1988), 367–376.

    MathSciNet  Google Scholar 

  • Lopez de Silanes M.C.; Arcangéli R.: 1. Estimations de l’erreur d’approximation par splines d’interpolation et d’ajustement d’order (m,s). Numer. Math., 56 (1989), 449–467.

    MathSciNet  MATH  Google Scholar 

  • Lopez de Silanes M.C.; Arcangéli R.: 2. Sur la convergence des D m — splines d’ajustement pour des données exactes ou bruitées. Rev. Mat. Univ. Comput. Madrid, 4 (1991), No.2–3, 279–294.

    MATH  Google Scholar 

  • Lorentz R.A.H.; Madych W.R.: 1. Spline wavelets for ordinary differential equations. Gesellsch. für Math. und Dateuverarbeitung MBH, Report No. GMD-562, 1991.

    Google Scholar 

  • Lorentz R.A.H.; Madych W.R.: 2. Wavelets and generalized Box splines. Applicable Analysis, 44 (1992), No.1–2, 51–76.

    MathSciNet  MATH  Google Scholar 

  • Lorenz G.G.: 1. Zeros of splines and Birkhoff’s kernel. Math. Z., 142 (1975), 173–180.

    MathSciNet  Google Scholar 

  • Lorenz G.G.: 2. Notes on approximation. J. Approx. Theory, 56 (1989), 360–365.

    MathSciNet  Google Scholar 

  • Loscalzo F.R.; Talbot T.D.: 1. Spline function approximations for solutions of ordinary differential equations. Bull. Amer. Math. Soc., 73 (1967), 438–442.

    MathSciNet  MATH  Google Scholar 

  • Loscalzo F.R.; Talbot T.D.: 2. Spline functions approximations for solutions of ordinary differential equations. SIAM J. Numer. Anal., 4 (1976), 433–445.

    MathSciNet  Google Scholar 

  • Lott N.I., Pullin D.I.:Method for fairing B-spline surfaces. Computed Aided Design, 20 (1988), 597–604.

    MATH  Google Scholar 

  • Lozorev O.; Preiss K.:Automatic construction of a cubic B-spline representation for a general curve. Comput and Graphics, 7 (1983), No.2, 149–153.

    Google Scholar 

  • Lu C.K.: The approximation of Cauchy — Type Integrals by some kinds of interpolatory splines. J. Approx. Theory, 36 (1982), No.3, 197–212.

    MathSciNet  MATH  Google Scholar 

  • Lu Hong Min; Mathis Frank H.: Surface approximation by spline smoothing and generalized cross — validation. Math. Comput. Simulation, 34 (1992), No.6, 541–549.

    MathSciNet  Google Scholar 

  • Lu Rong: B — spline convex surfaces. (chinese). Beijing Daxue Xuebao, 1 (1980), 1–16.

    Google Scholar 

  • Lu Rong; Sha Cun Xiao:Deficient splines and the method of wigneting determination. (chinese). Beijing Daxue Xuebao, 5 (1982), 14–15.

    Google Scholar 

  • Lu Jian Ke.: 1. The approximation of Cauchy — type integrals by some kinds of interpolatory splines. J. Approx. Theory, 36 (1982), 197–212.

    MathSciNet  MATH  Google Scholar 

  • Lu Jian Ke.: 2. Error analysis for interpolating complex cubic splines with deficiency 2. J. Approx. Theory, 36 (1982), No.3, 183–196.

    MathSciNet  MATH  Google Scholar 

  • Lu Jian Ke.: 3. The construction of best fitting splines. (chinese). J. Wuhan. Univ. Natur. Sci. Ed., 1 (1983), 1–8.

    Google Scholar 

  • Lu Jian Ke; Chen Han Lin: Introduction to complex spline functions. (chinese). J. Math. Res. Expo., 5 (1985), 145–153.

    MATH  Google Scholar 

  • Lii Wei: A study on dimensions of multivariate spline spaces and representation of basic functions. (chinese). Acta Math. Sinica, 32 (1992), No.6, 729–739.

    Google Scholar 

  • Lii Wei; Liang You Dong: 1. The envelope properties of rational B — splines curves and surfaces. (chinese). Math. Numer. Sinica, 11 (1989), No.1, 85–92.

    MathSciNet  Google Scholar 

  • Lii Wei; Liang You Dong: 2. Discrete construction and the problem of the shape — preserving property of rational B-spline curves. (chinese). Acta Math. Appl. Sinica, 13 (1990), No.2, 129–136.

    MathSciNet  Google Scholar 

  • Lü Wei; Pottmann H.: Pipe surfaces with rational spline curve are rational. CAGD, 13 (1996), No.7, 621–628.

    MATH  Google Scholar 

  • Lucas T.R.: 1. A generalization of L — splines. Numer. Math., 15 (1970), 359–370.

    MathSciNet  MATH  Google Scholar 

  • Lucas T.R.: 2. M — splines. J. Approx. Theory, 5 (1972), 1–14.

    MathSciNet  MATH  Google Scholar 

  • Lucas T.R.: 3. Error bounds for interpolating cubic splines under various and conditions. SIAM J. Numer. Anal., 11 (1974), 569–584.

    MathSciNet  MATH  Google Scholar 

  • Lucas T.R.: 4. Asymptotic expansions for interpolating periodic splines. SIAM. J. Numer. Anal., 19 (1982), 1051–1066.

    MathSciNet  MATH  Google Scholar 

  • Lucas T.R.: 5. A posteriori improvements for interpolating periodic splines. Math. Comput., 40 (1983), 243–251.

    MathSciNet  MATH  Google Scholar 

  • Lucas T.P.; Reddien G.W.: 1. Some collocation methods for nonlinear boundary value problems. SLAM J. Numer. Anal., 9 (1972), 341–356.

    MathSciNet  MATH  Google Scholar 

  • Lucas T.P.; Reddien G.W.: 2. A high order projection method for nonlinear two point boundary value problems. Numer. Math., 20 (1973), 257–270.

    MathSciNet  MATH  Google Scholar 

  • Luchka A.Yu.: The spline — iterative method for linear Volterra integral equations of the second kind. (russian). Diff. eqs. with parameter 35–47, Akad. Nauk. Ukrain. SSR, Inst. Mat. Kiev, (1989).

    Google Scholar 

  • Luchka A.Yu.; Mamatov T.D.: Solution of Volterra integral equations of the second kind with small nonlinearitis by a spline-iteration method. Ukr. Math. J., 46 (1994), No.4, 458–463.

    MathSciNet  MATH  Google Scholar 

  • Luchka A.Yu.; Tukalevskaia N.I.: The spline — iterative method for integral equations. (russian). Ukr. Mat. J., 31 (1979), No.6, 683–691.

    Google Scholar 

  • Lucka A. Ju.: Spline — iteration method for liniar Volterra integral equations of the second kind. (russian). Differential Eqs. with Parameters, Kiev, (1989), 35–47.

    Google Scholar 

  • Lučka A. Ju.; Mamatov T.D.: Sufficient conditions for the spline — iterative method for liniar Volterra integral equations of the second kind. (russian). Analytic methods for stading nonlinear diff. systems. 58–62, Akad. Nauk. Ukrainy, Inst. Mat. Kiev, (1992).

    Google Scholar 

  • Lucka A. Ju.; Pukalevskaia N.I.: Projekfionno — iterativnîi metod reşenia integralnîh uravnenii, osovanîi na interpolaţionih splainah. Ukrain. Mat. J., 31 (1979), 683–691.

    Google Scholar 

  • Luik Piret; Tarnme Ann.; Hanstein Galina:Reşenie parabolicescovo uravnenia metodom splain — kollokaţii. Ucen. Zap. Tart. Gos. Univ., 863 (1989), 26–30.

    Google Scholar 

  • Luken W.L.: Tessellation of trimmed NURB surfaces. CAGD, 13 (1996), No.2, 163–177.

    MathSciNet  MATH  Google Scholar 

  • Luken W.L.; Cheng Fuhua: Comparison on surface and derivative evaluation methods for the rendering of NURB surfaces. ACM Trans. on Graphics, 15 (1996), No.2, 153–178.

    Google Scholar 

  • Lunger P.: Application of cubic splines to a Sturm — Liouville system. The Logistic and Transport. Rew., 8 (1972), 47–58.

    Google Scholar 

  • Luo Qiao Lin: Spline filtres. (chinese). Math. Practice Theory, 1 (1983), 44–51.

    Google Scholar 

  • Luo Shu Yao: Solution of dynamic problems of thin plates using the spline finite point method. (chinese). J. Numer. Meth. Comput. Appl., 3 (1982), 100–106.

    Google Scholar 

  • Luo Weimin: The dimension and basis of unequally smooth bivariate spline function spaces. (chinese). J. Northwest. Univ. Nat. Sci., 18 (1988), No.4, 15–18.

    Google Scholar 

  • Luo Zhong Xuan; Wang Ren Hong: 1. Stucture and application of algebraic spline curves and surfaces. Ju. A Friendly Collection of Math. Papers I. Jilin Univ. Press. Changchun, China, 1990, 57–60 and in J. Math. Res. Exposition, 12 (1992), No.4, 579–582.

    Google Scholar 

  • Luo Zhong Xuan; Wang Ren Hong: 2. A nodal basis of C n -rational spline functions on triangulations. Approx. Theory Appl., 10 (1994), No. 4, 13–24.

    MathSciNet  MATH  Google Scholar 

  • Luscher N.: 1. A Greville — like formula for v — spline function. Comput. Aided. Geom. Des., 6 (1989), No.2, 173–176.

    MathSciNet  MATH  Google Scholar 

  • Luscher N.: 2. Calculation of curvature continuous cubic splines. Comput. Aided. Geom. Design, 9 (1992), No.6, 425–433.

    MathSciNet  MATH  Google Scholar 

  • Lusikka I.; Saranen J.: Some remarks on the influence of numerical integration to boundary integral equations. ZAMM, 68 (1988), 397–399.

    MathSciNet  Google Scholar 

  • Lyche Tom: 1. Local spline approximation methods. J. Approx. Theory, 15 (1975), No.4, 294–325.

    MathSciNet  MATH  Google Scholar 

  • Lyche Tom: 2. Local spline approximation methods and asculatory interpolation formulae. Lect. Notes Math., 556 (1976), 305–319.

    MathSciNet  Google Scholar 

  • Lyche Tom: 3. Discret cubic spline interpolation. BIT, 16 (1976), 281–290.

    MathSciNet  MATH  Google Scholar 

  • Lyche Tom: 4. A note of the condition numbers of the B-splines basis. J. Approx. Theory, 22 (1978), 202–205.

    MathSciNet  MATH  Google Scholar 

  • Lyche Tom: 5. A recurrence relation for Chebyshevian B-splines. Constructive Approximation, 1 (1985), 155–173.

    MathSciNet  MATH  Google Scholar 

  • Lyche Tom: 6. Condition numbers for B-splines. Numer. Anal — Proc. 13th Biennial Conf. Dundee U.K. 1989, Pitman Res. Notes Math. Ser., 228 (1990), 182–192.

    Google Scholar 

  • Lyche Tom: 7. Knot removal for spline curves and surfaces. Approximation Theory VII. edited by E.W. Cheneg, C.K. Chui, K.H. Schumaker Academic Press. Boston, MA, (1993), 207–226.

    Google Scholar 

  • Lyche Tom; Cohen E.; Morken K.:Knot line rafinement algorithms for tensor product B-splines surfaces. Comput. Aided Geom. Des., 2 (1985), No.1–3, 133–139.

    MathSciNet  MATH  Google Scholar 

  • Lyche T.; Cohen E.; Riesenfeld R.: 1. Discret B-splines and subdivision techniques in computer aided geometric design and computer graphics. Comp. Graphics and Image Process., 14 (1980), 87–111.

    Google Scholar 

  • Lyche T.; Cohen E.; Riesenfeld R.: 2. Knot line refinement algorithms for tensor product B-splines surfaces. CAGD, 2 (1985), 133–139.

    MATH  Google Scholar 

  • Lyche T.; Cohen E.; Riesenfeld R.: 3. Rectangular v-splines. IEEE Computer Graphics and Appl., 6 (1986), 35–40.

    Google Scholar 

  • Lyche T.; Morken K.: 1.Making the OSLO algorithm more efficient. SIAM J. Numer. Anal., 23 (1986), No.3, 663–675.

    MathSciNet  MATH  Google Scholar 

  • Lyche T.; Morken K.: 2. Knot removal for parametric B-splines curves and surfaces. Comput. Aided Geom. Design, 4 (1987), 217–230.

    MathSciNet  MATH  Google Scholar 

  • Lyche T.; Morken K.: 3. A data-reduction strategy for splines with applications to the approximation of functions and data. IMA J. Numer. Anal., 8 (1988), No.2, 185–208.

    MathSciNet  MATH  Google Scholar 

  • Lyche Tom; Schumacker L.L.: 1. Procedures for computing smoothing and interpolating natural splines. Communications of ACM, 17 (1964), 463–467.

    Google Scholar 

  • Lyche Tom; Schumacker L.L.: 2. Computation of smoothing and interpolating natural splines via local basis. SIAM J. Numer. Anal., 10 (1973), 1027–1038.

    MathSciNet  MATH  Google Scholar 

  • Lyche Tom; Schumacker L.L.: 3. Local spline approximation methods. J. Approx. Theory, 15 (1975), 294–325.

    MATH  Google Scholar 

  • Lyche T.; Schumacker L.L.; Sepehrnoori K.: Fortran subroutine for computing smoothing and interpolating natural splines. Adv. Eng. Software, 5 (1983), 2–5.

    MATH  Google Scholar 

  • Lyche T.; Strom K.: Knot insertion for natural splines. Ann. Numer. Math., 3 (1996), No.1–4., 221–246.

    MathSciNet  MATH  Google Scholar 

  • Lyche T.; Winther R.: A stable recurrence relation for trigonometric B — splines. J. Approx. Theory, 25 (1979), 266–279.

    MathSciNet  MATH  Google Scholar 

  • Lyubarskii Yu; Madych W.R.:The recovery of irregularly sampled band limited functions via tempereded splines. J. Funct. Anal. 125 (1994), No.1, 201–222.

    MathSciNet  MATH  Google Scholar 

  • Ma Weiyin; Kruth J.P.: Parametrization of randomly measured points for least squares fitting of B-spline curves and surfaces. Comput-Aided Des., 27 (1995), No.9, 663–675.

    MATH  Google Scholar 

  • Maccallum K.J.; Zhang J.M.: Curve — smoothing techniques using B — splines. The Computer Journal, 29 (1986).

    Google Scholar 

  • Maccarthy B.L.: Quintic splines for kinematic design. Comput. Aided. Des., 20 (1988), No.7, 406–415.

    MATH  Google Scholar 

  • MacCarthy B.L.; Syan C.S.; Caulfied-Browne M.: Splines in motion — an introduction to MODUS and some nuresolved approximation problems. Numer. Algorithms 5 (1993), No.1–4, 41–49.

    MathSciNet  MATH  Google Scholar 

  • Maclean A.: Transforms of measures on qnotiens and spline functions. Trans. Amer. Math. Soc., 261 (1980), No.1, 287–296.

    MathSciNet  MATH  Google Scholar 

  • MacLeod A.M.: Improved computation of cubic natural splines with equispaced knots. Math. Comput., 27 (1973), 107–109.

    MathSciNet  MATH  Google Scholar 

  • Madatov I.A.: Spline functions of five degree. (russian). Izv. A.N. Az SSR, Ser. Fiz. — Tehn. i Mat Nauk., 6 (1978), 9–11.

    MathSciNet  Google Scholar 

  • Madych W.R.; Nelson S.A.: 1. Polyharmonic Cardinal Splines. J. Approx. Theory, 60 (1990), 141–156.

    MathSciNet  MATH  Google Scholar 

  • Madych W.R.; Nelson S.A.: 2. Polyharmonic cardinal splines: a minimization property. J. Approx. theory, 63 (1990), No.3, 303–320.

    MathSciNet  MATH  Google Scholar 

  • Maess B.; Maess G.: Interpolating quadratic splines with norm. minimal curvature. Rostock Math. Kolloq., 26 (1984), 83–88.

    MathSciNet  MATH  Google Scholar 

  • Maess G.: 1. Smooth interpolation with curves and surfaces by quadratic splines with minimal curvature. Proceed. Numer. Methode and Appl. Sofia, 84 (1985), 75–81.

    Google Scholar 

  • Maess G.: 2. An error estimation for quadratic splines with minimal curvature. Rostock. Math. Kolloq., 35 (1988), 57–60.

    MathSciNet  MATH  Google Scholar 

  • Maess G.; Frischmuth K.: Parametric quadratic splines with minimal curvature. Z. Anal. Anwendungen, 10 (1991), No.2, 256–262.

    MathSciNet  Google Scholar 

  • Maestro R.A.; Voss D.A.: A quintic spline collocation procedure for solving the Falkner — Skan boundary layer equations. Comput. Methods Appl. Mech. Engrg., 25 (1981), 129–148.

    MathSciNet  Google Scholar 

  • Magaril-Ilyaev G.G.: On best approximation by splines of function classes on the line. Proc. Steklov Inst. Math. 194 (1993), 153–164.

    MathSciNet  Google Scholar 

  • Maier M.R.: Numerical solution of singular perturbed boundary value problems using a collocation method with tension splines. In Numer.Boundary Value ODEs, U. Ascher and R.D. Russels eds, Birkhäuser, Boston, 207–225.

    Google Scholar 

  • Majaess F.; Keast P.; Fairweather G.; Bennett K.R.: The solution of almost block diagonal linear systems arising in spline collocation at Gaussian points with monomial basis functions. ACM Trans.Math.Softw., 18 (1992),No.2, 193–210.

    MathSciNet  MATH  Google Scholar 

  • Mahmudov S.: Numerical solution of integro — differential equation by means of cubic splines. (russian). Voprosî Vychisl. i Prikl. Mat. (Tashkent), 52 (1978), 138–144.

    MathSciNet  Google Scholar 

  • Mahmudov S.; Mirzaahmedova N.A.: On some fundamental parabolic splines. (russian). Algoritmî i Chysl. Met. Resh. Zad. Vychisl i Prikl. Mat. Taşhkent, (1988), 52–56.

    Google Scholar 

  • Mahotkin O.A.; Pirimkukov M.I.: Using of splines in some problems of statistical modeling. (russian). In Mihajlov (ed.) Theory and applics of statistical modeling. Novosibirsk Vychsl. Tzentr. SO AN SSSR, (1989), 43–53.

    Google Scholar 

  • Malcolm M.A.: On the computation of nonlinear spline functions. SLAM J. Numer. Anal., 14 (1977), 254–282.

    MathSciNet  MATH  Google Scholar 

  • Malevsky A.V.:Spline-characteristic method for simulation of convective turbulance. J. Comput. Physics, 123 (1996), No.2, 466–475.

    MATH  Google Scholar 

  • Malina Lubor: A note on convergence for the numerical scheme from the Micula’s paper. Mathematica-Rev. D’Anal. Numer. Theor. Approx. (Cluj), 17 (40) (1975), 187–190.

    MathSciNet  Google Scholar 

  • Maljukov A.A.; Orlov I.I.: Stvoistva nekatorîh matrity teorij kusočnopolynomialnoi interpoljaţii na setke s postoranîmi rastjajeniem. Sibirsk. Matern. J., 19 (1978), 343–352.

    MathSciNet  Google Scholar 

  • Malozemov V.N.: 1. On the deviation of broken lines. Vestnik Leningr. Univ., 21 (1966), 150–153.

    MathSciNet  MATH  Google Scholar 

  • Malozemov V.N.: 2. Polygonal Interpolation. Mat. Zamet., 1 (1967), 355–357.

    MathSciNet  MATH  Google Scholar 

  • Malozemov V.N.: 3. Naturalnye splainî proizvolnovo defekta. Metody Vyceislenii (Leningrad), 13 (1983), 163–171.

    MathSciNet  MATH  Google Scholar 

  • Mallozemov V.N.; Pevnyi A.B.: 1. On the best piecewise polynomial approximation. (russian). Vestnik Leningr. Univ., 19 (1976), No.4, 90–96.

    Google Scholar 

  • Mallozemov V.N.; Pevnyi A.B.: 2. Approksimatia splainami proizvolnovo defekta. Dokl. A.N. SSSR, 243 (1978), No.3, 572–575.

    Google Scholar 

  • Mallozemov V.N.; Pevnyi A.B.: 3. O splain — interpolaţia. Matem. Zamet., 26 (1979), 817–822.

    Google Scholar 

  • Mallozemov V.N.; Pevnyi A.B.: 4. Most windins monosplines. (russian). Sibirsk. Mat. Jurnal, 23 (1982), 128–134.

    Google Scholar 

  • Mallozemov V.N.; Pevnyi A.B.: 5. Discontinuous spline and quadrature formulas. (russian). Vestnik Leningradsk. Univ., 4 (1986), 74–78.

    Google Scholar 

  • Malozemov V.N.; Pevnyi A.B.; Vasiliev A.A.: Interpolation and approximation by spline function of an arbitrary defect. (russian). Vestnik. Leningr. Univ., 4 (1979), 23–30.

    Google Scholar 

  • Malyshev V.A.: Splainî s ravnomernîm şagom na intervale [0, +∞). Izv. Vys. uceb. zav. Matematika, 12 (1985), 27–28.

    MathSciNet  Google Scholar 

  • Malysheva A.D.: Automatic choice of parameters in approximating functions by rational splines. (russian). Investigations in current problems in summation and approximation of functions and their applications. (russian). Dnepropetrovsk. Gos. Univ., (1987), 52–60.

    Google Scholar 

  • Mangasarion O.L.; Schumaker L.L.: 1. Discrete splines via mathematical programing. SIAM J. Control, 9 (1971), 174–183.

    MathSciNet  Google Scholar 

  • Mangasarion O.L.; Schumaker L.L.: 2. Best summation formulae and discrete splines. SLAM J. Numer. Anal., 10 (1973), 448–459.

    Google Scholar 

  • Manke J.W.: A tensor product B — spline method for numerical grid generation. J. Comput. Physics, 108 (1993), No.1, 15–26.

    MathSciNet  MATH  Google Scholar 

  • Manni Carla: 1. On the existence of monotone interpolating splines. (italian). Boll. Unione Mat. Ital. VI. Ser. A, 5 (1986), 59–68.

    MathSciNet  MATH  Google Scholar 

  • Manni Carla: 2. On the dimension of bivariate spline spaces over rectiliniar partitions. Approx. Theory Appl., 7 (1991), No.1, 23–34.

    MathSciNet  MATH  Google Scholar 

  • Manni Carla: 3. On the dimension of bivariate spline spaces on generalized quasi — cross — out partitions. J. Approx. Theory, 69 (1992), No.2, 141–155.

    MathSciNet  MATH  Google Scholar 

  • Manni Carla; Sabloniére P.: Monoton interpolation of order 3 by C 2 cubic splines. IMA J. Numer. Analysis, 17 (1997), 305–320.

    MATH  Google Scholar 

  • Mann S.; DeRose T.: Computing values and derivatives of Bézier and B — spline tensor products. CAGD 12 (1995), 107–110.

    MathSciNet  MATH  Google Scholar 

  • Manning J.R: Continuity conditions for spline curves. Computer. J., 17 (1974), 181–186.

    MATH  Google Scholar 

  • Mansfield L.E.: 1. On the optimal approximation of linear functionals in spaces of bivariate functions. SIAM J. Numer. Anal., 8 (1971), 115–126.

    MathSciNet  MATH  Google Scholar 

  • Mansfield L.E.: 2. On the variational characterization and convergence of bivariate splines. Numer. Math., 20 (1972), 99–114.

    MathSciNet  MATH  Google Scholar 

  • Mansfield L.E.: 3. Optimal approximation and error bounds in spaces of bivariate functions. J. Approx. Theory, 5 (1972), 77–96.

    MathSciNet  MATH  Google Scholar 

  • Mansfield L.E.: 4. On the variational approach to defining splines on L — shaped regions. J. Approx. Theory, 12 (1974), 99–112.

    MathSciNet  MATH  Google Scholar 

  • Mansfield L.E.: 5. Error bounds for spline interpolation over rectangular polygons. J. Approx. Theory, 12 (1974), 113–126.

    MathSciNet  MATH  Google Scholar 

  • Mansfield L.E.: 6. Interpolation to boundary data in tetrahedra with application to compatible finite elements. J. Math. Anal. Appl., 56 (1976), 137–164.

    MathSciNet  MATH  Google Scholar 

  • Marais P.C.; Blake S.H.; Kuijk A.A.M.: A spline — wavelet image decomposition for a difference engine. CWI Q 6 (1993), No.4, 335–362.

    MathSciNet  MATH  Google Scholar 

  • Marchenko N.A.; Pavlov V.I.: Numerical solution of elliptic problems of order 2m by the method of least squares using spline approximation on rectangular grids. (russian). Mat. Model., 2 (1990), No.4, 121–132.

    MathSciNet  MATH  Google Scholar 

  • Marchuk G.I.: Methods of numerical mathematics. (russian). Vyčisl. Centr. Sibirsk. Otdel. Akad. Nauk. SSSR, (1972), 112–133.

    Google Scholar 

  • Margenov S.D.: 1. Priminenie paraboliceskih i kubiceskih splainov dlja reşenij kraevîh zadaci smeşanovo typa dlja bigarmoniceskovo uravnenije v priamougolnike. Serdica Bulg. Math. Publ., 7 (1981), 211–216.

    MathSciNet  MATH  Google Scholar 

  • Margenov S.D.: 2. Application of spline — macroelements in solving the biharmonic equation. (russian) In Numer. Methods’ 84 proceeding of the Internat. Conf. an Numer. Methods, Sofia, Bulgaria, (1985), 408–413.

    Google Scholar 

  • Margenov S.D.; Lazarov R.D.: Priminenie paraboličeskih i kubičeskih splainov dlja reşenia kraevîh zadaci eliptičeskih četvertovo poriadka v priamougolnike. Preprint 64 Novosibirsk, (1979).

    Google Scholar 

  • Marin S.P.: An approach to data parametrization in parametric cubic spline interpolation problems. J. Approx. Theory, 41 (1984), 64–86.

    MathSciNet  MATH  Google Scholar 

  • Marin S.P.; Smith P.W.: Parametric approximation of data using ODR splines. CAGD 11 (1994), No.3, 247–267.

    MathSciNet  MATH  Google Scholar 

  • Marinescu Elvira; Marinescu C.: Les fonctions spline comme solutions des équations à impulsions. Bull. Math. Soc. Sci. R.S. Roumania, 25 (1981), 41–46.

    MathSciNet  Google Scholar 

  • Markova L.A.: 1. The use of properties of spline functions for the solution of the problem of best approximation in certain functional spaces. Trudy Centr. Mat. Kafedr. Kalinin, Gos. Mat. Inst., 2 (1971), 101–130.

    MathSciNet  Google Scholar 

  • Markova L.A.: 2. Characterization of the elements of best approximation in Hilbert spaces with the help of splines. Trudy Centr. Mat. Kafedr. Kalinin Gos. Mat. Inst., 2 (1971), 131–136.

    MathSciNet  Google Scholar 

  • Markowich P.A.; Ringhofer C.A.: Collocation methods for boundary value problems on ”long” intervals. Math. Comput., 40 (1983), 123–150.

    MathSciNet  MATH  Google Scholar 

  • Marsden M.J.: 1. An identity for spline functions with applications to variation — diminishing spline approximation. J. Approx. Theory, 3 (1970), 7–49.

    MathSciNet  MATH  Google Scholar 

  • Marsden M.J.: 2. On uniform spline approximation. J. Approx. Theory, 6 (1972), 249–253.

    MathSciNet  MATH  Google Scholar 

  • Marsden M.J.: 3. Cubic spline interpolation of continuous functions. J. Approx. Theory, 10 (1974), 103–111.

    MathSciNet  MATH  Google Scholar 

  • Marsden M.J.: 4. Quadratic spline interpolation. Bull. Amer. Math. Soc., 80 (1974), 903–906.

    MathSciNet  MATH  Google Scholar 

  • Marsden M.J.: 5. Convergence results of cardinal Hermite splines. Approximation Theory II. Proc. Internat. Sympos. Univ. Texas. Austin, (1976), Acd. Press., New York, (1976), 457–462.

    Google Scholar 

  • Marsden M.J.: 6. Spline interpolation at knot averagen on a two — sided geometric mesh. Math. Comput., 38 (1982), 113–126.

    MathSciNet  MATH  Google Scholar 

  • Marsden M.J.: 7. Linear and quadratic spline interpolation at knots overages. J. Approx. Theory, 38 (1983), 201–208.

    MathSciNet  MATH  Google Scholar 

  • Marsden M.J.: 8. Cubic X — spline interpolants. IMA Journal of Numerical Analysis, 4 (1984), 203–207.

    MathSciNet  MATH  Google Scholar 

  • Marsden M.J.; Mureika R.: Cardinal spline interpolation in L 2. Ilinois J. Math., 19 (1975), 145–147.

    MathSciNet  MATH  Google Scholar 

  • Marsden M.J.; Riemenschneider S.D.: Cardinal Hermite spline interpolation: convergence as the degree tends to infinity. Trans. Amer. Math. Soc., 235 (1978), 221–244.

    MathSciNet  MATH  Google Scholar 

  • Marsden M.J. Richard F.B.; Riemenschneider S.D.: Cardinal splines interpolation operators on L 3 data. Indiana Univ. Math. J., 24 (1974/1975), 677–689.

    MathSciNet  Google Scholar 

  • Marsden M.J.; Schoenberg I.J.: On variation diminishing spline approximation methods. Mathematica (Cluj), 8 (1966), 61–82.

    MathSciNet  Google Scholar 

  • Martensen F.: Darstellung und Entwicklung des Restgliedes der Gregoryschen Quadraturformeln mit hilfe von Spline — Funcktionen. Numer. Math., 21 (1973), 63–80.

    MathSciNet  Google Scholar 

  • Marthur K.K.; Sharma A.: Discrete polynomial splines on the circle. Acta. Math. Acad. Sci. Hung., 33 (1979), 143–153.

    Google Scholar 

  • Marti J.T.: An algorithm recursively computing the exact Fourier coefficients of B — splines with nonequidistant knots. ZAMP, 29 (1978), 301–305.

    MathSciNet  MATH  Google Scholar 

  • Martin A.J.; Daniel J. W.: 1. Extrapolation with spline collocation methods for two — point boundary value problems II: C 2 — cubics with detailed results. Report CNA — 125. Center of Num. Anal. Univ. of Texas, Austin, (1977).

    Google Scholar 

  • Martin A.J.; Daniel J. W.: 2. Extrapolation with spline — collocation methods for two — point boundary value problems II: C 2 — cubics. Aequationes Math., 22 (1981), 39–41.

    MathSciNet  MATH  Google Scholar 

  • Martinelli M.R.: Splines generalizata a supporto minimo e modificate. Calcolo, 12 (1975), 171–184.

    MathSciNet  MATH  Google Scholar 

  • Martinov V.N.: Spline functions approximating the solution of Cauchy problem by oscillating method. (russian). Tr. Perm. s — h Inst., 130 (1977), 86–99.

    Google Scholar 

  • Martins Fatima Graca: 1. Sombre a aproximacao por splines polynomials. Trabalhos de Investigacao, 79 (1979), 11–30.

    Google Scholar 

  • Martins Fatima Graca: 2. Polynomial splines and best approximation. Trab. Invest. 1 (1986), 41 p.

    Google Scholar 

  • Martins Fatima Graca: 3. Polynomial splines — best approximation on G α,β (Δ;2r − k,Q;q0)/N. Trab. Invest., 4 (1987), 15 p.

    Google Scholar 

  • Martins Fatima Graca: 4. Perfect splines of odd degree and best approximation. Trab. Invest., 2 (1991), 9 p.

    Google Scholar 

  • Martins Fatima Graca: 5. Periodic perfect splines of odd degree and best approximation. Trab. Invest 1 (1993), 15 p.

    Google Scholar 

  • Maruashivili T.I.: The best approximation of continuous functions by piecewise linear functions. Trudy Vyčisl. Centra Akad. Nauk. Gruzin SSR, 1 (1969), 13–18.

    Google Scholar 

  • Marušić M; Rogina M.: 1. Sharp error bounds for interpolating splines in tension. J. Comput. Appl. Maths., 61 (1995), 205–223.

    MATH  Google Scholar 

  • Marušić M; Rogina M.: 2. A collocation method for singularly perturbed two — point boundary value problems with splines in tension. Adv. Comput. Math., 6 (1996), No.1, 65–76.

    MathSciNet  MATH  Google Scholar 

  • Maslanka Augustyn: O splain — funkţiah v tunelnîh prostranstva. (polish.) Pr. Nauk. A.E. Wroclawiu, (1983), No.236, 49–68.

    Google Scholar 

  • Masliyak J.H.; Kumar D.: Application of ortogonal collocation on finit elements to a flow problem. Math. Comput. Simulation, 12 (1980), 49–54.

    Google Scholar 

  • Mason J.C.; Rodriguez G.; Seatzu S.: Orthogonal splines based on B — splines — with applications to least squares, smoothing and regularisation problems. Numer. Algorithms 5, (1993), No. 1–4, 25–40.

    MathSciNet  MATH  Google Scholar 

  • Masson R.:Biorthogonal spline wavelets on the interval for the resolution of boundary problems. Math. Models and Methods in Applied Sciences, 6 (1996), No.6, 749–791.

    MathSciNet  MATH  Google Scholar 

  • Matheron G.: Spline and kriging: their formal equivalence. In Computer Appls. in Earth Sciences. (D.F. Merriam, ed.). Plenum Press, New York, 1981.

    Google Scholar 

  • Mathur K.K.; Saxena Aniula:Odd degree splines of higher order. Acta Math. Hungar, 62 (1993), No.3–4, 263–275.

    MathSciNet  MATH  Google Scholar 

  • Matušu J.; Novak J.:A method for construction of spline curves. Math. Pannonica, 1 (1990), No.2, 7–23.

    MATH  Google Scholar 

  • Matveev O.V.: 1. Properties of functions and the rate of one — sided approximation by piecewise polynomial functions and splines. (russian). Issled. Teor. Funkts. Mnogikh Veshchestv. Perem., 6 (1986), 56–71.

    MATH  Google Scholar 

  • Matveev O.V.: 2. O ”superodnostoronem” priblijenii splainami funkţii mnogih peremenîh. Izv. Vyc. Ucebn. Zaved Matematika, 6 (1988), 49–54.

    Google Scholar 

  • Matveev O.V.: 3. Approximation propeties of interpolation D m — splines. (russian). Dokl. Akad. Nauk. SSSR, 321 (1991), No.1, 14–18.

    Google Scholar 

  • Matveev O.V.: 4. Spline interpolation of functions o several variables and bases in Sobolev spaces. (russian). Trudy Mat. Inst. Steklov 198 (1992), 125–152.

    Google Scholar 

  • Matysina N.V.; Matysina Eh.A.:The spline average method and its realization on the computer. (russian). Dokl. Akad. Nauk. Ukr. SSR. Ser A, (1988), No.5, 65–68.

    Google Scholar 

  • Mawatari S.: On the approximation of multivariate functions with variation dimenshing splines. Dzëxo sëri, 15 (1974), 962–968.

    Google Scholar 

  • McAllister D.F.; Pasow Eli; Roulier J.A.: Algorithms for computing shape preserving interpolants to data. Math. Comput., 31 (1977), 717–725.

    MATH  Google Scholar 

  • McAllister D.F.; Roulier J.A.: 1. Interpolation by convex quadratic splines. Math. Comput., 32 (1978), 1154–1162.

    MathSciNet  MATH  Google Scholar 

  • McAllister D.F.; Roulier J.A.: 2. An algorithm for computing a shape preserving oscilatory quadratic spline. ACM Trans. Math. Software, 7 (1981), 331–347.

    MathSciNet  MATH  Google Scholar 

  • McAllister D.F.; Roulier J.A.: 3. Agorithm 574. Shape preserving osculatory quadratic spline. ACM Trans. Math. Software, 7 (1981), 384–386.

    MathSciNet  Google Scholar 

  • McCartin B.J.: 1. Applications of exponential splines in computational fluid dynamics. AIAA J., 21 (1983), 1059–1065.

    MathSciNet  MATH  Google Scholar 

  • McCartin B.J.: 2. Computation of exponential splines. SLAM J. Sci. Stat. Comput., 11 (1990), No.2, 242–262.

    MathSciNet  MATH  Google Scholar 

  • McCartin B.J.: 3. Theory of exponential splines. J. Approx. Theory, 66 (1991), No.1, 1–23.

    MathSciNet  MATH  Google Scholar 

  • McCartin B.J.; Jameson A.: Numerical solution of nonlinear hyperbolic conservation laws using exponential splines. Comput. Mech., 6 (1990), No.2, 77–91.

    MATH  Google Scholar 

  • McCaughey D.G.; Andrews H.C.: Image approximation by variable knots bicubic splines. I.E.E.E. Trans. Pattern Anal. Machins Intell., 3 (1981), 299–310.

    MATH  Google Scholar 

  • McConelogue D.J.: A quasi — intrinsec scheme for passing a smooth curve through a discrete set of points. Comput. J., 13 (1970), 392–396.

    Google Scholar 

  • McClure D.E.: Perfect spline solution of L∞ extreme problems by control methods. J. Approx. Theory, 15 (1975), 226–242.

    MathSciNet  MATH  Google Scholar 

  • McLean W.; Pröbdorf:Boundary element collocation methods using splines with multiple knots. Numer. Math., 74 (1996), No.4, 419–451.

    MathSciNet  MATH  Google Scholar 

  • McMahon J. R.; Franke R.: 1. An enhanced knot selection algorithm for least squares approximation using thin plate splines. Appl. Math. and Comp. Trans 7 th Arm. Conf. West Point/NY (USA), 1989, ARO Rep. 90–1,(1990), 773–796.

    Google Scholar 

  • McMahon J. R.; Franke R.: 2. Knot selection for least squares thin plate splines. SIAM J. Sci. Stat. Comput., 13 (1992), No.2, 484–498.

    MathSciNet  MATH  Google Scholar 

  • Meade D.: Solution of the neutron group — diffusion equations by orthogonal collocation with cubic Hermite interpolants. Transport Theory and Statistical Physics, 12 (1983), 271–284.

    MATH  Google Scholar 

  • Meade D.; Fairweather G.: Spline collocation methods for the numerical solution of differential equations. In Mat. for harge Scale Computing, ed. by J.D. Diaz. Lect. Notes in Pure and Appl. Math. Genes. / 120. Marcel Dekker Inc. New York, (1989).

    Google Scholar 

  • Medina Julio: 1. Interpolation monotona y convexa mediante functiones spline homografi-cas. Politecnica, 12 (1987), No.1, 89–102.

    Google Scholar 

  • Medina Julio: 2. Un algoritmo eficiente para calcular la function spline hiperbolica bajo tension. Politecnica, 12 (1987), No.1, 167–173.

    MathSciNet  Google Scholar 

  • Medioni G.; Yasumoto Y.: Cornez detection and curve representation using cubic B — splines. Comput. Vision Graphic Image Process., 39 (1987), 267–278.

    MATH  Google Scholar 

  • Medvedev N.G.: Spline — functions in problems of oscillation of orthotropic shells of variable thickness. (russian). Mat. Fiz., 52 (1982), 108–113.

    Google Scholar 

  • Medvedev N.V.: Regularized stochastic splines (R — splines). (russian). Questions of Appl. Math. Mech., 5 (1977), 90–94, 208, čuvaš. Gos. Univ. Cheboksary.

    Google Scholar 

  • Meek D.S.: Some new linear relations for even degree polynomial splines on a uniform mesh. BIT, 20 (1980), 382–384.

    MathSciNet  MATH  Google Scholar 

  • Meek D.S.; Thomas R.S.O.: A guided clothoid spline. Comput. Aided. Geom. Design, 8 (1991), 163–174.

    MathSciNet  MATH  Google Scholar 

  • Meek D.S.; Walton D.J.: 1. Shape determination of planar uniform cubic B — spline segments. Comput. Aided. Des., 22 (1990), No.7, 431–441.

    Google Scholar 

  • Meek D.S.; Walton D.J.: 2. Offset curves of clothoidal splines. Comput. Aided Des., 22 (1990), No.4, 199–201.

    MATH  Google Scholar 

  • Meek D.S.; Walton D.J.: 3. Clothoid spline transition spirals. Math. Comput., 59 (1992), No.199, 117–133.

    MathSciNet  MATH  Google Scholar 

  • Meek D.S.; Walton D.J.: 4. Locally controled G 1 arc splines. Congr. Numer., 86 (1992), 161–167.

    MathSciNet  Google Scholar 

  • Meek D.S.; Walton D.J.: 5. Approximation by discrete data by G 1 arc splines. Comput. Aided. Des., 24 (1992), No.6, 301–306.

    MATH  Google Scholar 

  • Meek D.S.; Walton D.J.: 6. A note on planar minimax arc splines. Comput. and Graphics, 16 (1992), No.4, 431–433.

    Google Scholar 

  • Meek D.S.; Walton D.J.: 7. Approximating quadratic NURBS curves by arc splines. Comput-Aided Des. 25 (1993), No.6, 371–376.

    MATH  Google Scholar 

  • Meek D.S.; Walton D.J.: 8. Approximating smooth planar curves by arc splines. J. Comput. Appl. Maths., 59 (1995), No.2, 221–231.

    MathSciNet  MATH  Google Scholar 

  • Meek D.S.; Walton D.J.: 9. Planar osculating arc splines. CAGD, 13 (1996), No.7, 653–671.

    MathSciNet  MATH  Google Scholar 

  • Meek D.S.; Walton D.J.: 10. Geometric Hermite interpolation with Tschrirnhausen cubics. J. Comput. Appl. Math., 81 (1997), No.2, 299–309.

    MathSciNet  MATH  Google Scholar 

  • Le Méhauté A.; Bouhamidi A.: L m,l,s — splines in ℝ d. Numer. Math, in Approx. Theory, Vol. 9, ISNM 105 (1992), Birkhäuser, 135–154.

    Google Scholar 

  • Le Méhauté Alain I.Y.: Spline technique for differentiation in. Approx. Theory Appl., 2 (1986), No.4, 79–92.

    MathSciNet  Google Scholar 

  • Le Méhauté Alain; Correc Y.: Modelling axisymetric thin shalls with Lf-splines (Lg — splines). The math. of deforming surfaces Cambridge, 1988, 3–18, IMA Conf. Ser. New. Ser., 56, Oxford Press, 1996.

    Google Scholar 

  • Mehlum E.: 1. A curve — fitting method based on a variational criterion. BIT, 4 (1964), 213–223.

    MathSciNet  MATH  Google Scholar 

  • Mehlum E.: 2. Nonlinear splines. Comput. Aided Geom. Des. N.Y., 194, 137–207.

    Google Scholar 

  • Mei Jia Bin; Zhu F.S.:Another proof of the variation-diminishing property of B-splines. (chinese), Math. Practice Theory, 1995, No.3, 82–85.

    Google Scholar 

  • Meinardus G.: 1. Über dir Norm des Operators der Kardinalen Splines — Interpolation. J. Approx. Theory, 16 (1976), 289–298.

    MathSciNet  MATH  Google Scholar 

  • Meinardus G.: 2. Algebrische Formulierung von Spline — Interpolation. Ser. Internat. Anal. Numer. Suisse, 32 (1976), 125–138.

    MathSciNet  Google Scholar 

  • Meinardus G.: 3. On the factorization of periodic spline operators. South. African Sympos. Numer. Math. 5 (1979), Durban ZAF, Durban 1979, 165–177.

    Google Scholar 

  • Meinardus G.: 4. On the Gauss transform of polynomial spline spaces. Result. Math., 16 (1989), No.3–4, 290–298.

    MathSciNet  MATH  Google Scholar 

  • Meinardus G.; Morsche H. Ter.; Walz G.: On the Chebyshev norm of polynomial B — splines. J. Approx. Theory, 82 (1995), No.1, 99–122.

    MathSciNet  MATH  Google Scholar 

  • Meinardus G.; Nürnberger G.: Uniqueness of best L 1 — approximations from periodic spline spaces. J. Approx. Theory, 58 (1989), No.1, 114–120.

    MathSciNet  MATH  Google Scholar 

  • Meinardus G.; Nürnberger G.; Sommer M.; Strauss H.: Algorithms for piecewise polynomials and splines with free knots. Math. Comput., 53 (1989), 235–247.

    MATH  Google Scholar 

  • Meinardus G.; Nürnberger G.; Walz G.: Bivariate segment approximation and splines. Adv. Comput. Math., 6 (1996), No.1, 25–45.

    MathSciNet  MATH  Google Scholar 

  • Meinardus G.; Taylor G.D.: Periodic quadratic spline interpolant of minimal norm. J. Approx. Theory, 23 (1978), 137–141.

    MathSciNet  MATH  Google Scholar 

  • Meinardus G.; Walz G.: More results on B — splines via recurrence relations. Math. Manuskripte 144, Univ. Manheim, (1992).

    Google Scholar 

  • Meir A.; Sharma A.: 1. One sided spline approximation. Studia Sci. Math. Hungar., 3 (1968), 211–218.

    MathSciNet  MATH  Google Scholar 

  • Meir A.; Sharma A.: 2. Convergence of a class of interpolatory splines. J. Approx. Theory, 1 (1968), 243–250.

    MathSciNet  MATH  Google Scholar 

  • Meir A.; Sharma A.: 3. On uniform approximation by cubic splines. J. Approx. Theory, 2 (1969), 270–274.

    MathSciNet  MATH  Google Scholar 

  • Meir A.; Sharma A.: 4. Lacunary interpolation by splines. SIAM J. Numer. Anal., 10 (1973), No.3, 433–442.

    MathSciNet  MATH  Google Scholar 

  • Mekhilef M.; Veyssegre H.; Germain Lacouv P.: Une nouvelle aproche pour la restitution dl courbes par des B — splines rationnelles non uniformes. Proc. MICAD (1990), 61–69.

    Google Scholar 

  • Melesko I.N.: Priminenîe splainov pervoi stepeni k priblijenomu reşeniu odnovo singuljarnovo integro — differentialnovo uravnenija. Izv. Vycc. Ucebn. Zaved. Matematika, 1 (1988), 41–50.

    Google Scholar 

  • Mel kes F.: Reduced piecewise bivariate Hermite interpolations. Numer. Math., 19 (1972), 326–340.

    MathSciNet  Google Scholar 

  • Melkman A.A.: 1. Interpolation by splines satisfying mixed boundary conditions. Israel J. Math., 19 (1974), 364–381.

    Google Scholar 

  • Melkman A.A.: 2. The Budan — Fourier theorem for splines. Israel J. Math., 19 (1974), 256–263.

    MathSciNet  Google Scholar 

  • Melkman A.A.: 3. Hermite — Birkhoff interpolation by splines. J. Approx. Theory, 19 (1977), 259–279.

    MathSciNet  MATH  Google Scholar 

  • Melkman A.A.: 4. Splines with maximal zeros sets. J. Math. Anal. Appl., 61 (1977), 739–751.

    MathSciNet  MATH  Google Scholar 

  • Melkman A.A.: 5. Another proof of the total positivity of the discrete spline collocation matrix. J. Approx. Theory, 84 (1996), No.3, 265–273.

    MathSciNet  MATH  Google Scholar 

  • Melkman A.A.; Miccheli C.A.: Spline spaces are optimal for L 2 n width. Ilinois. J. Math., 22 (1978), No.4, 541–564.

    MATH  Google Scholar 

  • Melinik S.I.: Spline spaces, defined by a linear differential operator and an operator of repeated interpolation. (russian). Topologicheskie Prostronstva Otobrazheniya, (1985), 100–104.

    Google Scholar 

  • Mendelson J.; Rice J.: Deconvolution of microfluorometrie histograms with B — splines. J. Amer. Statist. Soc., 77 (1982), 748–753.

    Google Scholar 

  • Menykbaev A.A.: On monosplines of minimal defect. (russian). Izv. Akad. Nauk. Kaz. SSR. Ser. Fiz. Mat., 5 (1982), 16–20.

    Google Scholar 

  • Merz G.: 1. Über die Interpolationsaufgabe bei natürlichen Polynomsplines mit äquidistanten Knoten. J. Approx. Theory, 10 (1974), 151–158.

    MathSciNet  MATH  Google Scholar 

  • Merz G.: 2. Erzeugende Funktionen bei Spline — Interpolation mit äquidistanten Knoten. Computing, 12 (1974), 195–201.

    MathSciNet  MATH  Google Scholar 

  • Merz G.: 3. Spline. Überblicke Mathematik, 7 (1974), 115–165.

    MathSciNet  Google Scholar 

  • Merz G.: 4. Eine Kettenbruchdarstellung für die Norm des kubischen periodischen Spline — Interpolationsoperators. ZAMM, 60 (1980), 111–112.

    MathSciNet  MATH  Google Scholar 

  • Merz G.: 5. Interpolation mit periodischen Spline — Funktionen I, II, III. J. Approx. Theory, I. 30 (1980), 11–19; II. 30 (1980), 20–28; III. 34 (1982), 226–236.

    MathSciNet  MATH  Google Scholar 

  • Merz G.: 6. Arithmetical properties of norms of spline interpolation operators. ZAMM, 65 (1985), No.6, 249–250.

    MathSciNet  MATH  Google Scholar 

  • Merz G.: 7. Lebesgue constant for periodic Hermite splines interpolations operators on uniform lattices. J. Approx. Theory, 64 (1991), No.3, 281–290.

    MathSciNet  MATH  Google Scholar 

  • Merz G.; Sippel W.: Zur Konstruktion periodischer Hermite — Interpolationssplines bei äquidistanter Knotenverteilung. J. Approx. Theory, 54 (1988), 92–106.

    MathSciNet  MATH  Google Scholar 

  • Methur K.K.; Saxena Anjula: Odd degree splines of higher order. Acta. Math. Hungarica, 62 (1993), No.3–4, 263–275.

    Google Scholar 

  • Messer K.: A comparison of a spline estimate to its equivalent kernel estimate. Annals of Statistics, 19 (1991), No.2, 817–829.

    MathSciNet  MATH  Google Scholar 

  • Mettke Holger: 1. Splineapproximation mit Interpolationsbedingungen. Wiss. Z. Techn. Univ. Dresden, 26 (1977), 663–666.

    MathSciNet  MATH  Google Scholar 

  • Mettke Holger: 2. Quadratische Splineinterpolation bei zusammenfallenden Interpolations — und Splinegitter. Beitr. Numer. Math., 8 (1980), 113–119.

    MathSciNet  Google Scholar 

  • Mettke Holger: 3. Biquadratische Interpolations — und Volumenabgleichssplines. Beitr. Numer. Math., 8 (1980), 113–119.

    MathSciNet  Google Scholar 

  • Mettke Holger: 4. Fehlerabschätzungen zur zwei dimensionalen Splineinterpolation. Beitr. Numer. Math., 11 (1983), 81–91.

    MathSciNet  Google Scholar 

  • Mettke Holger: 5. Convex cubic Hermite — spline interpolation. J. Comput. Appl. Math., 9 (1983), 205–211, and 11 (1984), 377–378.

    MathSciNet  MATH  Google Scholar 

  • Mettke Holger: 6. Convex cubic Hermite — spline interpolation. J. Comput. Appl. Math., 11 (1984), 377–378.

    MathSciNet  MATH  Google Scholar 

  • Mettke Holger: 7. Convex interpolation by splines of arbitrary degree. Math. Comput., 46 (1986), No.174, 567–576.

    MathSciNet  MATH  Google Scholar 

  • Mettke Holger; Pfeifer E.; Neuman E.: Quadratic spline interpolation with coinciding interpolation and spline grids. J. Comput. Appl. Math., 8 (1982), 57–62.

    MathSciNet  MATH  Google Scholar 

  • Mettke Holger; Lingner Tom: Ein Verfahren zur konvexen kubischen Splineinterpolation. Wiss. Z. Techn. Univ. Dresden, 32 (1983), 77–80.

    MathSciNet  MATH  Google Scholar 

  • Meyers L.F.; Sard A.: 1. Best approximate integration formulas. J. Math. Phys., 29 (1950), 118–123.

    MathSciNet  MATH  Google Scholar 

  • Meyers L.F.; Sard A.: 2. Best interpolation formulas. J. Math. Phys., 29 (1950), 198–206.

    MathSciNet  MATH  Google Scholar 

  • Meyer W.W.; Thomas D.H.: Variations on a theme by Schoenberg. J. Approx. Theory, 18 (1976), 39–40

    MathSciNet  MATH  Google Scholar 

  • Meyer Y.: 1. Ondelettes, fonctions splines et analyse graduees. Rend. Sem. Mat. Univ. Politecn. Torino, 45 (1987), No.1, 1–42.

    MATH  Google Scholar 

  • Meyer Y.: 2. Ondelettes et functions splines. Seminane Eqs. aux Derivees Partiells, Ecole Polytechnique, Paris, Dec., 1986.

    Google Scholar 

  • Meyling Gmeling R.H.J.: 1. Approximation by cubic C 1 — splines on arbitrary triangulations. Numer.Math., 51 (1987), 65–85.

    MathSciNet  MATH  Google Scholar 

  • Meyling Gmeling R.H.J.: 2. An algorithm for constructing configurations of knots for bivariate B — splines. SIAM J. Numer. Anal., 24 (1987), No.3, 706–724.

    MathSciNet  MATH  Google Scholar 

  • Meyling Gmeling R.H.J.: 3. Numerical solution of the biarmonic equations using different types of bivariate spline functions. Algorithms for Approximations II, (Shrivenham, 1988), Chapman and Hall. London, (1990), 369–376.

    Google Scholar 

  • Meyling Gmeling R.H.J.: 4. Smooth piecewise polynomials als conforming finite elements for plate bending problems. Memorandum 747 Dept. of Appl. Math. Univ. of Twente.

    Google Scholar 

  • Meyling Gmeling R.J.H.; Neamtu M.; Schaeben H.: Approximation and geometric modeling with simplex B — spline associated with irregular triangles. Comput. Aided. Geom. Design, 8 (1991), 67–87.

    MathSciNet  MATH  Google Scholar 

  • Meyling Gmeling R.H.J.; Pfluger P.R.: 1. B — spline approximations of a closed surface. IMA J. Numer. Anal., 7 (1987), No.1, 73–96.

    MathSciNet  Google Scholar 

  • Meyling Gmeling R.H.J.; Pfluger P.R.: 2. On the dimension of the space of quadratic C 1 — splines in two variables. Approx. Theory and its Appls., 4 (1988), No.1, 37–54.

    Google Scholar 

  • Meyling Gmeling R.H.J.; Pfluger P.R.: 3. Smooth interpolation to scattered data by bivariate piecewise polynomials of odd degree. Comput. Aided. Geom. Design, 7 (1990), 439–458.

    MathSciNet  Google Scholar 

  • Micchelii C.A.: 1. Best quadrature formulas at equally spaced nodes. J. Math. Appl., 47 (1974), 232–249.

    Google Scholar 

  • Micchelii C.A.: 2. On optimal method for the numerical differentiation of smooth functions. J. Approx. Theory, 18 (1976), 189–204.

    Google Scholar 

  • Micchelii C.A.: 3. Best L 1 — approximation by weak Chebyshev systems and the uniqueness of interpolating perfect spline. J. Approx. Theory, 19 (1977), 1–14.

    Google Scholar 

  • Micchelii C.A.: 4. On a numerically efficient method for computing multivariate B — splines. Internat. Ser. Numer. Math., 51 (1979), 211–248.

    Google Scholar 

  • Micchelii C.A.: 5. A constructive approach to Kargin interpolation in ℝ k. Multivariate B — splines and Lagrange interpolation. Rocky Mt. J. Math., 10 (1980), 485–497.

    Google Scholar 

  • Micchelii C.A.: 6. Curves from variational principles. RAIRO Math. Modelling and Numer. Anal., 26 (1992), No.1, 77–93.

    Google Scholar 

  • Micchelii C.A.: 7. Using the refinement equation for the construction of pre — wavelets. Numer. Algorithms, 1 (1991), 75–116.

    MathSciNet  Google Scholar 

  • Micchelii C.A.; Pinkus A.: 1. Moment theory of weak Chebyshev system with application to monosplines. SIAM J. Math. Anal., 8 (1977), 206–230.

    MathSciNet  Google Scholar 

  • Micchelii C.A.; Pinkus A.: 2. Variational problems arrising from balancing several error criteria. Rendicouti di Matematica, Serie VII, 14 (1994), 37–86.

    Google Scholar 

  • Micchelii C.A.; Rabut C.; Utreras F.: Using the refinement equation for the construction of prewavelets III. Elliptic splines. Numer. Algorithms, 1 (1991), No.4, 331–351.

    MathSciNet  Google Scholar 

  • Micchelii C.A.; Sharma A.: 1. Spline functions on the circle. Cardinal L — splines revisited. Canad. J. Math., 22 (1980), 1459–1473.

    Google Scholar 

  • Micchelii C.A.; Sharma A.: 2. Convergence of complete spline interpolation for holomorphic functions. Arkiv. für Mathematik, 23 (1985), 159–170.

    Google Scholar 

  • Micchelii C.A.; Utreras I.F.: Smoothing and interpolation in a convex subset of a Hilbert space. SIAM J. Sci. Stat. Comput., 9 (1988), No.4, 728–746.

    Google Scholar 

  • Micula G.: 1. Approximate integration of systems of differential equations by spline functions. Studia Univ. Babeş — Bolyai, Cluj, Series Math. Fasc., 2 (1971), 27–39.

    MathSciNet  Google Scholar 

  • Micula G.: 2. Fonctions spline d’approximation pour les solutions des systèmes d’équations différentielles. Anal. St. Univ. Al. I. Cuza, Iaşi, 27 (1971), 139–155.

    MathSciNet  Google Scholar 

  • Micula G.: 3. Spline functions approximating the solution of nonlinear differential equation of n — th order. ZAMM, 52 (1972), 189–190.

    MathSciNet  MATH  Google Scholar 

  • Micula G.: 4. Funcţii spline de grad superior de aproximare a soluiiilor sistemelor de ecuaţii diferenţiale. Studia Babeş — Bolyai Cluj, Fasc. 1 (1972), 21–32.

    MathSciNet  Google Scholar 

  • Micula G.: 5. Numerical integration of differential equation y (n) = f(x,y) by spline functions. Rev. Roum. Math. Pures et Appl. (Bucharest), 1 (1972), 1385–1390.

    MathSciNet  Google Scholar 

  • Micula G.: 6. Die numerische Losung nichtlinearer Differentialgleichungen unter Verwendung von Spline — Funktionen. Lect. Notes in Math. 395, Springer, (1974), 57–83.

    Google Scholar 

  • Micula G.: 7. Deficient spline approximate solutions to linear differential equations of the second order. Mathematica (Cluj), 16 (39), (1974), 65–72.

    MathSciNet  Google Scholar 

  • Micula G.: 8. The numerical solution of Volterra integro — differential equations by spline functions. Rev. Roum. Math. Pures et Appl. (Bucharest), 20 (1975), 349–358.

    MathSciNet  MATH  Google Scholar 

  • Micula G.: 9. On the approximative solution of nonlinear differential equations of the second order by deficient spline functions. Lucrări Ştiinţifice, Seria A, Inst. Ped. Oradea, (Romania), (1975), 7–11.

    Google Scholar 

  • Micula G.: 10. Über die numerische Lösung nichtlinearer Differentialgleichungen mit Splines von niedriger Ordnung. Internat. Ser. Numer. Math., 27 (1975), 185–195. Birkhäuser Verlag, Basel-Stuttgart, (1975).

    Google Scholar 

  • Micula G.: 11. The numerical solution of nonlinear differential equations by deficient spline functions. ZAMM, 55 (1975), 254–255.

    MathSciNet  Google Scholar 

  • Micula G.: 12. Bemerkungen zur numerischen Lösung von Anfangeswertproblemen mit Hilfe nichtlinearer Spline — Funktionen. Lect. Notes in Math., Springer, 501 (1975), 200–209.

    Google Scholar 

  • Micula G.: 13. Bemerkungen zur numerischen Behandlung von nichtlinearer Volterraschen Integralgleichungen mit Splines. ZAMM, 56 (1976), 302–304.

    MathSciNet  Google Scholar 

  • Micula G.: 14. Teoria funeţiilor spline şi aplicaţii. Bibliografie. Litografia Fac. de Matematică, Univ. Babes. — Bolyai, Cluj-Napoca, (1978), 104.

    Google Scholar 

  • Micula G.: 15. Numerische Behandlung der Volterra — Integralgleichungen mit Splines. Studia Univ. Babes. — Bolyai, Cluj — Napoca, 24 (1979), Fasc.2, 46–54.

    MathSciNet  MATH  Google Scholar 

  • Micula G.: 16. Asupra unor metode de rezolvare aproximativă a ecuaţiilor diferenţiale. Lucrări Sem. Itinerant de Ecuaţii Funcţonale, Aproximare şi Convexitate, Cluj — Napoca, 17–19 mai (1979), 99–105.

    Google Scholar 

  • Micula G.: 17. Projection method for the numerical solution of Hammerstein equations. Proc. Seminar of Functional Eqs., Approximation and Convexity, Timişoara, 7–8 nov. (1980), 137–143.

    Google Scholar 

  • Micula G.: 18. The ”D.V. Ionescu method” of constructing approximation formulas. Studia Univ. Babeş — Bolyai, Cluj — Napoca, Mathematica, 26 (1981), No.2, 5–13.

    Google Scholar 

  • Micula G.: 19. On ”D.V. Ionescu method— in numerical analysis as a constructing method of spline functions. Revue Roumaine de Math. Pures et Appl., 24 (1981), No.408, 1131–1141.

    MathSciNet  Google Scholar 

  • Micula G.: 20. Approximate solution of the differential equation y″ = f(x,y) with spline functions. Math. Comput., 27 (1983), 807–816.

    MathSciNet  Google Scholar 

  • Micula G.: 21. Numerische Behandlung von Differentialgleichungen mit modifizierten Argument mit Spline — Funktionen. Proceedings of Colloq. Approx. and Optimization. Cluj — Napoca, October, 25–27, (1984), 111–128.

    Google Scholar 

  • Micula G.: 22. Spline — Funktionen und die numerische Verfahren für Differential — und Partielledifferentialgleichungen. Research Seminaries, Faculty of Math. Univ. of Cluj — Napoca, Preprint No.9, (1985), 27–52.

    Google Scholar 

  • Micula G.: 23. The spline technique in the theory of differential equations. Procedings of the Conference on Differential Equations. Cluj — Napoca, November 21–23, (1985), 29.

    Google Scholar 

  • Micula G.: 24. Numerical solution of some linear eliptic problems by spline functions. Proc. Itinerant Seminar on Functional Equations, Approximation and Convexity. Iaşi (Romania), 26 Oct. (1986), 13–17.

    Google Scholar 

  • Micula G.: 25. Theorie und Anwendungen von Spline — Funktionen. Literaturverzeichnis. Preprint Nr.1071, Juli (1987). Technische Hochschule Darmstadt, B.R.D.

    Google Scholar 

  • Micula G.: 26. Losung gevohnlicher Differentialgleichungen zweiter Ordnung mit nacheilendem Argument durch Spline — Funktionen. Preprint 1181 T.H. Darmstadt, (1988).

    Google Scholar 

  • Micula G.: 27. Theory and Applications of Spline Functions. Freie Universität Berlin, Preprint Nr. A 89/1. Fachbereich Mathematik, Seria A, (1989), Mathematik 249.

    Google Scholar 

  • Micula G.: 28. Über die numerische Losung gewöhnlicher Differentialgleichungen zweiter Ordnung mit nacheilendem Argument durch Spline — Funktionen. Rev. Roumaine Math. Pures Appl. Bucharest, 34 (1989), 899–909.

    MathSciNet  MATH  Google Scholar 

  • Micula G.: 29. Numerical solution of delay differential equations of higher order by spline functions. Babeş — Bolyai University Cluj, Research Seminars, Seminar on Differential Equations, Preprint No.3, (1990), 77–86.

    Google Scholar 

  • Micula G.: 30. Approximate solution of the nonlinear n-th order differential equations with deviating by spline functions. Buletin. Şt. Seria B, Univ. Baia-Mare, vol.7, (1991), Nr.1–2, 47–54.

    MATH  Google Scholar 

  • Micula G.; Akça H.: 1. Approximate solution of the second order differential equations with deviating argument by spline functions. Mathematica — Revue d’Analyse Numérique et de Théorie de l’Approximation, Tome 30 (53), (1988), No.1, 37–46.

    Google Scholar 

  • Micula G.; Akça H.: 2. Numerical solution of differential equations with deviating argument using spline functions. Studia Univ. Babeş. — Bolyai, Mathematica, 23 (1988), No.2, 45–57.

    Google Scholar 

  • Micula G.; Akça H.: 3. Approximate solutions of the nonlinear n-th order diffeential equations with deviating argument by polynomial spline functions. Proceed. Itinerant Seminar an Functional Eqs. Approximation and Convexity, Cluj — Napoca, Oct. (1990), 93–104.

    Google Scholar 

  • Micula G.; Akça H.: 4. Numerical solution of system of differential equations with deviating argument by spline functions. Acta Technica Napocensis, Series Applied Mathematics and Mechanics, 35 (1992), 107–116.

    MATH  Google Scholar 

  • Micula G.; Akça H.; Arslan G.: Deficient spline approximations for second order neutral delay differential equations. Studia Babeş-Bolyai, Mathematica, 40 (1995), No.4, 85–97.

    MATH  Google Scholar 

  • Micula G.; Akça H.; Dag I.: Approximate solution of the second order differential equations with deviating argument by deficient spline functions. Bul. Şt. Inst. Politehnic Cluj-Napoca, Seria Mat.-Mec, 34 (1991).

    Google Scholar 

  • Micula G.; Akça H.; Güray U.: Continuous approximate solution to the neutral delay differential equations by a simplified Picard’s method. Studia Univ. Babeş-Bolyai Cluj-Napoca, Mathematica, 39 (1994), Nr.4., 69–78.

    MATH  Google Scholar 

  • Micula G.; Ayad A.: A polynomial spline approximation method for solving Volterra integro-differential equations. Studia Univ. Babeş-Bolyai, Mathematica, 41 (1996), No.4, 71–80.

    MathSciNet  MATH  Google Scholar 

  • Micula G.; Bellen A.: Spline approximations for neutral delay differential equations. Révue d’Analyse Numér et de Theorie de l’Approximation, Cluj — Napoca, 23 (1994), No.2, 117–125.

    MathSciNet  MATH  Google Scholar 

  • Micula G.; Blaga P.: 1. Natural spline functions of even degree. Studia Univ. ”Babeş-Bolyai” Cluj — Napoca, Series Math., Series Math., 38 (1993), 31–40.

    MathSciNet  MATH  Google Scholar 

  • Micula G.; Blaga P.: 2. Polynomial spline functions of even degree approximating the solution of differential equations. (I), ZAMM, 76 (1996), Suppl.1, 477–478.

    MATH  Google Scholar 

  • Micula G.; Blaga P.: 3. Polynomial spline functions of even degree approximating the solution of (delay) differential equations. (II), To appear in ZAMM 1997.

    Google Scholar 

  • Micula G.; Blaga P.: 4. Polynomial spline functions of even degree approximating the solution of differential equation problems. (To appear, Math. of Comput., 1997).

    Google Scholar 

  • Micula G.; Blaga P.; Akça H.: 1. On the use of spline functions of even degree for the numerical solution of the delay differential equations. Calcolo, vol.32 (1995), No.1–2, 83–101.

    MathSciNet  MATH  Google Scholar 

  • Micula G.; Blaga P.; Akça H.: 2. The numerical treatment of delay differential equations with constant delay by natural spline functions of even degree. Libertas Mathematica, 16 (1996), 123–131.

    MathSciNet  MATH  Google Scholar 

  • Micula G.; Blaga P.; Chung Seiyoung:Polynomial spline approximation method for solving delay differential equations. In ”Proceedings of the Internat. Confer. of Approx. and Optimization (Romania), ICAOR, Cluj-Napoca, July 29–August 1st, 1996, pp. 181–192.

    Google Scholar 

  • Micula G.; Blaga P.; Gorenflo R.: Even degree spline technique for numerical solution of delay differential equations. Preprint No. A-15/96, Freie Univ. Berlin, Fachbereich Math. und Inf., Serie A, Mathematik, 1996.

    Google Scholar 

  • Micula G.; Blaga P.; Micula Maria: 1. On even degree polynomial spline functions with applications to numerical solution of differential equations with retarded argument. Preprint. Technische Hochschule Darmstadt, Fachbereich Mathematik, No.1771, (1995).

    Google Scholar 

  • Micula G.; Blaga P.; Micula Maria: 2. The numerical solution differential equation with retarded argument by means of natural spline fonctions of even degree. Internat. J. Computer Math., UK, 61 (1996), No.1–2, 1–18.

    Google Scholar 

  • Micula G.; Fairweather Graeme: 1. Direct numerical spline methods for first — order Fredholm integro — differential equations. Revue d’Analyse Numérique et de Théorie de l’Approximation, Cluj — Napoca, 22 (1993), No.1, 59–66.

    MathSciNet  MATH  Google Scholar 

  • Micula G.; Fairweather Graeme: 2. Spline approximations for second order neutral delay differential equations. Studia Univ. “Babes, — Bolyai” Cluj — Napoca, Series Mathematica, 39 (1993), Fasc. 1, 87–97.

    MathSciNet  Google Scholar 

  • Micula G.; Fawzy Th.; Romadan Z.: A polynomial spline approximation method for solving system of ordinary differential equations. Studia Univ. Babes. — Bolyai, Mathematica, 4 (1987), 55–60.

    Google Scholar 

  • Micula G.; Gorenflo R.: Theory and Applications of Spline Functions. Part I and Part II. Preprint Nr. A-91-33, Freie Univ. Berlin, (1991).

    Google Scholar 

  • Micula G.; Kobza J.; Blaga P.: Low order splines in solving neutral delay differential equations. Studia Univ. Babeş-Bolyai, Cluj-Napoca, Mathematica, 41 (1996), No.2, 73–85.

    MathSciNet  MATH  Google Scholar 

  • Micula G.; Micula Maria: 1. Sur la resolution numerique des equation integrale du type de Volterra de seconde éspèce à l’aide des fonction spline. Studia Univ. Babeş— Bolyai Cluj, Fasc. 2 (1973), 65–68.

    Google Scholar 

  • Micula G.; Micula Maria: 2. Nonpolynomial spline functions for the approximate solution of system of ordinary differential quations. Research Seminars, Seminar on Numer. and Statist. Calculus, Preprint No.9, (1987), 143–153, Univ. of Cluj — Napoca.

    Google Scholar 

  • Micula G.; Micula Maria: 3. Direct numerical spline methods for second order Fredholm integro — differential equations. Studia Univ. Babeş — Bolyai, Cluj — Napoca, 37, 1 (1992), 73–85.

    MathSciNet  MATH  Google Scholar 

  • Micula G.; Micula Maria: 4. Remainder in the history of spline functions. Révue d’Analyse Numérique et de Théorie de l’Approximation, Cluj-Napoca, 26 (1997), No.1–2, 117–123.

    MathSciNet  Google Scholar 

  • Mihàlikó Cs.: Spline Approximation for the solution of a special Cauchy problem. Serdika, Bulg. Mat. Spis., 16 (1990), No.1, 31–34.

    Google Scholar 

  • Mihalyskii A.I.: Vostanovlenie statisticeskih zavisimosty ostiegnennîmi splainami. J. Vychisl. Mat. i Mat. Fiz., 19 (1979), No.5, 1107–1117.

    Google Scholar 

  • Mikhailenke V.E.; Orziev M.; Klimenke V.T.: Parametrization on a surface by polynomial spline. (russian). Prikl. Geom. i Inzheuer. Grafika, 34 (1982), 117–120.

    Google Scholar 

  • Miller J.J.; Wegman E.J.: Vector functions estimation using splines. J. Stat. Planning Inf., 17 (1987), 173–180.

    MathSciNet  MATH  Google Scholar 

  • Milovanovici G.V.; Kocic Lj.M.: Integral spline operators in CAGD. Atti Sem. Mat. Fiz. Univ. Modena, 39 (1991), No.2, 433–454.

    Google Scholar 

  • Milovaiiovici G.V.; Kovačevic M.A.:Moment-preserving spline approximation and quadratures. Facta Univ. Ser. Math. Inform., No.7, (1992), 85–98.

    Google Scholar 

  • Milroy M.J.; Bradley C.; Vickers G.W.; Weir D.J.: G 1 continuity of B — spline surface patches in reverse engineering. Comput — Aided Design, 27 (1995), No.6, 471–478.

    MATH  Google Scholar 

  • Milstein J.: Spline and weighted random directions method for nonlinear optimization. Math. Biosci., 74 (1985), 247–256.

    MathSciNet  MATH  Google Scholar 

  • Min-Da-Ho: A collocation solver for systems of boundary value differential — algebraic equations. Computers Chem. Eng., 7 (1983), 735–737.

    Google Scholar 

  • Min Xiao Ping:Spline fiting of a class of contour lines. (chinese), Hunan Ann. Math., 15 (1995), No.2, 61–62.

    MathSciNet  Google Scholar 

  • Ming-Lei-Lion: Spline fit made easy. IEE Trans. Comput. USA, 25 (1976), 522–527.

    Google Scholar 

  • Miranker W.L.: Galerkin approximations and the optimization of differences schemes for boundary value problems. SIAM J. Numer. Anal., 8 (1971), 486–496.

    MathSciNet  MATH  Google Scholar 

  • Mircea Mihai: 1. Conditions nécessaires et suffissantes pour la convergence forte de projecteurs spline. Bull. Univ. Braşov Ser. C., 30 (1988), 11–16.

    MathSciNet  MATH  Google Scholar 

  • Mircea Mihai: 2. Sur la convergence des suites de projecteurs spline. Prepr. ”Babeş — Bolyai” Univ., Fac. Math. Phys., Res. Semin. (1988), No.6, 213–216.

    Google Scholar 

  • Mircea Mihai: 3. Convergenţa şirurilor de proiectori T-spline în spaţii normate. Buletinul Com. Ing. şi Tehn., Matem. şi Mec. Appl., vol.7 (1989), 27–30.

    Google Scholar 

  • Miroshinceko V.L.: 1. On the solutions of boundary value problem for differential equations of second order with retarded argument using the method of spline functions. Izv. Akad. Nauk. Kazzah. SSR, Ser. Fiz.-Math., 5 (1972), 46–50.

    Google Scholar 

  • Miroshinceko V.L.: 2. Reşenie kraevoi zadaci dlia differenţialnovo uravnenia vtorovo poriadka s zapadîvainşchim argumentom metodom splain — funcţii. Izv. Akad. Nauk. Kazansk. SSR, 3 (1973), 37–42.

    Google Scholar 

  • Miroshinceko V.L.: 3. On the divergence of interpolational cubic splines in the space of continuous functions. (russian). Vyčisl. Sist., 81 (1979), 3–11.

    Google Scholar 

  • Miroshinceko V.L.: 4. Error of approximation by cubic interpolation splines. I, II, III, (russian). I. Vychisl. Sistemy, (1982), No.93, 3–29. II, III. Vychisl. Sistemy, (1985), No. 108, 3–30.

    Google Scholar 

  • Miroshinceko V.L.: 5. Ob interpoljaţii approksimaţii splainami. Vycisl. Syst., 100 (1983), 83–100.

    Google Scholar 

  • Miroshinceko V.L.: 6. Exact error bounds for the periodic cubic and spline interpolation on the uniform mesh. Math. Balkanica, 2 (1988), No.2–3, 210–221.

    MathSciNet  Google Scholar 

  • Miroshinceko V.L.: 7. Sufficient conditions for monotonicity and convexity of cubic splines of class C 2. Siberian Adv. Math., 2 (1992), No.4, 147–163.

    MathSciNet  Google Scholar 

  • Miroshinceko V.L.: 8. Convexity and monotonicity of cubic local spline — approximation. (russian). Vychisl. Sist. 147 (1992), 11–43.

    Google Scholar 

  • Miroshinceko V.L.: 9. Isogeometric properties and approximation error of weighted cubic splines. (russian). Vychisl. Sistemy, 154 (1995), 127–154.

    Google Scholar 

  • Mishra B.N.; Mahto K.R.: Interpolation by generalized Tchebycheffian spline functions. Ranchi. Univ. Math. J., 1 (1970), 1–10.

    MathSciNet  MATH  Google Scholar 

  • Mishra R.S.; Mathur K.K.: Lacunary interpolation by splines. Acta Math. Acad. Sci. Hungar., 36 (3–4), (1987), 251–260.

    MathSciNet  Google Scholar 

  • Mitášova Helena; Hofierka J.: Interpolation by regularized spline with tension: II Aplication to terrain modeling and surface geometry analysis. Mathematical Geology, 25 (1993), No.6, 657–669.

    Google Scholar 

  • Mittrovič S.; Bojanic R.: An algorithm for the approximation by cubic splines. Mat. Vesn. 44, (1992), No.3–4, 123–126.

    Google Scholar 

  • Mitášova Helena; Hofierka J.; Zlocha M.: Cartographic surface and volum modeling using splines with tension. (slovak). Geodeticky’ a kartographycky obzor, 36 (1990), 232–236.

    Google Scholar 

  • Mitášova Helena; Mitáš L.: Interpolation by regularized spline with tension: I Theory and implementation. Mathematical Geology, 25 (1993), No.6, 641–695.

    Google Scholar 

  • Mitchell A.R.: 1. Variational principles and the finite — element method in partial differential equations. Proc. Roy. Soc. London, Ser. A, 323 (1971), 211–217.

    MathSciNet  MATH  Google Scholar 

  • Mitchell A.R.: 2. Variational principles and the finite element method. J. Inst. Math. Appl., 9 (1972), 378–389.

    MathSciNet  MATH  Google Scholar 

  • Miura K.T.: Chiuokura H.: NURBS boundary C 2 Gregory patch. Ann. Numer. Math., 3 (1996), No.1–4, 267–283.

    MathSciNet  MATH  Google Scholar 

  • Mohamed A.Sh.: 1. Numerical solution by spline method for an elastic problem. Acta Math. Hung., 59 (1–2), (1992), 159–174.

    MathSciNet  MATH  Google Scholar 

  • Mohamed A.Sh.: 2. Approximate solution for an elastic problem by spline function. Anales Univ. Sci. Budapest, Sectio Comp.

    Google Scholar 

  • Mohapatra N.; Sharma A.: 1. Discrete exponential Abel — Euler splines. J. Indian Math. Soc., 42 (1978), 367–379.

    MathSciNet  MATH  Google Scholar 

  • Mohapatra N.; Sharma A.: 2. Convergence of discrete spline interpolations without mesh ratio restrictions. Indian J. Math., 20 (1978), 161–171.

    MathSciNet  MATH  Google Scholar 

  • Mohseu M.F.N.; Pinder G.F.: 1. Orthogonal collocation with adaptive finite elements. Internat. J. Numer. Methods Engr., 20 (1984), 1901–1910.

    Google Scholar 

  • Mohseu M.F.N.; Pinder G.F.: 2. Collocation with adaptive finite elements in Buckley — Leverett problem. Internat. J. Numer. Methods Engrg., 23 (1986), 121–131.

    MathSciNet  Google Scholar 

  • Moler C.B.; Solomon L.P.: Use of splines and numerical integration in geometrical acoustics. Acoustical Soc. Amer., 48 (1970), 739–744.

    MATH  Google Scholar 

  • Molnárka G.; Ráczkevi B.: Implicit single step methods by spline-like functions for solution of ordinary differential equations. Comput. Math. Appl., 16 (1988), No.9, 701–704.

    MathSciNet  MATH  Google Scholar 

  • Moldenkova I.D.: Cislenie reşenie integralnîh uravnenii s pomoşciu paraboliceskih splainov. Vyčisl. Met. i Program. (Saratov), 5 (1984), 40–48.

    Google Scholar 

  • Monaghan J.J.: Extrapolating B — splines for interpolation. J. Comput. Phys., 60 (1985), No.2, 253–262.

    MathSciNet  MATH  Google Scholar 

  • Morandi Rossana; Costantini P.: Piecewise monotone quadratic histosplines. SIAM J. Sci. Stat. Comput., 10 (1989), No.2, 397–406.

    MathSciNet  MATH  Google Scholar 

  • Morgan J.; Scott R.: A nodal basis for C 1 piecewise polynomials, of degree n ≥ 5. Math. Comput., 29 (1975), 736–740.

    MathSciNet  MATH  Google Scholar 

  • Morishima Nabuhiro:Spectral estimation through cubic-spline approximation of a discrete time series. J. Comput. Physics, 56 (1984), No.1, 93–110.

    MathSciNet  MATH  Google Scholar 

  • Morken K.: 1. Some identities for products and degree raising of splines. Constr. Approx., 7 (1991), 195–208.

    MathSciNet  Google Scholar 

  • Morken K.: 2. On total positivity of discrete spline collocation matrix. J. Approx. Theory, 84 (1996), No.3, 247–264.

    MathSciNet  Google Scholar 

  • Morozov V.A.: 1. On the approximate solution of operator equations by the method of splines. Dokl. Akad. Nauk. SSSR, 200 (1971), 35–38.

    MathSciNet  Google Scholar 

  • Morozov V.A.: 2. On the theory of spline functions and the stable computation of the values of an unbounded operator. J. Vyčisl. Mat. i Mat. Fiz., 11 (1971), 545–558.

    MATH  Google Scholar 

  • Morozov V.A.: 3. Some application of the method of splines to the solution of operator equations of the first kind. Dokl. Akad. Nauk. SSSR, 229 (1976), 300–303.

    MathSciNet  Google Scholar 

  • Morozov V.A.: 4. Spaces described by the rate of approximation of functions by splines with free nodes. (russian). Issled. Teor. Funks. Mnogikh Perem. (1990), 106–109.

    Google Scholar 

  • Morsche H.C.: 1. On the relations between finite differences and derivatives of cardinal spline functions. Lect. Notes Math., 501 (1976), 210–219.

    Google Scholar 

  • Morsche H.C.: 2. On the Lebesque constant for cardinal — spline interpolation. J. Approx. Theory, 45 (1985), No.3, 232–246.

    MathSciNet  MATH  Google Scholar 

  • Morsche H.C.; F. Schurer: Euler — Splines and an extremal problem for periodic functions. J. Approx. Theory, 43 (1985), 90–98.

    MathSciNet  MATH  Google Scholar 

  • Moyeed R.A.: Spline smoother as a dynamic linear model. Austr. J. Statist., 37 (1995), No.2, 193–204.

    MathSciNet  MATH  Google Scholar 

  • Muckbil A.S.: On constructing spline approximations for solving Cauchy problem. II. Computational and applied mathematics I. (Dublin 1991), 341–350, North — Holland, Amsterdam, (1992).

    Google Scholar 

  • Mühlig H.: Parameteridentification bei Differentialgleichungen mit Hilfe von B — Splines. Wiss. Z. Techn. Univ. Dresden, 41 (1992), No.5, 3–6.

    MATH  Google Scholar 

  • Mühlig H.; Schwalbe G.: Zur numerischen Behandlung der nichtlinearen Tchebyscheffschen Approximationsaufgabe bei splines mit freien knoten. Wiss. Z. Techn. Univ. Dresden, 34 (1985), No.4, 73–77.

    MATH  Google Scholar 

  • Mühlig H.; Stefan Frank: Approximation von Flächen mit Hilfe von B — Splines. Wiss. Z. Techn. Univ. Dresden, 40 (1991), No.2, 169–174.

    MATH  Google Scholar 

  • Mulansky Bern: 1.L p — Approximation durch Splines mit freien Knoten. Math. Nachr., 131 (1987), 73–81.

    MathSciNet  MATH  Google Scholar 

  • Mulansky Bern: 2. Glätung mittels zweidimensionaler Tensorprodukt Splinefunktionen. Wiss. Z. Techn. Univ. Dresden, 39 (1990), No.1, 187–190.

    MathSciNet  MATH  Google Scholar 

  • Mulansky Bern: 3. Chebyshev approximation by spline functions with free knots. IMA J. Numer. Anal., 12 (1992), No.1, 95–105.

    MathSciNet  MATH  Google Scholar 

  • Mulansky Bern: 4. Necessary conditions for local best Chebyshev approximation by splines with free knots. Numer. Meths. in Approx. Theory Vol. 9, ISNM 105, Birkhäuser (1992), 195–206.

    Google Scholar 

  • Mulansky B.; Schmidt J.W.: 1. Powell — Sabin splines in range restricted interpolation of scattered data. Computing 53 (1994), 137–154.

    MathSciNet  MATH  Google Scholar 

  • Mulansky B.; Schmidt J.W.: 2. Constructive methods in convex C 2 interpolation using quartic splines. Numerical Algorithms, 12 (1996), 111–124.

    MathSciNet  MATH  Google Scholar 

  • Mulansky B.; Schmidt J.W.: 3. Tensor product spline interpolation subject to piecewise bilinear lower and upper bounds. In: Hoschek J.(ed.) et al., Advanced course on FAIRSHAPE. Stuttgart, B.G. Teubner, (1996), 201–206.

    Google Scholar 

  • Müllenbeim Gregor: 1. Some new recursion relations for spline functions with applications to spline collocation. J. Approx. Theory, 58 (1989), 201–212.

    MathSciNet  Google Scholar 

  • Müllenbeim Gregor: 2. Solving two — point boundary value problem with spline functions. IMA J. Numer. Anal., 12 (1992), No.4, 503–518.

    MathSciNet  Google Scholar 

  • Müller M.W.: Degree of L p — approximation by integral Schoenberg splines. J. Approx. Theory, 21 (1977), 385–393.

    MATH  Google Scholar 

  • Mülthei N.H.: 1. Splineapproximationen von beliebigen Defekt zur numerischen Lösung gewöhnlicher Differentialgleichungen I, II, III. Teil I. Numer. Math., 32 (1979), 145–157. Teil II. Numer. Math., 32 (1979), 343–358. Teil III. Numer. Math., 34 (1980), 143–154.

    Google Scholar 

  • Mülthei N.H.: 2. Ein Divergenzsatz für Splineapproximationen bei Aufangswertproblemen gewöhnlicher Differentialgleichungen. ZAMM, 59 (1979), 68–69.

    Google Scholar 

  • Mülthei N.H.: 3. Zur numerischen Lösung gewöhnlicher Differentialgleichungen mit Splines in einem Sonderfall. Math. Meth. Appl. Sci., 2 (1980), 419–428.

    MATH  Google Scholar 

  • Mülthei N.H.: 4. Numerischen Lösung gewöhnlicher Differentialgleichungen mit Splinefunktionen. Computing, 25 (1980), 317–335.

    MathSciNet  MATH  Google Scholar 

  • Mülthei N.H.: 5. Ein Konvergenzsatz für Splineapproximationen bei Aufangswertproblemen gewöhnlicher Differentialgleichungen. ZAMM, 60 (1980), No.7, 306–307.

    Google Scholar 

  • Mülthei N.H.: 6. Numerischen Behandlung von gewöhnlicher Differentialgleichungen mit Splines. ZAMM, 61 (1981), 33–34.

    Google Scholar 

  • Mülthei N.H.: 7. Maximale Konvergenzordnung bei der numerischen Behandlung von gewöhnlicher Differentialgleichungen mit Splines. ZAMM, 62 (1982), 340–342.

    Google Scholar 

  • Mülthei N.H.: 8. Maximale Konvergenzordnung bei der numerischen Lösung von Aufangswertproblemen mit Splines. Numer. Math., 39 (1982), 449–463.

    MathSciNet  MATH  Google Scholar 

  • Mülthei N.H.: 9. A — stabile Kollokationsverfahren mit mehrfachen Knoten. Computing, 29 (1982), 51–61.

    MathSciNet  MATH  Google Scholar 

  • Mülthei N.H.: 10. A — Stabilität bei Kollokationsverfahren mit mehrfachen Knoten. ZAMM, 63 (1983), 363–364.

    Google Scholar 

  • Mülthei N.H.; Schorr B.: 1. Fehleranalyse für einen speziellen X — spline. ZAMM, 60 (1980), 307–309.

    Google Scholar 

  • Mülthei N.H.; Schorr B.: 2. Error analyisis for a special X — spline. Computing, 25 (1980), 253–267.

    MathSciNet  MATH  Google Scholar 

  • Mühlbach C.: A remark on calculating with B — splines. Rev. Roumaine Math. Pures et Appl., 24 (1979), 1449–1450.

    MATH  Google Scholar 

  • Mühling H.: Parameteridentification bei Differentialgleichungen mit Hilfe von B — Splines. Wiss. Z. Techn. Univ. Dresden, 41 (1992), No.5, 3–6.

    Google Scholar 

  • Mummy M.S.: Hermite interpolation with B — splines. Comput. Aided. Geom. Des., 6 (1989), No.2, 177–179.

    MathSciNet  MATH  Google Scholar 

  • Munchmeyer F.C.; Schubert C.; Nowacki H.: Interactive design of fair Hull Surfaces using B — splines. Computers in Industry, 1 (1979), No.2, 77–86.

    Google Scholar 

  • Mund E.H.; Hallet P.; Hennart J.P.: An algorithm using quintic splines. J. Comput. Appl. Math. Belg., 1 (1975), 279–288.

    MathSciNet  MATH  Google Scholar 

  • Munsou P.J.; Jernigan R.W.: A cubic spline extension of the Durhin Watson test. Biometrika, 76 (1989), No.1, 39–47.

    MathSciNet  Google Scholar 

  • Munteanu M.J.: 1. Observation on the optimal solution of a nonlinear differential boundary value problem in the subspace of generalized spline functions. Bul. Inst. Politehn. Cluj, II, (1968), 47–56.

    MathSciNet  Google Scholar 

  • Munteanu M.J.: 2. Multidimensional smoothing spline functions. Sympos. Approx. Theory and Applic., Michigan State university, March 22–24, (1972).

    Google Scholar 

  • Munteanu M.J.: 3. Generalized smoothing spline functions for operators. SIAM J. Numer. Anal., 10 (1973), 28–34.

    MathSciNet  MATH  Google Scholar 

  • Munteanu M.J.; Schumaker L.L.: 1. Direct and inverse theorems for multidimensional spline approximation. Indiana Univ. Math. J., 23 (1973), 461–470.

    MathSciNet  MATH  Google Scholar 

  • Munteanu M.J.; Schumaker L.L.: 2. On the method of Carasso and Laurent for constructing interpolating splines. Math. Comput., 27 (1973), 317–325.

    MathSciNet  MATH  Google Scholar 

  • Munteanu M.J.; Schumaker L.L.: 3. Some multidimensional spline approximation methods. J. Approx. Theory, 10 (1974), 23–40.

    MathSciNet  MATH  Google Scholar 

  • Munteanu M.J.; Seidman T.I.: Spline approximation, generalized inverses and system theory. Proc. Conf. Inform. Sci. Syst. Baltimore, 1977.

    Google Scholar 

  • Murphy W.D.: 1. Cubic spline Galerkin approximations to parabolic systems with complet non — linear boundary conditions. Inst. J. Numer. Math. in Engineering., 9 (1975), 63–71.

    MATH  Google Scholar 

  • Murphy W.D.: 2. Estimation of time — and state — dependent delays and other parameters in functional differential equations. SIAM J. Appl. Math., 50 (1990), No.4, 972–1000.

    MathSciNet  MATH  Google Scholar 

  • Murty V.N.: 1. Optional designs with a polynomial spline regression with a single multiple knot at the center. Ann. Math. Statist., 42 (1971), 952–960.

    MathSciNet  MATH  Google Scholar 

  • Murty V.N.: 2. Optimal designs with a Tchebycheffian spline regression with a single multiple knot at the center. Ann. Math. Statist., 42 (1971), 643–649.

    MathSciNet  MATH  Google Scholar 

  • Mustafa C.: On the exactness of the error evaluation in the approximation by cubic spline of interpolation. Prepr. ”Babeş — Bolyai” Univ. Fac. Math. Phys. Res. Semin., 1 (1987), 93–102.

    Google Scholar 

  • Muth A.; Meir M.; Willsky A.S.: A sequential method for spline approximation with variable knots. Int. J. Syst. Sci., 9 (1978), 1055–1067.

    MATH  Google Scholar 

  • Myers Diane-Clair; Roulier J.A.: Markos — Type inequalities and the degree of convex — spline interpolation. J. Approx. Theory, 28 (1980), 267–272.

    MathSciNet  MATH  Google Scholar 

  • Myrzanov Zh. E.: 1. Curbature formulas related to mixed Hermitian splines. (russian). Ukrain. Mat. Zh., 45 (1993), No.4, 579–581.

    MathSciNet  Google Scholar 

  • Myrzanov Zh. E.: 2. On cubic formulas related to mixed Hermite splines. Ukr. Math. J. 45, No.4, (1993), 629–632.

    MathSciNet  MATH  Google Scholar 

  • Nachman L.J.: 1. Blended tensor product B — spline surface. Comput. Aided. Des., 20 (1988), No.6, 336–340.

    MATH  Google Scholar 

  • Nachman L.J.: 2. A note on control polygons and derivatives. Comput. Aided. Geom. Design, 8 (1991), 223–225.

    MathSciNet  MATH  Google Scholar 

  • Naimark B.M.; Malevskii A.V.: Ekonomicnîi metod bicubiceskoi splain — interpoljaţii. Vyčsl. Seismol. (Moskva), (1974), No.17, 141–149.

    Google Scholar 

  • Najzar K.: Error bounds for eigenvalues and eigenfunctions of some ordinary differential operators by the method of least squares. Comment. Math. Univ. Carolinae, 12 (1971), 235–248.

    MathSciNet  MATH  Google Scholar 

  • Nakao M.: Some superconvergence estimates for a collocation H 1 — Galerkin method for parabolic problems. Mem. Fac. Sci. Kynshn. Univ. Ser. A., 35 (1981), 291–306.

    MathSciNet  MATH  Google Scholar 

  • Nakonechnaya T.V.: Approximation by local cubic splines on classes of functions defined by a modulus of continuity. (russian). Akad. Nauk Ukrain. SSR, Inst. Mat. Kiev, (1990).

    Google Scholar 

  • Napolitano L.G.; Losito V.: The clossed spline functions. Comput. Methods Appl. Mech. Engrg., 13 (1978), 335–350.

    MathSciNet  MATH  Google Scholar 

  • Narayanaswany Indira: Simultaneous approximation and interpolation with norm — preservation by Tchebysheffian splines. Pure Appl. Math. Sci., 28 (1988), No.1/2, 1–9.

    MathSciNet  Google Scholar 

  • Narmuratov B.; Podgaev A.G.: Numerical method of ordinary differential equations using spline approximation. (russian). Priminenie Mat. Funkt. Anal. k Neklass. Uravn. Mat. Fiz. Novosibirsk, (1989), 151–164.

    Google Scholar 

  • Nasri A.H.: 1. A polyedral subdivision method for free — form surfaces. ACM Trans. Computer Graphics, 6 (1987), 29–73.

    MATH  Google Scholar 

  • Nasri A.H.: 2. Surface interpolation on irregular networks with normal conditions. Comput. Aided. Geom. Design, 8 (1991), 89–96.

    MathSciNet  MATH  Google Scholar 

  • Nasri A.H.: 3. Curve interpolation in recursively generated B-splines over arbitrary topology. CAGD, 14 (1997), No.1, 13–30.

    MathSciNet  MATH  Google Scholar 

  • Năslău P.: Approximation of the solution of some nonlinear integral equations. (romanian). Bull. Stiinţ. Tehn. Inst. Polit. Timiţoara, 27 (1982), 55–57.

    Google Scholar 

  • Năslău P.; Bânzaru T.: Solving Poisson’s equations by IBEM with the aid of cubic spline functions. Lucr. Semin. Mat. Fiz., (1987), 13–18 and 24–26. (Indirect BEM).

    Google Scholar 

  • Natterer F.: 1. Schranken für die Eigenwerte gewöhnlicher Differentialgleichungen durch Spline — Approximation. Numer. Math., 14 (1970), 346–354.

    MathSciNet  MATH  Google Scholar 

  • Natterer F.: 2. A generalized spline method for singular boundary value problems of ordinary differential equations. Linear. Algebra Appl. 7 (1973), 189–216.

    MathSciNet  MATH  Google Scholar 

  • Natterer F.: 3. Uniform convergence of Galerkin’s method for splines of highly nonuniform meshes. Math. Comput., 31 (1977), 457–468.

    MathSciNet  MATH  Google Scholar 

  • Nazarenko N.A.: O priblijenii ploskih crivîh parametriceskimi splainami. Isled. po teorii priblijenii funkţii. Kiev, (1978), 142–146.

    Google Scholar 

  • Nazarenko N.A.: 2. O zadace zglajivania parametriceskimi splainami. Ukrain. Mat. J., 31 (1979), 201–205.

    MathSciNet  MATH  Google Scholar 

  • Nazarenko N.A.: 3. On the approximation of differentiale functions by rational splines. (russian). Approx. Theoriee and related. Probl. in Analysis and Topology. Akad. Nauk. Ukrain SSR, Inst. Mat. Kiev, IV, (1987), 77–81.

    MathSciNet  Google Scholar 

  • Nazarenko N.A.; Pereverzev S.V.: Točinîe znacenia priblijenia Hermitovimi splainami četoni stepeni klassah diferenţiruemîi funcţii. Matem. Zamet., 28 (1980), 33–44.

    MathSciNet  MATH  Google Scholar 

  • Neamtu M.: 1. Multivariate divided differences I. Basic properties. SIAM J. Numer. Anal., 29 (1992), No.5, 1435–1445. II. Multivariate B — splines. Memorandum No.932, Univ. of Twente, Euschede, The Nietherlands, (1992).

    MathSciNet  MATH  Google Scholar 

  • Neamtu M.: 2. On discrete simplex splines and subdivision. J. Approx. Theory, 70 (1992), No.3, 358–374.

    MathSciNet  MATH  Google Scholar 

  • Neamtu M.: 3. Homogeneous simplex splines. J. Comput. Appl. Maths., 73 (1996), 173–189.

    MathSciNet  MATH  Google Scholar 

  • Neamtu M.; Traas C.R.: On computational aspects of simplicial splines. Constr. Approx., 7 (1991), 209–220.

    MathSciNet  MATH  Google Scholar 

  • Nedelceva M.D.; Ginehev G.I.: Asymptotic estimates for the best approximations of strictly n — convex functions with Chebyshevian splines. Serdica Bulgaricae Math. Publ., 10 (1984), Fasc. 4, 353–356.

    Google Scholar 

  • Neittaanmäki P.; Rivkind V.; Zheludev V.: A wavelet transform based on periodic splines and finite element method. In Lect. Notes Pure Appl. Math., Marcel Dekkes Inc. N.Y. 164 (1994), 325–334.

    Google Scholar 

  • Neshed M.Z.: On applications of generalized splines and generalized inverses in regularization and projectin methods. Proc. ACM 73, Comput. Ger. Man. Ann. Conf. Atlanta, 1973, New York, (1973), 415–418.

    Google Scholar 

  • Netravali A.N.: Spline approxiamtion to the solution of the Volterra integral equation of the second kind. Math. Comput., 27 (1973), 99–106.

    MathSciNet  MATH  Google Scholar 

  • Netravali A.N.; Figueriedo Rui J.P. de: 1. Spline approximation to the solution of the linear Fredholm integral equation of the second kind. SIAM. J. Numer. Anal., 11 (1974), 538–549.

    MathSciNet  MATH  Google Scholar 

  • Netravali A.N.; Figueriedo Rui J.P. de: 2. On a class of minimum energy controls related to spline functions. I.E.E.E. Trans. Automat. Control, 21 (1976), 725–727.

    MATH  Google Scholar 

  • Neuman C.P.; Sen A.: A suboptimal control algorithm for constrained problems using cubic splines. Automatica, 9 (1973), 601–613.

    MATH  Google Scholar 

  • Neuman E.: 1. Determination of an interpolating quadratic spline functions. Zastosow. Mat. Polska, 15 (1976), 245–250.

    MATH  Google Scholar 

  • Neuman E.: 2. Determination of an interpolating quintic spline function with equally spaced and double knots. Zastosow. Mat. Polska, 16 (1977), 133–142.

    MathSciNet  Google Scholar 

  • Neuman E.: 3. Uniform approximation by some Hermite interpolating splines. J. Comput. Appl. Math., 4 (1978), 7–9.

    MathSciNet  MATH  Google Scholar 

  • Neuman E.: 4. Convex interpolating splines of odd degree. Utilitas Math., 14 (1978), 129–140.

    MathSciNet  MATH  Google Scholar 

  • Neuman E.: 5. Quadratic splines and histospline projections. J. Approx. Theory, 29 (1980), 297–304.

    MathSciNet  MATH  Google Scholar 

  • Neuman E.: 6. Determination of a quadratic spline function with given values of the integrals in subintervals. Zastosow. Mat. Polska, 16 (1980), 681–689.

    MATH  Google Scholar 

  • Neuman E.: 7. Cubic splines with given derivatives at the knots. Funct. Approx. Comment. Math., 11 (1981), 25–30.

    MathSciNet  MATH  Google Scholar 

  • Neuman E.: 8. Moments and Fourier transforms of B — splines. J. Comput. Appl. Math., 7 (1981), 51–62.

    MathSciNet  MATH  Google Scholar 

  • Neuman E.: 9. Cubic splines with given values of the second deivatives at the knots. Demonstratio Math., 14 (1981), 115–125.

    MathSciNet  MATH  Google Scholar 

  • Neuman E.: 10. Bounds for the norm of certain spline projections I, II. I. J. Approx. Theory, 27 (1979), 135–145. II. J. Approx. Theory, 35 (1982), 299–310.

    MathSciNet  MATH  Google Scholar 

  • Neuman E.: 11. Calculation of complex Fourier coefficients using natural splines. Computing, 29 (1982), 327–336.

    MathSciNet  MATH  Google Scholar 

  • Neuman E.: 12. Properties of a class of polynomial splines. IMA J. Numer. Anal., 3 (1983), 245–252.

    MathSciNet  MATH  Google Scholar 

  • Neuman E.: 13. Convex interpolating splines of arbitrary degree. II. III. BIT, 22 (1982), 331–338; BIT, 26 (1986), 527–536.

    MathSciNet  MATH  Google Scholar 

  • Neuman E.: 14. Short proof of an identity of Gaffney. BIT, 29 (1989), 155–156.

    MathSciNet  Google Scholar 

  • Neuman E.: 15. A new formula for box spline on three — directional meshes. Math. Comp., 62 (1994), No.205, 227–229.

    MathSciNet  MATH  Google Scholar 

  • Neuman E.; J.W. Schmidt: On the convergence of quadratic spline interpolants. J. Approx. Theory, 45 (1984), No.4, 209–309.

    MathSciNet  Google Scholar 

  • Neumann E.; Van Fleet J. P.: Moments of Dirichlet splines and their applications to hypergeometric functions. J. Comput. Appl. Math. 53 (1994), 225–241.

    MathSciNet  MATH  Google Scholar 

  • Neuman D.J.; Passow E.; Raymon L.: Piecewise monoton polynomial approximation. Trans. Amer. Math. Soc., 172 (1972), 465–472.

    MathSciNet  Google Scholar 

  • Newman D.J.; Schoenberg I.L.: Splines and the logarithmic functions. Pacific J. of Math., 61 (1975), 241–258.

    MathSciNet  MATH  Google Scholar 

  • Ng Pin T.: Smoothing spline score estimation. SIAM, J. Comput., 15 (1994), No.5, 1003–1025.

    MATH  Google Scholar 

  • Nguyân Min Chuong; Nguyân Van Tuan: Spline collocation methods for Fredholm integro-differential equations of second order. Acta Math. Vietnam, 20 (1995), No.1, 85–98.

    MathSciNet  MATH  Google Scholar 

  • Nguyân Thi Thiâu Hoa: The trigonometric Taylor formula a trigonometric analogue of Sobolev classes, and trigonometric splines. (russian). Dokl. Akad. Nauk. SSSR, 319 (1991), No.2, 283–286.

    Google Scholar 

  • Nguyân Xuân Ky: On application of the duality principle for the approximation by spline functions in L p — spaces. Acta Math. Acad. Sci. Hungar., 30 (1977), 135–139.

    MathSciNet  MATH  Google Scholar 

  • Ni Guang Zheng; Xu Xiaoming; Jian Bai Dun: B — spline, finit element method for eddy current field analysis. Conf. Comput. Electromagn. Fields, Tokyo, Sept., 1990, IEEE Trans. Magn., 26 (1990), No.2, 723–726.

    Google Scholar 

  • Nielson G.M.: 1. Bivariate spline functions and the appoximation of linear functionals. Numer. Math., 21 (1973), 138–160.

    MathSciNet  MATH  Google Scholar 

  • Nielson G.M.: 2. Multivariate smoothing and interpolating splines. SIAM J. Numer. Anal., 11 (1974), 435–446.

    MathSciNet  MATH  Google Scholar 

  • Nielson G.M.: 3. Some piecewise polynomila alternatives to splines under tension. CAGD, (1974), 209–235.

    Google Scholar 

  • Nielson G.M.: 4. A locally controlable spline with tension for interactive curve design. Comput. Aided. Geom. Des., 1 (1984), 199–205.

    MathSciNet  MATH  Google Scholar 

  • Nielson G.M.: 5. Rectangular γ — splines. IEEE Computer. Graphics, Appl., 6 (1986), 35–40.

    Google Scholar 

  • Nielson G.M.: 6. Scattered data modeling. IEEE Computer Graphics and Applcs., Jan. 1993, 60–70.

    Google Scholar 

  • Nielson G.M.; Riesenfeld N.A.; Weiss N.A.: Iterates of Marcov operators. J. Approx. Theory, 17 (1976), 321–331.

    MathSciNet  MATH  Google Scholar 

  • Nieschultz K.P.; Hermann N.; Epheser H.: Ein locales Verfahren zur monotonen Spline — Interpolation parametrisierter Kurven. ZAMM, 71 (1991), No.6, 824–827.

    Google Scholar 

  • Niessner Herbert: Solving boundary integral equations of fluid flow spline collocation. Proc. 5 th Inst. Symp. Numer. Meth. Eng. Lausanne Sept. 1989, vol.2, Southampton Berlin, (1989), 443–448.

    Google Scholar 

  • Nikolov G.: Gaussian quadrature formulae for splines. Numerical Integration IV, 267–281, ISNM 112, Birkhäuser, Basel, (1993).

    Google Scholar 

  • Nikolova T.: Reşenie kraevîi zadaci dlja abîknovenîh differenţialnîe uravnenie s otklaniainşcimsea argumentov pri pomoşci splainov. Naucinie Trudy Plovdiv Univ. Mat., 22 (1984), No.1, 185–203.

    MathSciNet  MATH  Google Scholar 

  • Nicolova T.S.; Bainov D.D.: Application of spline functions for the constraction of an approximate solution of boundary value problem for a class of functional — differential equations. Yokohama Math. J., 29 (1981), 107–122.

    MathSciNet  Google Scholar 

  • Nilson E.N.: 1. Cubic splines on uniform meshes. Comm. ACM, 13 (1970), 255–258.

    MathSciNet  MATH  Google Scholar 

  • Nilson E.N.: 2. Polynomial splines and a fundamental eigenvalue problem for polynomials. J. Approx. Theory, 6 (1972), 439–465.

    MathSciNet  MATH  Google Scholar 

  • Nitsche J.: 1. Sötze von Jackson — Bernstein — Typ für die Approxmation mit Spline — Funktionen. Math. Z., 109 (1969), 97–106.

    MathSciNet  MATH  Google Scholar 

  • Nitsche J.: 2. Orthogonalreihenentwicklung nach linearen Spline — Funktionen. J. Approx. Theory, 2 (1969), 66–78.

    MathSciNet  MATH  Google Scholar 

  • Nitsche J.: 3. Umkehrsätze für Spline — Approximationen. Compositio Math., 21 (1969), 400–416.

    MathSciNet  MATH  Google Scholar 

  • Nitsche J.: 4. Verfahren von Ritz und Spline — Interpolation bei Sturm — Liouville — Randwertproblemen. Numer. Math., 13 (1969), 260–265.

    MathSciNet  MATH  Google Scholar 

  • Nitsche J.: 5. Lineare Spline — Funktionen und die Methoden von Ritz für elliptische Randwertprobleme. Arch. Rational Mech. Anal., 36 (1970), 348–355.

    MathSciNet  MATH  Google Scholar 

  • Nitsche J.: 6. Zur Konvergenz von Näherungsverfahren bezüglich verschiedener. Norm. Numer. Math., 15 (1970), 224–228.

    MathSciNet  MATH  Google Scholar 

  • Nitsche J.; Schatz A.: 1. On local approximation properties of L 2 — projection on spline — subspaces. Applicable Anal., 2 (1972), 161–168.

    MathSciNet  MATH  Google Scholar 

  • Nitsche J.; Schatz A.: 2. Interior estimates for Ritz — Galerkin methods. Math. Comput., 28 (1974), 937–958.

    MathSciNet  MATH  Google Scholar 

  • Noakes Lyle: Asymptotically smooth splines. Advances in Comput. Maths. (New Delhi 1993), 131–137, Ser. Approx. Decompos. 4, World Sci. Publ. River Edge, N.J., 1994.

    Google Scholar 

  • Noakes Lyle; Heinzinger Greg: Cubic splines on curved spaces. IMA J. Math. Control and Information, 6 (1989), 465–473.

    MathSciNet  MATH  Google Scholar 

  • Noor Muhammad Aslam; Khalifa Ahmed Kamel: Quintik splines method for solving contact problems. Appl. Math. Lelt., 3 (1990), No.3, 81–83.

    MATH  Google Scholar 

  • Nord S.: Approximation properties of the spline fit. BIT, 7 (1967), 132–144.

    MathSciNet  MATH  Google Scholar 

  • Norset S.P.: Spline and collocation for ordinary initial value problems. In Approx. Theory and Spline Functions. S.P. Singh et al (eds), D. eidel Publ. Comp. 1984, 397–417.

    Google Scholar 

  • Norton A.H.: Local spline approximants. Proc. Centre Math. Appl. Austral Nat. Univ., 26, Austral Nat. Univ., Canberra, (1991), 195–200.

    MathSciNet  Google Scholar 

  • Nosik A.V.: The construction of orthogonal basis in spline spaces. (russian). Mat. Met. Anal. Dinamic. Suplem. (Harkov), 3 (1979), 98–100.

    Google Scholar 

  • Nosinova V.U.: Construction of interpolating cubic splines.Dokl. Akad. Nauk. Ukrain. SSR, 3 (1977), 208–211.

    MathSciNet  Google Scholar 

  • Novikov S.L.: 1. Approximation of a class of differentiable functions by L — splines. (russian). Math. Zametki, 33 (1983), 393–408.

    Google Scholar 

  • Novikov S.L.: 2. On a problem of approximation of differentiable functions by Hermitian L — splines. (russian). Appl, of funct. Anal. to approx. theory. Collect. Sci. Works. Kalinin, (1987), 65–72.

    Google Scholar 

  • Novikov S.L.: 3. On L — spline interpolation and approximation on the whole real line. Approx. and Function Spaces, Banach Cent. Publ. Warschaw, 22 (1989), 293–300.

    Google Scholar 

  • Novikov S.L.: 4. Opimal interpolation by L — splines. Optimal recovery. (Varna, 1989), Nova Sci. Publ. Commack, NY (1992), 237–245.

    Google Scholar 

  • Novikov S.L.: 5. On some problems of interpolation by L — splines. Anal. Math., 18 (1992), No.1, 73–86.

    MathSciNet  MATH  Google Scholar 

  • Novikov S.L.: 6. Existence of perfect L — splines with given zeros defined by linear differential operators. (russian). Fourier Series, Theory and Appl., Akad. Nauk. Ukrainy, Kiev (1992), 64–68.

    Google Scholar 

  • Novikov S.L.: 7. A periodic analogue of Rolle’s theorema for differential operators, and approximation by L-splines. (russian), Mat. Zametki, 56 (1994), No.4, 102–113.

    Google Scholar 

  • Novikov S.L.: 8. L p — approximation by piecewisw Hermitian L-splines. East J. Approx., 1 (1995), No.2, 143–156.

    MathSciNet  MATH  Google Scholar 

  • Novikov V.A.; Rogalev A.N.: Construction of convergent upper and lower bonnds of solutions of systems of ordinary differential equations with interval initial data. Comput. Math. Math. Phys. 33 (1993), No. 2, 193–203.

    MathSciNet  Google Scholar 

  • Nowacki H.; P.D. Kaklis; J. Weber: Curve mesh fairing and GC 2 surface interpolation. RAIRO Math. Modelling and Numer. Anal., 26 (1992), No.1, 113–135.

    MathSciNet  MATH  Google Scholar 

  • Nürnberger G.: 1. A local version of Haar’s theorem in approximation theory. Numer. Funct. Anal. Optimiz., 5 (1982), 21–46.

    MATH  Google Scholar 

  • Nürnberger G.: 2. Strong unicity constants for spline functions. Numer. Funct. Anal. Optim., 5 (1982/1983), 319–347.

    MathSciNet  Google Scholar 

  • Nürnberger G.: 3. Strong unicity of best — appoximations: a numerical aspect. Numer. Funct. Anal. Optim., 6 (1983), 399–421.

    MathSciNet  MATH  Google Scholar 

  • Nürnberger G.: 4. Strongly unique spline approximations with free knots. Constr. Approx., 3 (1987), No.1, 31–42.

    MathSciNet  MATH  Google Scholar 

  • Nürnberger G.: 5. The metric projection for free knot splines. J. Approx. Theory, 71 (1992), 145–153.

    MathSciNet  MATH  Google Scholar 

  • Nürnberger G.: 6. Strong unicity in nonlinear approximation and free knot splines. Constr. Approx. 10 (1994), No.2, 285–299.

    MathSciNet  MATH  Google Scholar 

  • Nürnberger G.: 7. Approximation by univariate and bivariate splines. In Bainov D. (ed), Proceeds Second Internat. Coll. Numer. Anal. Plovdiv, Bulgaria Aug. 13–17, 1993, Utrecht: VSP, 143–153, (1994).

    Google Scholar 

  • Nürnberger G.: 8. Approximation order of bivariate spline interpolation. J. Approx. Theory, 87 (1996), No.2, 117–136.

    MathSciNet  MATH  Google Scholar 

  • Nürnberger G.: 9. Bivariate segment approximation and free knot splines. Research Problem 96-4. Constr. Approx., 12 (1996), No.4, 555–558.

    MATH  Google Scholar 

  • Nürnberger G.; Blatt H.P.; Sommer M.: A characterization of point — wise — Lipschitz — continuous selections for the metric projections. Numer. Funct. Anal. Optimiz., 4 (1981/1982), 101–122.

    Google Scholar 

  • Nürnberger G.; Braess D.: Nonuniqueness of best L p — approximation for generalized convex functions by splines with free knots. Numer. Funct. Anal. Optim., 4 (1981/1982), 199–209.

    MathSciNet  Google Scholar 

  • Nürnberger G.; Brosowski B.; Deutsch F.: Parametric approximations. J. Approx. Theory, 29 (1980), 261–277.

    MathSciNet  MATH  Google Scholar 

  • Nürnberger G.; Riessinger Th.: 1. Lagrange and Hermite interpolation by bivariate splines. Numer. Funct. Anal. Optim., 13 (1992), No.1–2, 75–96.

    MathSciNet  MATH  Google Scholar 

  • Nürnberger G.; Riessinger Th.: 2. Bivariate spline interpolation at grid points. Numer. Math. 71 (1995), No.1, 91–119.

    MathSciNet  MATH  Google Scholar 

  • Nürnberger G.; Sommer M.: 1. Characterization of continuous selections of the metric projection for spline functions. J. Approx. Theory, 22 (1978), 320–330.

    MATH  Google Scholar 

  • Nürnberger G.; Sommer M.: 2. A Remez type algorithm for spline functions. Numer. Math., 41 (1983), 117–146.

    MathSciNet  MATH  Google Scholar 

  • Nürnberger G.; Sommer M.: 3. Alternation by best — spline approximations. Numer. Math., 41 (1983), 207–221.

    MathSciNet  MATH  Google Scholar 

  • Nürnberger G.; Schumaker L.L; Sommer M.; Strauss H.: 1. Interpolation by generalized splines. Numer. Math., 42 (1983), 195–212.

    MathSciNet  Google Scholar 

  • Nürnberger G.; Schumaker L.L; Sommer M.; Strauss H.: 2. Generalized Tchebycheffian splines. SIAM J. Numer. Anal., 15 (1984), 790–794.

    MATH  Google Scholar 

  • Nürnberger G.; Schumaker L.L; Sommer M.; Strauss H.: 3. Approximation by generalized splines. J. of Math. Anal. and Appl., 10 (1985), No.2, 466–494.

    Google Scholar 

  • Nürnberger G.; Schumaker L.L; Sommer M.; Strauss H.: 4. Uniform approximation by generalized splines with free knots. J. Approx. Theory, 59 (1989), No.2, 150–169.

    MathSciNet  MATH  Google Scholar 

  • Nürnberger G.; Singer I.: Uniqueness and strong uniqueness of best approximations by spline subspaces and other subspaces. J. Math. Anal. Appl., 90 (1982), 171–184.

    MathSciNet  MATH  Google Scholar 

  • Nussbaum M.: Spline smoothing in regression models and asymptotic efficiency in L 2. Ann. Statist., 13 (1985), 984–997.

    MathSciNet  MATH  Google Scholar 

  • Nutbourne A.W.: A cubic spline package II. The mathematics. Comput. Aided Des., 5 (1973), No.1, 7–13.

    Google Scholar 

  • Nutbourne A.W.; Morus R.B.; Hollins C.M.: A cubic spline package. Part 1-the user’s guide. CAD, 4 (1972), 228–238.

    Google Scholar 

  • Nychka D.: 1. Bayesian confidence intervals for smoothing splines. J. Amer. Statist. Asoc., 83 (1988), 1134–1143.

    MathSciNet  Google Scholar 

  • Nychka D.: 2. The average posterior variance of a smoothing spline and a consistent estimate of the average squared error. Ann. Statistic., 18 (1990), 415–428.

    MathSciNet  MATH  Google Scholar 

  • Nychka D.O.; Wahba G.; Goldfarb S.; Pugh T.: Cross — validated spline methods for the estimation of three dimensional tumor size distributions from observations on two dimensional cross sections. J. Amer. Stat. Assoc., 79 (1984), 832–846.

    MathSciNet  MATH  Google Scholar 

  • Obradovič O.; Potapov M.M.: On a regularized method of iterative spline approximation of optimal control. Moscow Univ. Computational Math. and Cybernetics, 4 (1990), 30–34.

    Google Scholar 

  • Ohtmer O.: Boundary element improved integration technique using spline functions. In: Brebia C.A. und Venturini W.S. (eds), Boundary Element Techniques: Applc fluid Flow Comput. Aspects Computational Mechanics Publications Boston, 1987, 197–208.

    Google Scholar 

  • Oja P.: 1. On the solution of boundary value problems by quadratic splines. (russian). Easti N.S.V. Tead. Acad. Toimetised Mat., 39 (1990), 335–343.

    MathSciNet  MATH  Google Scholar 

  • Oja P.: 2. Second-degree rational spline interpolation. Proc. Estonian Acad. Sci. Phys. Math., 45 (1996), No.1, 38–45.

    MathSciNet  MATH  Google Scholar 

  • Oja P.: 3. Low degree rational spline interpolation. BIT, 37 (1997), No.4, 901–909.

    MathSciNet  MATH  Google Scholar 

  • Oja P.; Pettai U.: Solution of boundary value problems by cubic splines. (russian). Tartu Rükl. Ül. Toimetised, (1990), No.913, 44–53.

    Google Scholar 

  • Oja P.; Reitsekas A.: On the collocation and subregions methods with the quadratic and cubic splines for the boundary value problems. (russian). Izvestja Akad. Nauk. Estonskoi, SSR, 36 (1987), No.2, 128–144.

    MathSciNet  Google Scholar 

  • Okada Y.: A numerical experiment on the fairing of free-form curves. Information Processing in Japan, 9 (1969), 69–74.

    MATH  Google Scholar 

  • Oliveira Fernanda Aleixo: 1. Numerical solution of two — point boundary value problems and spline functions. Numer. Methods Proc. Third. Colloq. Keszthely, 1977, Math. Soc. Janos Bolyai, 22, North. Holland, Amsterdam, 1980, 471–490.

    Google Scholar 

  • Oliveira Fernanda Aleixo: 2. Collocation and residual correction. Nume. Math., 36 (1980), 27–31.

    Google Scholar 

  • Onah E.S.: On direct methods for the discretization of a heat — conduction equation using spline functions. Appl. Math., Comput., 85 (1997), No.1, 87–96.

    MathSciNet  MATH  Google Scholar 

  • Ong C.J.; Wong Y.S.; Loh H.T.; Hong X.G.: An optimization approch for biarc curvefitting of B-spline curves. Computer-Aided Design, 28 (1996), no.12, 951–959.

    Google Scholar 

  • Ong Hoon Liong: Construction of triangular linear spline interpolation error functions with application to finite element error analysis. Kyungpook Math. J., 26 (1986), 173–186.

    MathSciNet  MATH  Google Scholar 

  • Opfer G.: 1. Computation of T — approximations by complex planar splines. ZAMM, 62 (1982), 342–344.

    MathSciNet  Google Scholar 

  • Opfer G.: 2. An algorithm for nonlinear splines with nonnegativity constraints. Algorithms for approximation II (Shrivenhaw, 1988), Chapman and Hall, London, (1990), 46–53.

    Google Scholar 

  • Opfer G.; Oberle J.H.: The derivation of cubic splines with obstacles by methods of optimization and optimal control. Numer. Math., 52 (1988), 17–31.

    MathSciNet  MATH  Google Scholar 

  • Opfer G.; Puri L.M.: 1. Complex planar splines. J. Approx. Theory, 31 (1981), 383–402.

    MathSciNet  MATH  Google Scholar 

  • Opfer G.; Puri L.M.: 2. Complex Chebyshev polynomials and generalizations with an applications to the optimal choise of interpolating knots in complex planar splines. J. Approx. Theory, 37 (1983), 89–101.

    MathSciNet  MATH  Google Scholar 

  • Opfer G.; Schober G.: On convergence and quasiregularity of interpolating complex planar splines. Math. Z., 180 (1982), 469–481.

    MathSciNet  MATH  Google Scholar 

  • Oprea I.: Spline approximation functions with imposed shape. Prepr. ”Babeş — Bolyai” Univ. Fac Math. Cluj Res. Sem., 7 (1986), 201–206.

    MATH  Google Scholar 

  • Opyr N.V.; Popov B.A.: Properties of splines with links in the form of generalized polynomials. (russian). Otbor i Obrabotka Informatsii, 4(80) (1989), 75–82.

    MathSciNet  Google Scholar 

  • Ortiz J.C.; Walters H.G.; Gipson G.S.; Brewer J. A.: Development of Overhauser splines as boundary elements. BEM IX (Ed. C.A. Brebbia et al.) Comput. Mech. Publications, Southampton and Springer V. Berlin, 1987.

    Google Scholar 

  • Osborne M.R.; Tania Prvan: On algorithms for generalised smoothing splines. J. Austral. Math. Soc. Ser B, 29 (1988), 322–341.

    MathSciNet  MATH  Google Scholar 

  • Ostapenko V.N.; Khazankina N.P.: Piecewise polynomial functions and their applications in the algorithmization of electrotechnical calculations. Nekofor. Prikl. Vopr. Mat. (Kiev), 4 (1969), 268–274.

    Google Scholar 

  • Ostrander L.E.: The Fourier transform of spline — function approximations to continuous data. I.E.E.E. Trans. Audio Electroacoust. An., 19 (1971), 103–104.

    Google Scholar 

  • Ostudin B.A.: Use of splines in the solution of certain integral equations. (ukrainian). Visnik L’viv. Derzh. Univ. Ser. Mech. Mat., 15 (1979), 35–40.

    MathSciNet  Google Scholar 

  • O’Sullivan F.: Nonparametric estimation of relative risk using splines and cross — validation. SIAM J; Sci. Stat. Comput., 9 (1988), 531–542.

    MathSciNet  MATH  Google Scholar 

  • Oswald P.: 1. Approximation par des fonctions splines dans la métrique L p, o < p < 1. (russian). Math. Nachr., 94 (1980), 69–96.

    MathSciNet  MATH  Google Scholar 

  • Oswald P.: 2. On inequalities for spline approximation and spline system in the space L P,0 < p < 1. Approx. of functions spaces, Gdansk, 1979, North Holland, (1981), 531–552.

    Google Scholar 

  • Oswald P.: 3. On spline bases in periodic Hardy spaces (0 ≤ p ≤ 1). Math. Nachr., 108 (1982), 219–229.

    MathSciNet  MATH  Google Scholar 

  • Oswald P.: 4. Spline appoximation in H p (T), p ≤ 1. Studia Math., 81 (1985), 13–28.

    MathSciNet  MATH  Google Scholar 

  • Oswald P.: 5. On the degree of nonlinear spline appproximation in Besov — Sobolev spaces. J. Approx. Theory, 61 (1990), 131–157.

    MathSciNet  MATH  Google Scholar 

  • Orchinnikova T. Eh.: Exact estimates of the approximation error for local approximations by cubic splines. (russian). Vychisl. Sist., 121 (1987), 55–65.

    Google Scholar 

  • Oya P.: 1. Hermitian quadratic splines. (russian). Uch. Zap. Tartu Gos. Univ., 672 (1984), 71–78.

    MathSciNet  Google Scholar 

  • Oya P.: 2. On the convergence rate of the method of subdomains by cubic splines for boundary value problems. (russian). Uch. Zap. Tartu Gos. Univ., 853 (1988), 59–65.

    MathSciNet  Google Scholar 

  • Oya P.: 3. On the solution of boundary value problems by quadratic splines. (russian). Izv. Akad. Nauk. Ehst. SSR, Fiz. Mat., 39 (1990), No.4, 335–343.

    MathSciNet  MATH  Google Scholar 

  • Oya P.; Petrita Y.: Solution of boundary value problems by cubic splines. (russian). Tartu Rükl. Ül. Toimetised, (1990), No.913, 44–53.

    Google Scholar 

  • Pagallo G.; Pereyra V.: Smooth monotone spline interpolation. Lect. Notes Math., 909 (1982), 142–146.

    Google Scholar 

  • Pai D.V.: On nonlinear minimization problems and Lf — splines I. J. Approx. Theory, 39 (1983), 228–235.

    MathSciNet  MATH  Google Scholar 

  • Paihua M.L.; Utreras Diaz F.: Une ensemble de programmes pour l’interpolation des fonctions spline by type plaque mince. Math. Appl. Informat. Rapp. Rech., 140 (1978), 1–61.

    Google Scholar 

  • Pahnutov I.A.: 1. Ustoicivosty splain approximaţii i vostanovlenie setocinîh — funkţii. Matem. Zamet., 16 (1974), No.4, 537–544.

    MathSciNet  Google Scholar 

  • Pahnutov I.A.: 2. Reşenie zadači Cauchy dlia obîknavennîh differenţialnîh uravnenii s pomoşčiu splainov. Vyccisl. Sst., 65 (1975), 96–129.

    MathSciNet  Google Scholar 

  • Pahnutov I.A.: 3. Splainîs dopolnitelnîi uzlami i zadačia Cauchy. Mat. Zamet., 23 (1978), 169–175.

    MathSciNet  Google Scholar 

  • Pahnutov I.A.: 4Priblijenie splain — reşenie zadaci Cauchy. Algorithm i programovî priblij funcţ. Materialî po mat. obespece. J.B.M. Sverdlovsk, (1981), 99–119.

    Google Scholar 

  • Pal T.K.: Intrinsec spline curve with local control. Comput. Aided Design, 10 (1978), No.1, 19–29.

    Google Scholar 

  • Palamara Orsi A.: Spline approximation for Cauchy principal value integrals. J. Comput. Appl. Math., 30 (1990), 191–201.

    MathSciNet  MATH  Google Scholar 

  • Palla M.M.: 1. Risoluzione approximata del problema di Dirichlet per l’equazione del caloro mediate X — splines. Rendiconti Sem. Fac. Sci. Univ. Cagliari, 52 (1982), 63–72.

    Google Scholar 

  • Palla M.M.: 2. On the relation between the coefficients and the nodal values of a cubic spline II. (italian). Rend. Semin. Fac. Sci. Univ. Cagliari, 53 (1983), No.1, 81–85.

    Google Scholar 

  • Palla M.M.: 3. On the influence of certain boundary conditions in cubic X — spline interpolation. (italian). Rend. Sem. Fac. Sci. Univ. Cagliari, 60 (1990), No.1, 47–64.

    MathSciNet  Google Scholar 

  • Palla M.M.; Seatzu S.: On a relation between the coeficients of a natural cubic spline and nodal values: applications to interpolation and smoothing. Le Mathematiche, 27 (1982), 188–197.

    Google Scholar 

  • Palla M.M.; Spano P.: 1. Una tecnica con spline cubiche per un problema misto iperbolicoparabolico del quarto ordine. Rendiconti Sem. Fac. Sci. Univ. Cagliari, 48 (1978), 49–58.

    Google Scholar 

  • Palla M.M.; Spano P.: 2. A cubic spline techique for a parabolic equations of higher than the second order. Boll. Un. Mat. Ital. A (5), 15 (1978), 560–570.

    MathSciNet  Google Scholar 

  • Pakhnutov I.A.: 1. Stability of spline approximation, and reconstruction of grid functions. (russian). Math. Zamet., 16 (1974), 295–299.

    Google Scholar 

  • Pakhnutov I.A.: 2. Ustoicivosti splain — approximaţii i vostonovlenie setocinîh funkţii. Mat. Zamet., 16 (1974), No.4, 537–544.

    MathSciNet  MATH  Google Scholar 

  • Pakhnutov I.A.: 3. Spline functions with aditional knots and Cauchy problems. (russian). Mat. Zamet., 23 (1978), No.1, 169–175.

    MATH  Google Scholar 

  • Pan Cen Dun: Spline function theory and its applications I–II–III. Shuxuedi shijian yu renshi., I. 3 (1975), 64–75. III. 1 (1976), 63–78.

    Google Scholar 

  • Pan Ri Jing: A class of shape — conirolable C 2 — continuous cubic parametric spline curves. (chinese). Fujian Shifan Daxue Xuebao Ziran Kexue Ban 9 (1993), No.3, 32–39.

    MathSciNet  Google Scholar 

  • Pankov A.P.: Ustoičivnîe methody postroenia spiamovi regresii. Automatiz. Mat. Isled. M., (1983), 64–68.

    Google Scholar 

  • Papamichael N.; Soares M.J.: 1. A posteriori corrections for nonperiodic cubic and quintic interpolating splines at equally spaced knots. IMA J. Numer. Anal., 6 (1986), 489–502.

    MathSciNet  MATH  Google Scholar 

  • Papamichael N.; Soares M.J.: 2. Cubic and quintic spline — on — spline interpolation. J. Comput. and Appl. Math., 20 (1987), 359–366.

    MathSciNet  MATH  Google Scholar 

  • Papamichael N.; Soares M.J.: 3. An O(6) cubic spline interpolating procedures for harmonic splines. Numer. Methods Partial Differ. Equations, 7 (1991), No.1, 43–59.

    MathSciNet  MATH  Google Scholar 

  • Papamichael N.; Whiteman I.R.: 1. A cubic spline technique for the one dimensional heat conduction equations. J. Inst. Math. Applics., 11 (1973), 111–113.

    MATH  Google Scholar 

  • Papamichael N.; Whiteman I.R.: 2. Cubic spline interpolation of harmonic functions. BIT, 14 (1974), 452–459.

    MathSciNet  Google Scholar 

  • Papamichael N.; Worsey A.J.: 1. A class of C 2 piecewise quintic polynomials. Intern. J. Comput. Math., 8 (1980), No.4, 357–372.

    MathSciNet  MATH  Google Scholar 

  • Papamichael N.; Worsey A.J.: 2. End conditions for improved cubic spline derivative approximations. J. Comput. Appl. Math., 7 (1981), 101–109.

    MathSciNet  MATH  Google Scholar 

  • Papamichael N.; Worsey A.J.: 3. A cubic spline method for the solution of a linear fourth — order two — point boundary value problem. J. Comput. Appl. Math., 7 (1981), 187–189.

    MathSciNet  MATH  Google Scholar 

  • Papatheodorou T.S.: C 1 — collocation semidiscretization of u t + cu x = 0; its Fourier analysis and equivalence to the Galerkin methods with linear splines. Math. Comput. Simulation, 30 (1988), No.4, 311–323.

    MathSciNet  MATH  Google Scholar 

  • Papatheodorou T.S.; Jesanis M.E.: Collocation methods for Volterra integrodifferential equations with singular kernels. J. Comput. Appl. Math., 6 (1980), 3–8.

    MathSciNet  MATH  Google Scholar 

  • Parihar K.S.; Ramachandrau M.P.: Piecewise cubic interpolatory polynomials and approximate solution of singular equations. Comput. Math. Apll., 12 A (1986), 1201–1215.

    Google Scholar 

  • Park H.; Kim K.: Smooth surface approximation to serial eross-sections. Computer-Aided Design, 28 (1996), No.12, 995–1005.

    Google Scholar 

  • Park S.K.; Schowengerdt R.A. Iimage reconstruction by parametric spline convolution. Computh. Vision, Graphics, Image Processing, 23 (1983), 258–272.

    Google Scholar 

  • Passov A.: 1. Piecewise monotone spline interpolation. J. Approx. Theory, 12 (1974), 240–241.

    Google Scholar 

  • Passov A.: 2. Monoton quadratic spline interpolation. J. Approx. Theory, 19 (1977), 143–147.

    Google Scholar 

  • Passow E.; Roulier J.A.: Monotone and convex spline interpolation. SIAM J. Numer Anal., 14 (1977), 904–909.

    MathSciNet  MATH  Google Scholar 

  • Patent P.D.: The eject of quadrature errors in the computation of L 2 — piecewise polynomial approximation. SIAM J. Numer. Anal., 13 (1976), 344–361.

    MathSciNet  MATH  Google Scholar 

  • Paţko N.L.: Problijenie splainami na otrezke. Mat.Zamet., 16 (1974), No.3, 491–500.

    Google Scholar 

  • Patricio F.: 1. Cubic spline functions and initial value problems. BIT, 18 (1978), 342–347.

    MathSciNet  MATH  Google Scholar 

  • Patricio F.: 2. A numerical method for solving initial value problems with spline — functions. BIT, 19 (1979), 489–494.

    MathSciNet  MATH  Google Scholar 

  • Patrikalakis N.M.: 1. Approximate conversion of rational splines. Comput. Aided. Geom. Des., 6 (1989), No.2, 155–165.

    MathSciNet  MATH  Google Scholar 

  • Patrikalakis N.M.: 2. Surface-to-surface intersection. IEEE Computer Graphics, Jan. 1993, 89–95.

    Google Scholar 

  • Patsko N.L.: 1. Mean — square approximation of several variables by splines of arbitrary degree. Algorithms and Programs for function Approximation Swerdlank, (1981), 167–182.

    Google Scholar 

  • Patsko N.L.: 2. Using B — spline to solve boundary value problem by finite element method. Functional Approximation Algorithms, Sverdlook, (1987), 35–38.

    Google Scholar 

  • Patsko N.L.: 3. Numerical solution of elliptic boundary value problems by finite elemnt method using B — splines. (russian). Comput. Math., Math. Phys. 34 (1994), No.10, 1225–1236.

    MathSciNet  MATH  Google Scholar 

  • Patsko N.L.: 4. Approximation by spline on an interval in the space Lip. (russian), Mat. Zametki, 58 (1995), No.2, 281–294.

    MathSciNet  Google Scholar 

  • Păvăloiu I.: Sur l’interpolation à l’aide de polynomes raccordés. Mathematica (Cluj), (1964), 295–299.

    Google Scholar 

  • Pavel Garofiţa: On a spline method of numerical solving the n — order linear differential equations. (russian). Bul. Ştiinţ. Inst. Politeh. Cluj — Napoca, Ser. Mat. Mec. Appl. Constr. Maşini, 28 (1988), 7–14.

    MATH  Google Scholar 

  • Pavlidis T.: 1. Optimal piecewise polynomial L 2 — approximation of functions of one and two variables. I.E.E.E. Trans. Computers. C-24, (1975), 98–102.

    MathSciNet  Google Scholar 

  • Pavlidis T.: 2. Curve fitting with conic splines. ACM Trans. Graphics, 2 (1983), 1–31.

    MATH  Google Scholar 

  • Pavlidis T.; Maika A.P.: Uniform piecewise polynomial approximation with variable points. J. Approx. Theory, 12 (1974), 61–69.

    MathSciNet  MATH  Google Scholar 

  • Pavlov N.N.: 1. Boundary condition in the problem of smoothing by cubic splines. (russian). Vychsl. Systemy. 87 (1981), 53–61.

    MATH  Google Scholar 

  • Pavlov N.N.: 2. Smoothing by cubic splines and the penalty method. (russian). Vycisl. Sist., 98 (1983), 92–102.

    MATH  Google Scholar 

  • Pavlov N.N.: 3. Smoothing splines of first degree. (russian). Vychisl. Sistemy, (1985), No.103, 31–36.

    Google Scholar 

  • Pavlov N.N.: 4. Splines in convex set and the conditional well — posedness of a problem of solving some integral equations of the first kind. (russian). Vychisl. Sistemy, 115 (1986), 98–104.

    MATH  Google Scholar 

  • Pavlov N.N.: 5. Splines in convex sets and the problem of stable computation of values of on unbounded operator. Colloct. Sci. Works, Novosibirsk: Uniqueness stability and methods for solving problems of math. physics, (1987), 49–57.

    Google Scholar 

  • Pavlov N.N.; Vershinin V.V.: On the stable approximation of derivatives by splines in the convex set. Math. Balkanica, 2 (1988), No.2–3, 222–229.

    MathSciNet  MATH  Google Scholar 

  • Pedersen H.; Tanoff M.: Spline collocation method for solving parabolic P.D.E.’ s with initial discontinuities: application to mixing with chemical reaction. Computer Chem. Eng., 6 (1982), 197–207.

    Google Scholar 

  • Peluso I.R.: 1. Un problema di interpolazione con funzioni ”spline”. Bolletino U.M.I. (4), 11 (1975), 240–251.

    MathSciNet  MATH  Google Scholar 

  • Peluso I.R.: 2. Una representation del resto nell’interpolatione con funzioni spline. Bell. Unione Mat. Ital., A 13 (1976,) No.2, 399–403.

    MathSciNet  Google Scholar 

  • Pena J.M.: B-splines and optimal stability. Math. of Comput., 66 (1997), No.220, 1555–1560.

    MATH  Google Scholar 

  • Pence D. Dennis: 1. Hermite — Birkhoff interpolation and monotone approximation by splines. J. Approx. Theory, 25 (1979), 284–357.

    MathSciNet  Google Scholar 

  • Pence D. Dennis: 2. Best mean approximation by splines satisfying generalized convexity constraints. J. Approx. Theory, 28 (1980), 333–348.

    MathSciNet  MATH  Google Scholar 

  • Pence D. Dennis: 3. Further asymptotic properties of best approximation by splines. J. Approx. Theory, 49 (1987), No.1, 1–18.

    MathSciNet  MATH  Google Scholar 

  • Pence D. Dennis: 4. Smooth spline solution to initial value problems. Approx. Theory VI, vol.11, Acad. Press, Boston, (1989), 515–518.

    Google Scholar 

  • Pence D. Dennis; Smith P.W.: Asymptotic properties of best L p [0,1] approximation by splines. SIAM J. Numer. Anal., 13 (1982), 409–420.

    MathSciNet  MATH  Google Scholar 

  • Penev J.K.: On the approximative solution of boundary value problems for ordinary differential equations by a parabolic spline. (bulgarian). Godisnik Viss. Uceb. Zaved. Prilozna Mat., 13 (1977), 87–94.

    MathSciNet  Google Scholar 

  • Peng Q.S.: An algorithm for finding the intersection lines between two B — spline surfaces. Comput. Aided Design, 16 (1984), 191–196.

    Google Scholar 

  • Percell P.; Wheeler M.F.: A C 1 finite element collocation method for eliptic equations. SIAM J. Numer. Anal., 17 (1980), 605–622.

    MathSciNet  MATH  Google Scholar 

  • Pereverzev S.V.: 1. Exact values of Hermite spline approximation for a class of two variable functions. (russian). Ukrain. Mat. Jurnal, 31 (1979), No.5, 510–516.

    MathSciNet  Google Scholar 

  • Pereverzev S.V.: 2. Sharp estimates of approximation by Hermitian splines on a class of differentiable functions of two variables. (russian). Izv. Vyssh. Ucebn Zaved. Math., 12 (1981), 58–66.

    MathSciNet  Google Scholar 

  • Pereyra V.: Highly accurate numerical solution of cvasilinear eliptic boundary — value problems in n dimensions. Math. Comput., 24 (1970), 771–783.

    MathSciNet  MATH  Google Scholar 

  • Perrin F.M.; Price H.S.; Varga R.S.: On higher-order numerical methods for nonlinear two — point boundary value problems. Numer. Math., 13 (1969), 180–198.

    MathSciNet  MATH  Google Scholar 

  • Persidskij S.K.: Approximation of curves by polar splines. (russian). Vychisl. Sist., 98 (1983), 144–150.

    MATH  Google Scholar 

  • Peters J.: 1. Smooth mesh interpolation with cubic patches. Comput. Aided Design, 22(2) (1988), 109–120.

    Google Scholar 

  • Peters J.: 2. Local generalized Hermite interpolation by quartic C 2 splace curves. ACM TOG, 8(3) (1989), 235–242.

    MATH  Google Scholar 

  • Peters J.: 3. Local cubic and bicubic C 1 surface interpolation with linearly varying boundary normal. Comput. Aided Geom. Design, 7 (1990), No.6, 499–516.

    MathSciNet  MATH  Google Scholar 

  • Peters J.: 4. Local smooth surface interpolation: a classification. Comput. Aided Geom. Design, 7 (1990), 191–195.

    MathSciNet  MATH  Google Scholar 

  • Peters J.: 5. Smooth interpolation of a mesh of curves. Constr. Approx., 7 (1991), 221–246.

    MathSciNet  MATH  Google Scholar 

  • Peters J.: 6. Smooth free — form surfaces over irregular meshes generalizing quadratic splines. CAGD 10 (1993), 347–361.

    MATH  Google Scholar 

  • Peters J.: 7. C 1 — surface splines. SIAM J. Numer. Anal. 32 (1995), No.2, 645–666.

    MathSciNet  MATH  Google Scholar 

  • Peters J.: 8. Biquartic C 1 -surface splines over irregular meshes. Computer-Aided Design, 27 (1995), No.12, 895–903.

    Google Scholar 

  • Peters J.: 9. Smoothing polyhedra mode easy. ACM Trans on Graphics, 14 (1995), No.2, 162–170.

    Google Scholar 

  • Peters J.: 10. Curvature continuous spline surfaces over irregular meshes. CAGD, 13 (1996), No.2, 101–131.

    MATH  Google Scholar 

  • Peters J.: 11. Spline surface from irregular control meshes. ZAMM, 76 (1996), Supplement 1, 69–72.

    MATH  Google Scholar 

  • Peters J.; Sitharan M.: Stability of intepolation from C 1 cubics at the vertices of an underlying triangulation. SIAM J. Numer. Anal., 29 (1992), No.2, 528–533.

    MathSciNet  MATH  Google Scholar 

  • Peterson I.: On a piecewise polynomial approximation. Easti NSV Tead. Akad. Toimetised Finis. — Mat., 11 (1962), 24–32.

    Google Scholar 

  • Petit M.: Une propriété des fonctions spline d’ajustement. Rev. Française Inform. Rech. Opérat., 5 (1971), 137–140.

    MathSciNet  MATH  Google Scholar 

  • Petrov P.P.: Shape preserving approximation by free knot splines. East J. Approx. Theory, 2 (1996), No.1, 41–48.

    MATH  Google Scholar 

  • Petrusev P.P.: 1. Zvjazi mejdu nailučşimi raţionalnîmi i splain priblijeniami v metrique L p. Pliska Studia Math. Bulgarica, 5 (1983), 68–83.

    Google Scholar 

  • Petrusev P.P.: 2. Relations between rational and spline approximations. Acta Math. Hung., 44 (1984), 61–83.

    Google Scholar 

  • Petrusev P.P.: 3. Relations between rational and Spline approximation in L p metric. J. Approx. Theory, 50 (1987), 141–159.

    MathSciNet  Google Scholar 

  • Pettinina M. Yu: Mean square error of a first — order spline estimate in a linear regression model. (russian). Ukrain Mat. Zh., 43 (1991), No.3, 429–432.

    Google Scholar 

  • Pevnîi A.B.: 1. Natural splines in two and three variables. (russian). Metody Vychisl., (1985), No.14, 160–170.

    Google Scholar 

  • Pevnîi A.B.: 2. Ob optimalnosti nekatorîh splainovîh algoritmov. Izv. Vysh. Ucebn. Zav. Matematica, 5 (1986), 43–49.

    Google Scholar 

  • Pevnîi A.B.: 3. Optimalnosti splainogo algoritma pri nahojdenii maximum odnogo klassa funkţii mnogîh peremenîh. J. Vycisl. Mat. i Mat. Fiz., 28 (1988), No.1, 130–134.

    Google Scholar 

  • Pevnîi A.B.: 4. A scale of power splines. (russian). Metody Vychisl., (1988), No.15, 135–141.

    Google Scholar 

  • Pevnîi A.B.: 5. Nekatorîe integralnîe todjestva, svjazanîe so splainami n peremenîh. Izv. Vîs. Ucebn. Zav. Matematika, 4 (1989), 51–55.

    Google Scholar 

  • Pevnîi A.B.: 6. Multidimensional natural splines of odd degree. (russian). Mat. Zametki, 47 (1990), No.2, 65–68.

    Google Scholar 

  • Pevnîi A.B.: 7. The Green function of a difference analogue of a polyharmonic operator, and discrete splines. (russian). Comput. Math. Math. Phys. 33 (1993), No.12, 1653–1655.

    MathSciNet  Google Scholar 

  • Pevnîi A.B.: 8. Spherical spline and interpolation on a sphere. comput. Maths. Math. Phys., 35 (1995), No.1, 139–143.

    Google Scholar 

  • Pfeifer E.: 1. Quadratic spline functions and two point boundary value problems. Seminarber. Humboldt Univ. Berlin, Sek. Math., 32 (1980), 84–87.

    Google Scholar 

  • Pfeifer E.: 2. Zur Konvergenz des Kollokationsverfahrens mittels kubischer Spline-Funktionen bei Systemen gewöhnlicher Randwertaufgaben zweiter Ordnung. Beiträge Numer. Math., 10 (1981), 131–138.

    MathSciNet  Google Scholar 

  • Pfeifer E.: 3. Interpolation with exponentially fitted second order C 1 — spline functions. J. Comput. Appl. Math., 34 (1991), No.1, 119–124.

    MathSciNet  MATH  Google Scholar 

  • Pfeifle R.N.; Sidel H.P.: 1. Spherical triangular B-splines with application to data fitting. Proc. Eurographics, (1995), 89–96.

    Google Scholar 

  • Pfeifle R.N.; Sidel H.P.: 2. Fitting triangular B-splines to functional scattered data. Proc. Graphics Interface, Morgan Kaufman Publishers, Palo Alto, CA, (1995), 26–33.

    Google Scholar 

  • Pham B.: 1. Offset approximation of uniform B — splines. Comput. Aided Des., 20 (1988), No.8, 471–474.

    MATH  Google Scholar 

  • Pham B.: 2. Quadratic B — splines for automatic curve and surface fitting. Comput. and Graphics. 13 (1989), 471–475.

    Google Scholar 

  • Pham B.: 3. Algorithms for calculating cubic beta — splines. Compu. J., 33 (1990), No.5, 412–416.

    MathSciNet  Google Scholar 

  • Pham B.; Schröder H.: Parallel algorithms and a systolic device for a cubic B-spline curve and surface generation. Comput. and Graphics, 15 (1991), No.3, 349–354.

    Google Scholar 

  • Phillips J.L.: The use of collocation as a projection method for solving linear problems. SLAM J. Numer. Anal., 9 (1972), 14–28.

    MATH  Google Scholar 

  • Phillips J.L.; Hanson R.J.: Gauss quadrature rules with B — spline weight functions. Math. Comput., 28 (1974), 666–675.

    MathSciNet  Google Scholar 

  • Phillips G.M.: Algorithms for piecewise straight line approximations. Comput. J., 11 (1968), 211–212.

    MathSciNet  MATH  Google Scholar 

  • Phythian J.E.; Williams R.: 1. Direct cubic spline approximation to integrals with applications in nautical science. Int. J. Numer. Math. Eng., 23 (1986), No.2, 305–315.

    MathSciNet  MATH  Google Scholar 

  • Phythian J.E.; Williams R.: 2. Some relationships between the direct cubic spline approximation and other integration formulae. Bull. Inst. Math. Appl., 24 (1988).

    Google Scholar 

  • Piah Abd. Rahni Mt.: Periodic spline interpolation operator. Southest Asian Bull. Math., 11 (1988), 101–114.

    Google Scholar 

  • Piegle L.: 1. Modifying the shape of rational B — splines part 1 — curves. Computer Aided Design 21, 509–518, part 2 Surfaces, Computer Aided Design, 21 (1989), 538–546.

    Google Scholar 

  • Piegle L.: 2. Algorithms for computing conic splines. ASCE J. Computing in Civil Engineering, 4 (1990), No.3, 180–198.

    Google Scholar 

  • Piegle L.: 3. On NURBS: a survay. IEEE Comput. Graph. Appl. 11 (1991), 55–71.

    Google Scholar 

  • Piegle L.: 4. Rational B-splines curves and surfaces for CAD and graphics. In: Rogers D.F. and Earnshaw RA (eds); State of the Art in Computer Graphics, Springer, New York, 1991, 225–269.

    Google Scholar 

  • Piegl Leslie; Tiller Wayne: 1. Menagerie on rational B — spline circle. I.E.E.E. Computer and Applications, 3(6) (1983), 61–69.

    Google Scholar 

  • Piegl Leslie; Tiller Wayne: 2. Curve and surface constructions using rational B — splines. Comput. Aided Des., 19 (1987), No.9, 485–498.

    MATH  Google Scholar 

  • Piegl Leslie; Tiller Wayne: 3. Software engineering approach to degree elevation of B — spline curves. Comput — Aided Des. 26 (1994), No.1, 17–28.

    MATH  Google Scholar 

  • Piegl Leslie; Tiller Wayne: 4. Algorithm for degree reduction of B — spline curves. Comput-Aided Des. 27 (1995), No.2, 101–110.

    MATH  Google Scholar 

  • Pierce J.G.; Varga R.S.: Higher order convergence results for the Rayleigh — Ritz method applied to eigenvalue problems I, II. I. SIAM J. Numer. Anal., 9 (1972), 137–151. II. Numer. Math., 19 (1972), 155–169.

    MathSciNet  MATH  Google Scholar 

  • Pieroni G.: An interpolation method for the automatic drawing of a plane curve. Calcolo, 5 (1968), 173–180.

    MathSciNet  MATH  Google Scholar 

  • Piessens R.; Meue M. de: Benaderen met behulp van spline — funkties. Ingenieursblad, 43 (1974), No.24, 750–755.

    Google Scholar 

  • Pievnyj A.B.: Problèmes d’interpolation non lineare pour les monosplines. (russian). Izv. Vyss. Ucebn. Zaved Mat., 6 (1982), 37–39.

    Google Scholar 

  • Pigounakis K.G; Kaklis P.D.: Convexity — preserving fairing. Computer — Aided Design, 28 (1996), 981–994.

    Google Scholar 

  • Pinder G.E.; Shapiro A.: A new collocation method for the solution of the convectiondominated transport equation. Water Resources Research, 15 (1979),/linebreak 1177–1182.

    Google Scholar 

  • Pinkus A.: 1. One — sided L 1 — approximation by splines with fixed knots. J. Approx. Theory, 18 (1976), 130–135.

    MathSciNet  MATH  Google Scholar 

  • Pinkus A.: 2. Some extremal properties of perfect — splines and the point — wise Landau Problem on the finite interval. J. Approx. Theory, 23 (1978), 37–64.

    MathSciNet  MATH  Google Scholar 

  • Pinkus A.: 3. Best approximations by smooth functions. J. Approx. Theory, 33 (1981), 147–178.

    MathSciNet  Google Scholar 

  • Pittaluga G.; Sacripante L.: Quintic spline interpolation on uniform meshes. Acta Math. Hungar, 72 (1996), No.3, 167–175.

    MathSciNet  MATH  Google Scholar 

  • Pizjur Ja V.; Popov V.A.: Ermitovie splainî s exponentialnîmi i logaritmiceskimi zveniami. Otbor i Obrab. Inf. (Kiev), 3 (1989), 26–31.

    Google Scholar 

  • Plonka Gerlinde: 1. Nonperiodic Hermite — Spline — Interpolation. Rostock Math. Kolloq., 46 (1983), 65–74.

    MathSciNet  Google Scholar 

  • Plonka Gerlinde: 2. An efficient algorithm for the periodic spline interpolation with shifted nodes. Numer. Algorithms, 5 (1993), 51–62.

    MathSciNet  MATH  Google Scholar 

  • Plonka Gerlinde: 3. Periodic spline interpolation with shifted nodes. J. Approx. Theory, 76 (1994), No.1, 1–20.

    MathSciNet  MATH  Google Scholar 

  • Plonka Gerlinde: 4. Optimal shift parameters for periodic spline interpolation. Numer. Algorithms, 6 (1994), No.3–4, 297–314.

    MathSciNet  MATH  Google Scholar 

  • Plonka Gerlinde: 5. Two-scale symbol and autocorrelation symbol for B-splines with multiple knots. Adv. Comput. Math., 3 (1995), No.1–2, 1–22.

    MathSciNet  MATH  Google Scholar 

  • Plonka Gerlinde: 6. Generalized spline wavelets. Constr. Approx., 12 (1996), No.1, 127–155.

    MathSciNet  MATH  Google Scholar 

  • Plonka Gerlinde; Tasche M.: 1. Efficient algorithms for periodic Hermite spline interpolation. Math. Comput., 58 (1992), No.198, 693–703.

    MathSciNet  MATH  Google Scholar 

  • Plonka Gerlinde; Tasche M.: 2. Cardinal Hermite spline interpolation with shifted nodes. Math. of Comput., 63 (1994), No.208, 645–659.

    MathSciNet  MATH  Google Scholar 

  • Plonka Gerlinde; Tasche M.: 3. On the computational of periodic spline wavelets. Applied and Comput. Harmonic Analysis, 2 (1995), No.1, 1–14.

    MathSciNet  MATH  Google Scholar 

  • Pobegailo A.P.: Spherical splines and orientation interpolation. Visual Comput., 11 (1994), No.1, 63–68.

    MATH  Google Scholar 

  • Podolsky B.; Denman H.H.: Conditions on minimization criteria for smoothing. Math. Comput., 18 (1964), 441–448.

    MathSciNet  MATH  Google Scholar 

  • Pogorelov A.G.: Construction of smoothing splines by linear programming methods. J. Engrg. Phys., 56 (1989), No.3, 333–337.

    MathSciNet  Google Scholar 

  • Poirer D.J.: 1. Piecewise regression using cubic splines. J. Amer. Statist. Assoc., 68 (1973), 515–524.

    MathSciNet  Google Scholar 

  • Poirer D.J.: 2. On the of bilinear splines in economics. Journal of Econometrics, 3 (1975), 23–34.

    Google Scholar 

  • Poirer D.J.: 3. On the use of Cobb — Douglas splines. International Economic Review, 16 (1975), 733–744.

    MathSciNet  Google Scholar 

  • Poirer D.J.: 4. Spline functions and their applications in regression analysis. In Labor supply responses to exp. negative income tax payments. Ed. H.W. Watts and A. Ress, Acad. Press, New York, (1975).

    Google Scholar 

  • Poljakov R.V.: 1. Spline functions for the solution of system of linear integral equations. Methods Quant. Qual. Study Diff. Integral Eqs. Izdanie Inst. Mat. Akad. Nauk. Ukrain. SSR, Kiev, (1975), 131–138.

    Google Scholar 

  • Poljakov R.V.: 2. Application of splines to the solution of systems of integral equations of Hammerstein type. Fourier Analysis and Approx. Theory, (Proc. Colloq. Budapest, 1976), Vol.11, North — Holland, Amsterdam, (1978), 633–638.

    Google Scholar 

  • Poljakov R.V.; Bessonov E.V.: An application of bicubic splines to the solution of two dimensional integral equations of the second kind with constant limits. (russian). Approx. ind. Qualit. Meths. Theory Diff. Funct. Diff. Eqs. Akad. Nauk SSR, Inst. Mat. Kiev, (1979), 64–75.

    Google Scholar 

  • Poljakov R.V.; Slepakov L.N.: 1. Spline approximation in some problems on the syntheses of radio enginnering devices. Nonlinear Oscillations and Stability of motion, Izd. Inst. Mat. Akd. Nauk. Ukrain. SSR, Kiev, 94(41), (1973), 199–209.

    Google Scholar 

  • Poljakov R.V.; Slepakov L.N.: 2. Spline — Approximation in einigen nichtlinearer Problemen. Nelinein. Kraev. Zadaci. Mat. Fiz., Izd. Inst. Mat. Akd. Nauk. Ukrain. SSR, Kiev, (1973), 299–313.

    Google Scholar 

  • Poljakov R.V.; Slepakov L.N.: 3. The approximate solution of linear Fredholm type integral equations. Vidanja Inst. Mat. Akad. Nauk. Ukrain. SSR, Kiev, (1974), 143–146.

    Google Scholar 

  • Pomponiu C.; Sararu S.: Fourier analysis with splines a Fortran program. Comput. Phys. Commun., 16 (1978), No.1, 93–112.

    Google Scholar 

  • Pop V.; Iancu C.; Oproiu T.: Spline techniques in empirical data fitting. Romanian Astron. J., 2 (1992), No.2, 141–148.

    Google Scholar 

  • Popov V.A.: 1. Vybor uzlov pri ravnomernov priblijenii splainami. Dokl. A.N. URSS, Ser. A, (1986), No.3, 21–24.

    Google Scholar 

  • Popov V.A.: 2. Pogreşnosti ravnomernogo priblijenia Cebîşevskimi nelineinîmi splainami. Otbor i peredacja inform., 75 (1987), 8–13.

    Google Scholar 

  • Popov V.A.: 3. Ravnomernoe priblijenie cetnth i necetnîh funcţii splainami. Elektronnoe Modelirovanie, 4 (1987), 36–42.

    Google Scholar 

  • Popov V.A.: 1. On the connection between rational and spline approximation. C.R. Acad. Bulgare Sci., 27 (1974), 623–626.

    MathSciNet  MATH  Google Scholar 

  • Popov V.A.: 2. Spline functions — theory fundamental properties and their applications. Fiz. — Mat. Spis. Blgar. Akad. Nauk., 17 (1974), 179–189.

    MathSciNet  Google Scholar 

  • Popov V.A.: 3. Ob approximaţii absoliutno neprerîhnîh funcţii s splain — funkţiami. C.R. Acad. Bulgare Sci., 28 (1975), 1299–1301.

    MathSciNet  MATH  Google Scholar 

  • Popov V.A.: 4. Direct and converse theorems for spline approximation with free knots. Serdica, Bulg. Math. Publ., 1 (1975), 218–224.

    MATH  Google Scholar 

  • Popov V.A.: 5. On approximation of absolutely continuous functions by splines. Mathematica (Cluj), 8 (1975), 1299–1301.

    Google Scholar 

  • Popov V.A.: 6. Direct and converse theorems for spline approximations with free knots in L p. Rev. Anal. Numer. Theory Approx., 5 (1976), 69–78.

    MATH  Google Scholar 

  • Popov V.A.: 7. Approximation splines with a given error. (russian). Otbor i Peredača Informacii, 60 (1980), 56–67.

    Google Scholar 

  • Popov V.A.: 8. Opredelenia progreşnosti ravnomernovo priblijenia exponentialnostepennîmi splainami. Dokl. Akad. Nauk. U.R.S.S., Ser. A, (1986), No.7, 18–20.

    Google Scholar 

  • Popov V.A.: 9. Ravnomernîe priblijenie cetnîh i necetnîh funkţii splainami. Elektron. Modelir., 9 (1987), 8–13.

    Google Scholar 

  • Popov V.A.: 10. The error of uniform approximation by Chebyshev nonlinear splines. (russian). Otbor i Peredacha Informatsii, 75 (1987), 8–13.

    Google Scholar 

  • Popov V.A.: 11. Methods of determination of boundaries of cells in case of asymptotically uniform approximation by splines. (russian). Vychisl. Prikl. Mat. Kiev, 65 (1988), 3–13.

    MATH  Google Scholar 

  • Popov V.A.: 12. Uniform approximation by nonlinear splines. (russian). Theory of functions and approximations, Part I, Izdat Saratov Univ., (1992), 40–47.

    Google Scholar 

  • Popov V.A.; Andreev A.S.: Stečkin’s type theorems for onesided trigonometrical and spline approximation. C.R. Acad. Bulgare Sci., 31 (1978), 151–154.

    MathSciNet  MATH  Google Scholar 

  • Popov V.A.; Freud G.: Lower error bounds in the theory of spline approximation. Studia Sci. Math. Hungar., 6 (1971), 387–391.

    MathSciNet  Google Scholar 

  • Popov V.A.; Sendov Bl.: 1. On classes characterizing the best approximation with spline functions. (russian). Mat. Zametki, 8 (1970), No.2, 137–148.

    MathSciNet  Google Scholar 

  • Popov V.A.; Sendov Bl.: 2. On the approximation of functions by spline functions and by sational functions. (russian). Proceed. Conf. Teor. Funct. Varna, May 19–25 1970. Sofia, (1972), 89–94.

    Google Scholar 

  • Popoviciu T.: Notes sur les fonctions convexes d’ordere supérieur. IX. Bull. Math. Soc. Sci. Math. Roumanie, 43 (1941), 85–141.

    MathSciNet  Google Scholar 

  • Popoviciu T.: 2. Sur le rest dans certaines formules lineaires d’approximation de l’analyse. Mathematica (Cluj), 1 (1959), 95–142

    MathSciNet  Google Scholar 

  • Postolică V.: 1. Spline functions in H — locally spaces. An. St. Univ. ”Al. I. Cuza” Iaşi, Sect. Mat., 27 (1981), 333–338.

    Google Scholar 

  • Postolică V.: 2. Spline approximation of countable aditive set functions of bounded 2 — variation. Prepr. ”Babeş— Bolyai” Univ. Fac. Math. Phys. Res. Semin. (1990), No.7, 63–76.

    Google Scholar 

  • Pottmann H.: 1. Projectively invariant classes of geometric continuity for CAGD. Comput. Aided Geom. Design, 6 (1989), 307–321.

    MathSciNet  MATH  Google Scholar 

  • Pottmann H.: 2. Smooth curves under tension. Comput. Aided. Des., 22 (1990), No.4, 241–245.

    MATH  Google Scholar 

  • Pottmann H.: 3. Locally controllable conic splines with curvature continuity. ACM Trans on Graphics, 10 (1991), No.4, 366–377.

    MATH  Google Scholar 

  • Pottmann H.: 4. The geometry of Tchebycheffian splines. Free from curves and free — from surfaces. Comput. Aided Geom. Design, 10 (1993), No.3–4, 181–210.

    MathSciNet  MATH  Google Scholar 

  • Pottmann H.; Farin G.: Developable rational Bézier and B — splines surfaces. CAGD 12 (1995), 513–531.

    MathSciNet  MATH  Google Scholar 

  • Pottmann H.; Wagner M.G.: Helix — splines as an example of affine Tchebycheffian splines. Advances Comput. Math. 2 (1994), No.1, 123–142.

    MathSciNet  MATH  Google Scholar 

  • Potra T.: 1. Sur la convergence dans la méthode d’éléments finis de type spline pour les systèmes elliptiques. Prepr. Babeş — Bolyai Univ. Fac. Math. Res. Semin., 7 (1985), 135–148.

    MathSciNet  Google Scholar 

  • Potra T.: 2. Elément fini feedback de type spline pour un problème bilocal. Prepr. ”Babeş — Bolyai” Univ. Res. Sem. (1986), No.4, 121–132.

    Google Scholar 

  • Potra T.; Indolean I.: Asupra funcţiei spline cubic de interpolare. Bull. Stiinţ. Inst. Politehn. Cluj — Napoca, Ser, Electrotehn. — Energet — Inform., 25 (1982), 59–63.

    MathSciNet  MATH  Google Scholar 

  • Powell M.J.D.: 1. The local dependence of least squares cubic splines. SIAM J. Numer. Anal., 6 (1969), 398–413.

    MathSciNet  MATH  Google Scholar 

  • Powell M.J.D.: 2. Truncated Laurent xpansions for the fast evaluation of thin plate splines. Numer. Algorithms 5 (1993), No.1–4, 99–120.

    MathSciNet  MATH  Google Scholar 

  • Powell M.J.D.: 3. The uniform convergence of thin plate spline interpolation in two dimensions. Numer. Math. 68, No.1 (1994), 107–128.

    MathSciNet  MATH  Google Scholar 

  • Powell M.J.D.: 4. A new iterative for thin plate spline interpolation in two dimensions. Ann. Numer. Math., 4 (1997), No.1–4, 519–527.

    MathSciNet  MATH  Google Scholar 

  • Powel M.J.D.; Sabin M.A.: Piecewise quadrate approximations on triangles. ACM Transactions on Math. Software, 3 (1977), 316–325.

    Google Scholar 

  • Pradas J.; Varma A.K.: Lacunary interpolation by quintic splines. SLAM J. Numer. Anal., 16 (1979), 1075–1079.

    Google Scholar 

  • Prager W.: A one parameter family of spline — type schemes for approximation of delay systems. J. MAth. Anal. Appl., 177 (1993), No.1, 135–165.

    MathSciNet  MATH  Google Scholar 

  • Pratt M.I.: 1. Smooth parametric surface approximation to discrete data. Comput. Aided Geom. Design, 2 (1985), 165–171.

    MathSciNet  MATH  Google Scholar 

  • Pratt M.I.: 2. Techiques for conic splines. In Proceedings of SIGGRAPH. 85, ACM New York, 151–159.

    Google Scholar 

  • Pratt M.I.: 3. Direct least squares fitting of algebraic surfaces. Computer Graphics, 21 (1987), 145–151.

    MathSciNet  Google Scholar 

  • Prautzsch H.: 1. Degree elevation of B — spline curves. Computer Aided Geom. Design, 1 (1984), 193–198.

    MATH  Google Scholar 

  • Prautzsch H.: 2. Generalized subdivision and convergence. Comput. Aided Geom. Des., 2 (1985), No.1–3, 69–75.

    MathSciNet  MATH  Google Scholar 

  • Prautzsch H.: 3. The location of the control points in the case of box spline. IMA Journal Numer. Anal., 6 (1986), 43–49.

    MathSciNet  MATH  Google Scholar 

  • Prautzsch H.: 4. A round trip to B — splines via de Casteljau. ACM Trans Graph., 8 (1989), No.3, 243–254.

    MATH  Google Scholar 

  • Prautzsch H.: 5. On convex Bézier triangle. RAIRO, Math. Modelling and Numer. Anal., 26 (1992), No.1, 23–36.

    MathSciNet  MATH  Google Scholar 

  • Prautzsch H.: 6. Free form splines. CAGD, 14 (1997), No.3, 201–206.

    MathSciNet  MATH  Google Scholar 

  • Prautzsch H.; Gallagher Tim: Is there a geometric variation diminishing property of B — spline or Bézier surfaces. CAGD, 9 (1992), No.2, 119–124.

    MathSciNet  MATH  Google Scholar 

  • Prautzsch H.; Piper B.: A fast algorithm to roise the degree of spline curves. Cmput. Aided Geom. Design, 8 (1991), 253–265.

    MathSciNet  MATH  Google Scholar 

  • Prenter P.M.: 1. Piecewise L — splines. Numer. Math., 18 (1971), 243–253.

    MathSciNet  MATH  Google Scholar 

  • Prenter P.M.: 2. A collocation method for the numerical solution of integral equations. SIAM J. Numer, Anal., 10 (1973), 570–581.

    MathSciNet  MATH  Google Scholar 

  • Prenter P.M.; Russell R.D.: Orthogonal collocation for elliptic partial differential equations. SIAM J. Numer. Anal., 13 (1976), 923–939.

    MathSciNet  MATH  Google Scholar 

  • Prenter P.M.; Westwater E.R.: Three adaptive discrete least squares cubic spline procedures for the compression of data. Comput. Vision Graphics Image Process, 33 (1986), 327–345.

    MATH  Google Scholar 

  • Prestin J.; Quak E.: On interpolation and best one — sided approximation by splines in L p. In ”Approximation Theory” ed. by G.A. Anastassiou, Lect. Notes in Pure and Appl. Math. Series, 138, Marcel Dekker Inc. New York, (1992), 409–420.

    Google Scholar 

  • Pretorius L.; Eyre D.: Spline — Gauss rules and the Nyström method for solving integral equations in quantuum scattering. J. Comput. Appl. Math., 18 (1987), 235–247.

    MathSciNet  MATH  Google Scholar 

  • Preusser Albercht: Algorithm 684: C 1 and C 2 — interpolation on triangles with quintic and nonic bivariate polynomials. ACM. Tans. Math. Software, 16 (1990), No.3, 253–257.

    Google Scholar 

  • Price H.S.; Varga R.S.: Error bounds for semidiscrete Galerkin approximations of parabolic problems with applications to petroleum reservoir mechanics. SIAM AMS Proceedings, 2 (1970), 74–94.

    MathSciNet  Google Scholar 

  • Prikazchikov V.G.; Klunnik A.A.; Lyubomirskaya O.V.: Spline projection schemes for fourth-order equations. J. Math. Sci. 75 (1995), No.4, 1820–1826.

    MathSciNet  Google Scholar 

  • Privalov Al.A.: O shodimosti cubiceskih interpoljaţionnîh splainov k neprerîvnoi funkţii. Matem. Zamet., 25 (1975), 681–700.

    MathSciNet  Google Scholar 

  • Prössdorf S.: 1. Zur Spline kollokation für lineare Operatoren in Sobolewräumen. Recent Trend in Math. Reinhardsbrunn, 1982, Teubner — Texte zur Math. 50, Leipzig, (1983), 251–262.

    Google Scholar 

  • Prössdorf S.: 2. Ein Lokalisierungsprinzip in der Theorie der Splineapproximationen und einige Anwendungen. Math. Nachr., 119 (1984), 239–255.

    MathSciNet  MATH  Google Scholar 

  • Prössdorf S.: 3. On the super — approximation property of Galerkin’s method with finite elements. Numer. Math., 59 (1991), No.7, 711–722.

    MathSciNet  MATH  Google Scholar 

  • Prössdorf S.: 4. Spline collocation methods for boundary integral equations in ℝ n. Rendiconti Sem. Mat. Univ. Polit. Torino, Fasc. Spec., (1991), 245–261.

    Google Scholar 

  • Prössdorf S.: 5. Spline approximation methods for multidimensional singular integral and pseudodifferrential equations. Continuum Mech. and Related Problems of Analysis, (Tbilisi, 1991), 290–302, Metsuiereba, Tibilisi, 1993.

    Google Scholar 

  • Prössdorf S.: 6. Starke Elliptizität singulärer Lntegral Operatoren und Spline-Approximation. Lect. Notes. in Math. 1043, Springer Verlag, 1994, 298–302.

    Google Scholar 

  • Prössdorf S.; Rathsfeld A.: 1. A spline collocation method for singular integral equations with piecewise continuous coefficients. Integral Eqs. and Operator Theory, 7 (1984), 536–560.

    MATH  Google Scholar 

  • Prössdorf S.; Rathsfeld A.: 2. On spline Galerkin methods for singular integral equations with piecewise continuous coefficients. Numer. Math., 48, (1986), 99–118.

    MathSciNet  MATH  Google Scholar 

  • Prössdorf S.; Rathsfeld A.: 3. On quadrature methods and spline approximation of singular integral equations. Boundary elements IX, vol.1, Stuttgart, 1987, Southampton, (1987), 193–211.

    Google Scholar 

  • Prössdorf S.; Rathsfeld A.: 4. Quadrature and collocation methods for singular integral equations on curves with corners. Z. Anal. und Anwend., 8 (1989), No.3, 197–220.

    MATH  Google Scholar 

  • Prössdorf S.; Schmidt G.: A finite element collocation method for singular integral equations. Math. Nachr., 100 (1981), 33–60.

    MathSciNet  MATH  Google Scholar 

  • Prössdorf S.; Schneider R.: 1. A spline collocation method for multidimensional strongly elliptic pseudodifferential operators of order zero. Integral Eqs. and Operator Theory, 14 (1991), No.3, 399–435.

    MATH  Google Scholar 

  • Prössdorf S.; Schneider R.: 2. Convergence of spline approximation methods for parabolic elliptic pseudodifferential equations. Notes Numer. Fluid. Mech., Vremeg, Braunschweig, 33 (1992), 141–152.

    Google Scholar 

  • Prössdorf S.; Schneider R.: 3. Spline approximation method for multidimensional periodical pseudodifferential equations. Integr. Equat. Oper. Th., 15 (1992), 626–672.

    MATH  Google Scholar 

  • Prössdorf S.; Szyszka U.: On spline collocation of singular integral equations on nonuniform meshes. Semin. Anal., 1986/87 (1987), 123–137.

    Google Scholar 

  • Pruess S.: 1. Properties of spline tension. J. Approx. Theory, 17 (1976), 86–96.

    MathSciNet  MATH  Google Scholar 

  • Pruess S.: 2. An algorithm for computing smoothing splines in tension. Computing, 19 (1978), 365–373.

    MathSciNet  MATH  Google Scholar 

  • Pruess S.: 3. Alternatives to the exponential splines in tension. Math. Comput., 33 (1979), 1273–1281.

    MathSciNet  MATH  Google Scholar 

  • Pruess S.: 4. Shape preserving C 2 cubic sline interpolation. IMA J. Numer. Anal. 13 (1993), No.4, 493–507.

    MathSciNet  MATH  Google Scholar 

  • Puccio L.; Lazzaro D.: Tikhonov regularization of ill — posed problems via cubic splines. (italian). Atti Accad. Peloritana Pericolanti Cl. Sci. Fis. Mat. Natur., 68 (1990), 229–241.

    MathSciNet  MATH  Google Scholar 

  • Q i Dong Xu: Matrix representation and estimation of remainder terms of many knots spline interpolating curves and surfaces. Math. Numer. Sinica, 4 (1982), No.3, 244–252.

    MathSciNet  Google Scholar 

  • Qi Dong Xu; Liang Zhen Shan: 1. The smoothing method for many knots — spline functions I. (chinese). Numer. Math. J. Chinese Univ., 1 (1979), 196–209.

    MathSciNet  Google Scholar 

  • Qi Dong Xu; Liang Zhen Shan: 2. On the many — knot spline polishing method I. (chinese). Numer. Math. Nanking, 3 (1981), 65–74.

    Google Scholar 

  • Qi Dong Xu; Zhou Shu Zi: Local explicit many — knot spline Hermite approximation schemes. J. Comput. Math., 1 (1983), 317–321.

    MATH  Google Scholar 

  • Qi Duan; Li Shaihe: 1. A comment on error bounds for cubic splines. (chinese). Numer. Math. Nanking, 6 (1984), 228–233.

    MATH  Google Scholar 

  • Qi Duan; Li Shaihe: 2. The B — spline basis and its minimal support fo the bivariate spline S 3 12). (chinese). Appl. Math. J. Chin — Univ., 4 (1989), No.4, 455–464.

    Google Scholar 

  • Qian Zhi Zhen; Geng X.F.; Zhang W.J.: A spline function solution method for singularly perturbed equation. (chinese), J. Shanghai Tiaotong Univ., 29 (1995), No.3, 82–87.

    MathSciNet  Google Scholar 

  • Qin Hong; Terzopoulos D.: 1. Dynamic NURBS swung surfaces for physics-based shape design. Comput. Aided Design, 27 (1995), 111–127.

    MATH  Google Scholar 

  • Qin Hong; Terzopoulos D.: 2. Triangular NURBS and their dynamic generalization. CAGD, 14 (1997), No.4, 325–347.

    MATH  Google Scholar 

  • Qin Kai Huai; Bin Hong Zan: A liniarization technique for curve fitting with biarc splines. (chinese). J. Huazhong Univ. Sci. Tech., 18 (1990), No.5, 111–117.

    MathSciNet  Google Scholar 

  • Qin Kai Huai; Fau Guang; Sun Cai: Extrapolating acceleration algorithms for finding B — spline intersections using recursive subdivizion techique. J. Comput. Sci. Tech. 9 (1994), No.1, 70–85.

    MathSciNet  Google Scholar 

  • Qin Kai Huai; Gong Minglun; Tong Geliang: Fast ray tracing NURBS surfaces. J. Comput. Sci. Techn., 11 (1996), No.1, 17–29.

    Google Scholar 

  • Qin Kai Huai; Sun Jia Guang: A new local control spline with shape parameters for CAD/CAM. J. Comput. Sci. Tech., 8 (1993), No.3, 280–288.

    MathSciNet  Google Scholar 

  • Qiu Peihua; Liu Kejian: A new branch of statistic — smoothing spline method. (chinese). Chinese J. Appl. Probab. and Statistics, 6 (1990), No.1, 96–107.

    Google Scholar 

  • Qu R.: Smooth curve interpolation with generalized conics. Comput. Math. Appl., 31 (1996), No.7, 37–64.

    MathSciNet  MATH  Google Scholar 

  • Quade W.; Collatz L.: Zur Interpolationstheorie der rellen periodischen Funktionen. Preuss. Akad. Wiss. Phys. Math. Kl., 30 (1938), 383–429.

    Google Scholar 

  • Quak E.; Schumaker L.L.: Cubic spline fitting using data dependent triangulations. Comput. Aided Geom. Design (special issue), 7 (1990), 293–301.

    MathSciNet  MATH  Google Scholar 

  • Quak E.; Weyrich N.: 1. Decomposition and reconstruction algorithms for spline wavelet on a bounded interval. Appl. Comput. Harmon Anal. 1 (1994), 217–231.

    MathSciNet  MATH  Google Scholar 

  • Quak E.; Weyrich N.: 2. Spline wavelet packets on an interval. In ” Approximation Theory ” VII, Vol.2, C.K. Chui and L.L. Schumaker (eds). World Sci. Publishing Co., (1995), 359–366.

    Google Scholar 

  • Quak E.; Weyrich N.: 3. Algorithms for spline wavelet packets on an interval. BIT, 37 (1997), No.1, 76–95.

    MathSciNet  MATH  Google Scholar 

  • Quo Xinsheng: A smooth spline method by coordinate transformation. (chinese). J. Xi’an Jiaotong Unv., 18 (1984), No.2, 109–116.

    MATH  Google Scholar 

  • Rabinowitz P. J.: 1. Numerical integration based on approximating splines. Comput. and Appl. Math., 33 (1990), No.1, 73–83.

    MathSciNet  MATH  Google Scholar 

  • Rabinowitz P. J.: 2. Uniform convergence of Cauchy principal value integrals of interpolating splines. Approx. Interp. and Sumability. Israel Math. Conf. Proc. 4 (1991), 225–231.

    MathSciNet  Google Scholar 

  • Rabinowitz P. J.: 3. Product integration of singular integrands using optimal nodal splines. Rend. Sem. Mat. Univ. Pol. Torino, 51 (1993), No.1, 1–9.

    MathSciNet  MATH  Google Scholar 

  • Rabinowitz P. J.: 4. Application of approximation splines for the solution of Cauchy singular integral equations. Appl. Numer. Math. 15 (1994), No.2, 285–297.

    MathSciNet  MATH  Google Scholar 

  • Rabinowitz P. J.: 5. Optimal quasi-interpolatory splines for numerical integration. Ann. Numer. Math., 2 (1995), No.1–4, 145–157.

    MathSciNet  MATH  Google Scholar 

  • Rabinowitz P.; Santi Elisabetta: On the uniform convergence of Cauchy principal values of quasi — interpolating splines. BIT, 35 (1995), 277–290.

    MathSciNet  MATH  Google Scholar 

  • Rabut C.: 1. Détérmination numérique d’interpolants, application aux fonctions spline. Sem. D’Analyse Numérique Univ. Toulouse V, 1982/1983, 1–16.

    Google Scholar 

  • Rabut C.: 2. Elementary m — harmonic cardinal B — splines. Numer. Algorithms, 2 (1992), No.1, 39–61.

    MathSciNet  MATH  Google Scholar 

  • Rabut C.: 3. High level m — harmonic cardinal B — splines. Numer. Algorithms, 2 (1992), No.1, 63–84.

    MathSciNet  MATH  Google Scholar 

  • Rabut C.: 4. Interpolation with radially symmetric thin plate splines. J. Comput. Appl. Maths., 73 (1996), 241–256.

    MathSciNet  MATH  Google Scholar 

  • Rabut C.: 5. Splines plaque-mince de revolution. C.R. Acad. Sci. Paris, T. 323, (1996), 943–950.

    MathSciNet  MATH  Google Scholar 

  • Rack H.J.: Ein Existenzsatz für kubische Spline Funktionen. Beitr. Numer. Math., 8 (1980), 131–137.

    MathSciNet  Google Scholar 

  • Ragett G.F.; Stone I.A.R.; Wisher S.J.: The cubic — spline solution of practical problems modelled by hyperbolic partial differential equations. Computer. Math. Appl. Mech. Engng. Netherland, 8 (1976), 139–151.

    Google Scholar 

  • Ragett G.F.; Wilson P.D.: A fully implicit finite difference approximation to the one — dimensional wave equation using a cubic spline technique. J. Inst. Math. Appl., 14 (1974), 75–77.

    MathSciNet  Google Scholar 

  • Raghavarao C.V.; Srinivas S.T.P.T.: A note on parametric spline function approximation. Comput. Math. Apll., 29 (1995), No.12, 67–73.

    MathSciNet  MATH  Google Scholar 

  • Ragozin L.D.: 1. Limits of periodic smoothing splines. Indag. Math., 46 (1983), 37–46.

    MathSciNet  Google Scholar 

  • Ragozin L.D.: 2. Error bounds for derivative estimates based on spline smoothing of exact or noisy data. J. Approx. Theory, 37 (1983), 335–355.

    MathSciNet  MATH  Google Scholar 

  • Ragozin L.D.: 3. The discrete k — functional and spline smoothing of noisy data. SIAM J. Numer. Anal., 22 (1985), 1243–1254.

    MathSciNet  MATH  Google Scholar 

  • Ragozin L.D.: 4. Limits of generalized periodic D — splines. Israel J. of Math., 54 (1986), No.3, 315–326.

    MathSciNet  Google Scholar 

  • Rahman N.A.A.: 1. Approximate solution of the differential equations with spline function. Annales Univ. Sci. Budapest, Sect. Comp., 11 (1991), 165–174.

    MATH  Google Scholar 

  • Rahman N.A.A.: 2. Approximation of the Schrodingher differential equations by (0, 2) — interpolational spline functions. Annales Univ. Sci. Budapest, Sect. Comput., 13 (1992), 169–178.

    MATH  Google Scholar 

  • Rahman N.A.A.: 3. Lacunary spline interpolation and two boundary value problems. Annales Univ. Sci. Budapest, 36 (1993), 235–246.

    MATH  Google Scholar 

  • Rahni Abd.; Piah Mt.: Periodic spline interpolation operator. Southest Asian Bull. Math., 11 (1988), No.2, 101–114.

    MATH  Google Scholar 

  • Rakisheva Z.B.: Spline solution of the dynamic solid body problem. (russian). Teor. i Prikl. Vopros Mat. Modelir. Alma — Ata, (1990), 125–128.

    Google Scholar 

  • Ramachandran M.P.: 1. End conditions for cubic spline interpolation. Appl. Math. Comput., 40 (1990), No.2, part. II, 105–116.

    MathSciNet  MATH  Google Scholar 

  • Ramachandran M.P.: 2. Shape preserving interpolation using quadratic X — splines. Appl. Math. Lett. 7 (1994), No.6, 97–100.

    MathSciNet  MATH  Google Scholar 

  • Ramachandran M.P.: 3. Shape preserving interpolation using quadratic X-splines. Appl. Math. Lett., 7 (1994), No.6, 97–100.

    MathSciNet  MATH  Google Scholar 

  • Ramadan Z.: 1. Spline approximation for system of two second order ordinary differential equations. J. of the Faculty of Education, Egypt, 16 (1991), 359–369.

    Google Scholar 

  • Ramadan Z.: 2. Spline approximation for system of two third order ordinary differential equation. II. Revue d’Anal. Numer. et de Théorie de l’Approximation, 25 (1996), No.1–2, 225–233.

    MathSciNet  MATH  Google Scholar 

  • Ramirez V.; Lorente J.: 1. C l rational quadratic spline interpolation to convex data. Appl. Numer. Math., 2 (1986), 37–42.

    MathSciNet  MATH  Google Scholar 

  • Ramirez V.; Lorente J.: 2. Convexity of rational quadratic splines. (spanish). Proceeds. of the Third Symp. Orthogonal Polynomials and Apples. (Segora, 1985), Univ. Politic. Madrid, (1989), 91–101.

    Google Scholar 

  • Ramshaw L.: 1. Blossoming: a connect — the — dat, approach to spline. Digital Systems Research Center. Palo Alto. Report 19, CA, 1987.

    Google Scholar 

  • Ramshaw L.: 2. Bézier and B — splines as multiaffine maps. In Theoretical Foundations of Comp. Graphics and CAD, Springer, New York, 757–776.

    Google Scholar 

  • Ramshaw L.: 3. Blossoms are polar form. Comput. Aided Geom. Design, 6 (1989), 323–358.

    MathSciNet  MATH  Google Scholar 

  • Rana S.S.: 1. Discrete cubic X — spline interpolation. J. Orissa Math. Soc., 3 (1984), No.2, 65–75.

    MathSciNet  Google Scholar 

  • Rana S.S.: 2. Discrete cubic X — Splines. Publ. RIMS, Kyoto Univ., 24 (1988), 539–546.

    MathSciNet  MATH  Google Scholar 

  • Rana S.S.: 3. Convergence of a class of deficient interpolatory splines. Rocky Mountain J. Math., 18 (1988), No.4, 825–831.

    MathSciNet  MATH  Google Scholar 

  • Rana S.S.: 4. Quadratic spline interpolation. J. Approx. Theory, 57 (1989), 300–305.

    MathSciNet  MATH  Google Scholar 

  • Rana S.S.: 5. Convergence of a class of discrete cubic interpolatory splines. Proc. Jap. Acad., 66 (1990), No.3, 84–88.

    MathSciNet  MATH  Google Scholar 

  • Rana S.S.: 6. Discrete quadratic splines. Internat. J. Math. Math. Sci., 13 (1990), No.2, 343–348.

    MathSciNet  MATH  Google Scholar 

  • Rana S.S.: 7. Convergence of a class of discrete cubic interpolatory splines. Proc. Japan Acad., Ser. A, 66 (1990), 84–88.

    MathSciNet  MATH  Google Scholar 

  • Rana S.S.: 8. Local behaviour of the first difference of a discrete cubic spline interpolator. Approx. Theory Appl., 6 (1990), No.4, 58–64.

    MathSciNet  MATH  Google Scholar 

  • Rana S.S.: 9. Local behaviour of the first derivative of a deficient cubic spline interpolator. Proc. Indian Acad. Sci. Math. Sci., 105 (1995), No.4, 393–397.

    MathSciNet  MATH  Google Scholar 

  • Rana S.S.: 10. Asymptotics and representation of deficient cubic splines. Indian J. Pure Appl. Math., 27 (1996), No.3.

    Google Scholar 

  • Rana S.S.; Dubey Y.P.: Local behaviour of the deficient discrete cubic spline interpolator. J. Approx. Theory, 86 (1996), 120–127.

    MathSciNet  MATH  Google Scholar 

  • Rana S.S.; Purohit M.: Deficient cubic spline interpolation. Proc. Japan. Acad. Ser. A. Math. Sci., 64 (1988), No.4, 111–114.

    MathSciNet  MATH  Google Scholar 

  • Raphael L.A.: A Jackson — type theorem for averages of splines bounding a class of differentiable functions. J. Approx. Theory, 43 (1985), No.2, 124–131.

    MathSciNet  MATH  Google Scholar 

  • Rathsfeld A.: Piecewise polynomial collocation for the double layer potential equation over polyhedral boundaries. Lect. Notes Pure Appl. Math., 167 (1995), 219–253.

    MathSciNet  Google Scholar 

  • Reddien G.W.: 1. Projection methods and singular two — point boundary value problems. Numer. Math., 21 (1973), 193–205.

    MathSciNet  MATH  Google Scholar 

  • Reddien G.W.: 2. Approximate methods for two — point boundary value problems with nonlinear boundary conditions. SIAM J. Numer. Anal., 13 (1976), 405–411.

    MathSciNet  MATH  Google Scholar 

  • Reddien G.W.: 3. Approximation methods and alternative problems. J. Math. Anal. Appl., 60 (1977), 139–149.

    MathSciNet  MATH  Google Scholar 

  • Reddien G.W.: 4. Collocation at Gauss points as a discretization in optimal control. SIAM J. Control Optim., 17 (1979), 298–306.

    MathSciNet  MATH  Google Scholar 

  • Reddien G.W.: 5. Projection method for two — point boundary value problems. SLAM Review, 22 (1980), 155–171.

    MathSciNet  Google Scholar 

  • Reddien G.W.; Schumaker L.L.: On a collocation method for singular two — point boundary value problems. Numer. Math., 25 (1976), 427–432.

    MathSciNet  MATH  Google Scholar 

  • Reddien G.W.; Travis C.C.: Approximation methods for boundary value problems of differential equations with functional arguments. J. Math. Anal. Appl., 46 (1974), 62–74.

    MathSciNet  MATH  Google Scholar 

  • Redner R.A.; Lee E.M.; Uselton P.S.: Smooth B-spline illumination maps for bidirectional ray tracing. ACM Trans. on Graphics, 14 (1995), No.4, 337–362.

    Google Scholar 

  • Reid J.K.: A note on the approximation of plane regions. Comput. J., 14 (1971), 307–308.

    MATH  Google Scholar 

  • Reif U.: 1. Biquadratic G — spline surfaces. CAGD, 12 (1995), No.2, 193–205.

    MathSciNet  MATH  Google Scholar 

  • Reif U.: 2. On constructing topologically unrestricted B-splines. ZAMM, 76 (1996), Suppl.1, 73–74.

    MathSciNet  MATH  Google Scholar 

  • Reif U.: 3. Orthogonality of cardinal B-splines in weighted Sobolev spaces. SIAM J. Math. Anal., 28 (1997), No.5, 1258–1263.

    MathSciNet  MATH  Google Scholar 

  • Reif U.: 4. A refinable space of smooth spline surfaces of arbitrary topological genus. J. Approx. Theory, 90 (1997), No.2, 174–199.

    MathSciNet  MATH  Google Scholar 

  • Reif U.: 5. Uniform B-spline approximation in Sobolev spaces. Numer. Algorithms, 15 (1997), No.1, 1–14.

    MathSciNet  MATH  Google Scholar 

  • Reimer M.: 1. Extremal spline bases. J. Approx. Theory, 36 (1982), 91–98.

    MathSciNet  MATH  Google Scholar 

  • Reimer M.: 2. Error estimates for spline interpolants on equidistant grids. Numer. Math., 44 (1984), 417–424.

    MathSciNet  MATH  Google Scholar 

  • Reimer M.: 3. The main root of the Euler — Frobenius polynomials. J. Approx. Th., 45 (1985), 358–362.

    MathSciNet  MATH  Google Scholar 

  • Reimer M.: 4. The radius of convergence of a cardinal Lagrange splines series of odd degree. J. Approx. Theory, 39 (1985), 289–299.

    MathSciNet  Google Scholar 

  • Reimer M.: 5. Best constants occuring with the modulus of continuity in the error estimate for spline interpolants of odd degree on equidistant grids. Numer. Math., 44 (1984), 407–416.

    MathSciNet  MATH  Google Scholar 

  • Reimer M.: 6. Cardinal Hermite — Spline — Interpolation on the equidistant lattice. Numer. Math., 56 (1989), 345–357.

    MathSciNet  MATH  Google Scholar 

  • Reimer M.; Siepmann D.: An elementary algebraic representation of polynomial spline interpolants for equidistant lattice and its condition. Numer. Math., 49 (1986), 55–65.

    MathSciNet  MATH  Google Scholar 

  • Reinsch C.H.: 1. Smoothing by spline functions. Numer. Math., 10 (1967), 177–183.

    MathSciNet  MATH  Google Scholar 

  • Reinsch C.H.: 2. Smoothing by spline functions. II. Numer. Math., 16 (1971), 451–454.

    MathSciNet  MATH  Google Scholar 

  • Reinsch C.H.: 3. Mathematische Hilfsmittel für das automatische zeichnen von Funktionen und Kurven. Computer Graphics. Symp. Berlin, 1971, hersg. von Giloi, Gesellschaft für Informatik, Berlin, (1971), 309–338.

    Google Scholar 

  • Reinsch C.H.: 4. Two extension of the Sard — Schoenberg theory of best approximation. SIAM J. Numer. Anal., 11 (1974), 45–51.

    MathSciNet  MATH  Google Scholar 

  • Reinsch C.H.: 5. Oscillation matrices with spline smoothing. Numer. Math., 24 (1975), 373–382.

    MathSciNet  Google Scholar 

  • Reinsch C.H.: 6. Software for shape — preserving spline interpolation. Reliable numerical computation, Proc. Conf. in Honour of J.H. Wilkinson, Teddington UK, 1990, 267–276. (eds.: Cox M.G. and Hammerling S., Oxford Univ. Press).

    Google Scholar 

  • Renka R.J.: 1. Interpolatory tension splines with automatic selection of tension factors. SIAM J. Sci. Stat. Comput., 8 (1987), 393–415.

    MathSciNet  MATH  Google Scholar 

  • Renka R.J.: 2. Algorithm 716. TSAPACK:tension spline curve fitting package. TOMS, 19 (1993), 81–94.

    MATH  Google Scholar 

  • Renka R.J.; Cline A.K.: A triangle — based C l interpolation method. Rocky Mt. J. Math., 14 (1984), 223–238.

    MathSciNet  MATH  Google Scholar 

  • Ren-Kurc A.: 1. Polynomial spline functions and application to approximation in the space with mixed norm. Ann. Sci. Mat. Polon. Series I.Comment. Math., 23 (1983), 295–308.

    MathSciNet  MATH  Google Scholar 

  • Ren-Kurc A.: 2. Two — dimensional functions and mixed n — widts. Nauchnî Tr., Plovdivski Univ., Mat. 25 (1987), No.3, 35–45.

    Google Scholar 

  • Ren—Kurc A.: 3. Approximation of integrable functions of several variables by spline functions. The order of approximations. Fasc. Math.,(1990), No.19, 215–222.

    Google Scholar 

  • Rentrop P.: An algorithm for the computation of the exponential spline. Numer. Math., 35 (1980), 81–93.

    MathSciNet  MATH  Google Scholar 

  • Rentrop P.; Wever U.: Computational strategies for the tension parameters of the exponential splines. in Buhrsch R et al. (Eds.), Lect. Notes in Control and Inf.Sciences, 95, Springer V., (1996), 122–134.

    Google Scholar 

  • Rescorla K.L.: Cardinal interpolation: a bivariate polynomial example. Comput. Aided Geom. Des., 3 (1986), No.4, 313–321.

    MathSciNet  MATH  Google Scholar 

  • Revnic A.: A numerical solution of the differential equation of m-th order using spline functions. Studia Univ. Babeş-Bolyai, Mathematica XL, 1 (1995), 65–76.

    MathSciNet  Google Scholar 

  • Reztsov A.V.: Parallelepipedal curbature formulas and perfect splines. Mat. Zametki, 48 (1990), No.4, 1024–1029.

    MATH  Google Scholar 

  • Ribalka S.A.: 1. Otzenka otklanenija lineinîh splainov ot parametriceskih krivîh pri vizualizaţia na E.L.T. Analog-tzifr. Vychisl sistemî u ih primenenie. Tom. Politehn. Inst. Tomsk, (1989), 82–95.

    Google Scholar 

  • Ribalka S.A.: 2. Local approximation of plane curves by splines of the first degree in the Hausdorff metric. (russian). Izv. Vyssh. Uckebn, Zaved. Mat., (1991), No.8, 80–81.

    Google Scholar 

  • Ricci A.: A constructive geometry for computer graphics. Comput. J., 16 (1973), 157–160.

    MATH  Google Scholar 

  • Rice J.R.: 1. Characterization of Chebyshev approximations by splines. SIAM J. Numer. Anal., 4 (1967), 577–585.

    MathSciNet  Google Scholar 

  • Rice J.R.: 2. Convergence rates for partially splines models. Statist. Probab. Lett., 4 (1986), 203–208.

    MathSciNet  MATH  Google Scholar 

  • Rice J.R.; Rosenblatt M.: 1. Integrated mean squared error of a smooth spline. J. Approx. Theory, (1981), 353–369.

    Google Scholar 

  • Rice J.R.; Rosenblatt M.: 2. Smoothing splines; regression, derivates and deconvolution. Ann. Statist., 11 (1983), 141–156.

    MathSciNet  MATH  Google Scholar 

  • Richard F.B.: 1. On the saturation class for spline functions. Proc. Amer. Math. Soc., 33 (1972), 471–476.

    MathSciNet  Google Scholar 

  • Richard F.B.: 2. Best bounds for the uniform periodic spline interpolation operator. J. Approx. Theory, 7 (1973), 302–317.

    Google Scholar 

  • Richard F.B.: 3. Uniform spline interpolation operators in L 2. Hinois J. Math., 18 (1974), 516–521.

    Google Scholar 

  • Richard F.B.: 4. The Lebesgue constants for cardinal spline interpolation. J. Approx. Theory, 14 (1975), 83–93.

    Google Scholar 

  • Richard F.B.: 5. A Gibbs Phenomenon for spline functions. J. Approx. Theory, 66 (1991), 344–351.

    Google Scholar 

  • Richter-Dyn N.: Minimal interpolation and approximation in Hilbert spaces. SIAM J. Numer. Anal., 8 (1971), 583–597.

    MathSciNet  MATH  Google Scholar 

  • Richter G.R.: Superconvergence of piecewise polynomial Galerkin approximations for Fredholm integral equations of the second kind. Numer. Math., 31 (1978), No.1, 63–70.

    MathSciNet  MATH  Google Scholar 

  • Riemenschneider S.D.: Convergence of interpolating cardinal splines. Power growth. Israel J. Math., 23 (1976), 339–346.

    MathSciNet  MATH  Google Scholar 

  • Riemenschneider S.D.; Scherer K.: 1. Cardinal Hermite interpolation with box splines. Constr. Approx., 3 (1987), 223–238.

    MathSciNet  MATH  Google Scholar 

  • Riemenschneider S.D.; Scherer K.: 2. Cardinal Hermite interpolation with box splines. II. Numer. Math., 58 (1991), No.6, 591–602.

    MathSciNet  MATH  Google Scholar 

  • Riemenschneider S.D.; Shen Z.: 1. Wavelets and pre-wavelets in low dimensions. J. Approx. Theory, 71 (1992), No.1, 18–38.

    MathSciNet  MATH  Google Scholar 

  • Riemenschneider S.D.; Shen Z.: 2. Multidimensional interpolatory subdivision schemes. SIAM J. Numer. Anal., 34 (1997), No.6, 2357–2381.

    MathSciNet  MATH  Google Scholar 

  • Ries S.: Spline convolution for digital image processing. In: Proc. 2nd Internat. Technical Symposium on Optical and Electroptical Sci. Eng., Cannes, 1985.

    Google Scholar 

  • Riess R.D.; Johson L.W.: Closed — form representation for errors of cubic spline approximations on equally spaced knots. J. Inst. Math. Appl., 21 (1978), 345–351.

    MathSciNet  MATH  Google Scholar 

  • Riessinger Th.: 1. Interpolation and approximation by splines in [0,∞]. Resultate Math., 18 (1990), No.3–4, 333–346.

    MathSciNet  MATH  Google Scholar 

  • Riessinger Th.: 2. Interpolation by bivariate quadratic splines on a four — directional mesh. Computing, 49 (1992), No.2, 129–137.

    MathSciNet  MATH  Google Scholar 

  • Ringhofer C.: On collocation schemes for quasilinear singularly perturbed boundary value problems. SIAM J. Numer. Anal., 21 (1984), 864–882.

    MathSciNet  MATH  Google Scholar 

  • Ritter K.: 1. Two dimensional splines and their extremal properties. ZAMM, 49 (1969), 597–608.

    MathSciNet  MATH  Google Scholar 

  • Ritter K.: 2. Two dimensional spline functions an best approximations of linear Junctionals. J. Approx. Theory, 3 (1970), 352–368.

    MathSciNet  MATH  Google Scholar 

  • Rjabenki V.S.: Local splines. Comput. Methods Appl. Mech. Engrg., 5 (1975), 211–215.

    MathSciNet  Google Scholar 

  • Roberts A.: Automatic topology generation and generalized B — spline mapping. Appl. Math. Comput. ISNM, 10–11 (1982), 465–486.

    Google Scholar 

  • Robinson M.P.; Fairweather G.: Orthogonal spline collocation methods for Schrödinger — type equations in one space variable. Numer. Math. 68 (1994), No.2, 355–376.

    MathSciNet  MATH  Google Scholar 

  • Robinson T.; Moyeed R.: Making robust the cross-validatory choise of smoothing parameter in spline smoothing regression. Communications in Statistics-Theory and Method, 18 (1989), 523–539.

    MathSciNet  MATH  Google Scholar 

  • Roch S.: Spline approximation methods cutting off singularities. Z. Anal. Anwendungen 13 (1994), No.2, 329–345.

    Google Scholar 

  • Rogers D.F.: B-splines curves and surfaces for ship hull definition. Soc. Nav. Architec. Marine Engineering, N.Y., 1977, 79–96.

    Google Scholar 

  • Rogers D.F.; Fog N.G.: Constrained B — spline curve and surface fitting. Comput. Aided Des., 21 (1989), No.10, 641–648.

    MATH  Google Scholar 

  • Rogers D.F.; Satterfield G.S.; Rodriguez F.A.: Ship hulls, B-spline surfaces.In: CAD/CAM, IEEE Comput. Graph. and Applics., 3 (1983), No.9, 37–45.

    Google Scholar 

  • Rogina Mladen: Basis of splines associated with some singular differential operators. BIT, 32 (1992), No.3, 496–505.

    MathSciNet  MATH  Google Scholar 

  • Rohwer C.H.: Fast one — sided approximation with spline functions. J. Comput. Appl. Math., 18 (1987), No.1, 93–105.

    MathSciNet  MATH  Google Scholar 

  • Rojenko A.I.: 1. Variationnîe raţionalnîe splainî mnogih peremennîh. Modelip v Mech., 5 (1991), No.1, 78–88.

    Google Scholar 

  • Rojenko A.I.: 2. Ottenka shodimosti rationalnîh D m — splainov. Modelir v Mech., 5 (1991), No.1, 89–101.

    Google Scholar 

  • Roman V.M.: Cislenie reşenie differenţialnîh uravnenii n — ovo poriadka s izpolzovaniem kubiceskih spalinov. Ukrain. Mat. J., 32 (1980), 686–693.

    MathSciNet  MATH  Google Scholar 

  • Romanov V.S.: 1. Natural Chebyshev splines. (russian). Vestnik Leningrad. Univ. Mat. Meh. Astron. vîp. 2 (1982), 80–94.

    Google Scholar 

  • Romanov V.S.: 2. Uniquenes of the Chebyshev spline of the best approximation in the mean for the class of functions having no more than one discontinuity point. (russian). Metody Vychislenij, 14 (1985), 139–160.

    MathSciNet  MATH  Google Scholar 

  • Romanov V.S.: 3. Characterization of the Chebyshev spline of best approximation in the nonsymetric norm of L 1(a, b) with positive weight for a class of continuous functions. (russian). Izv. Vyssh. Uchebn. Zaved Mat., (1992), No.3, 45–50.

    Google Scholar 

  • Romenski V.P.: The method of spline — collocation for the Poisson equation. Akad. Nauk. SSR, 81 (1979), 81–86.

    Google Scholar 

  • Ron A.: 1. Exponential box splines. Constr. Approx., 4 (1988), 357–378.

    MathSciNet  MATH  Google Scholar 

  • Ron A.: 2. Factorization theorems for univariate splines on regular grids. Israel J. Math., 70 (1990), No.1, 48–68.

    MathSciNet  MATH  Google Scholar 

  • Ron A.: 3. On the convolution of a box — spline with a compactly supported distribution: the exponential — polynomials in the linear span. J. Approx. Theory, 66 (1991), 266–278.

    MathSciNet  MATH  Google Scholar 

  • Ron A.: 4. A characterization of the approximation order of multivariate spline spaces. Stud. Math., 98 (1991), No.1, 73–90.

    MathSciNet  MATH  Google Scholar 

  • Ron A.: 5. Linear independence of the translates of an exponential box splines. Rocky Mount. J. Math., 22 (1992), No.1, 331–351.

    MathSciNet  MATH  Google Scholar 

  • Ron A.: 6. Remarks on the linear independence of integer translates of exponential box splines. J. Approx. Theory, 71 (1992), No.1, 61–66.

    MathSciNet  MATH  Google Scholar 

  • Ron A.; Sivakumar N.: 1. A characterization of the approximation order of multivariate spline spaces. Studia Math., 98 (1991), No.1, 73–90.

    MathSciNet  MATH  Google Scholar 

  • Ron A.; Sivakumar N.: 2. The approximation order of box spline spaces. Proc. Amer. Math. Soc., 117 (1993), No.2, 473–482.

    MathSciNet  MATH  Google Scholar 

  • Ron A.; Zuowei Shen: Compactly supported tight affine spline frames in L 2 (ℝ d). Math. Comput., 67 (1998), No.221, 191–207.

    MATH  Google Scholar 

  • Rong Loh: Convex B — spline surfaces. Comput. Aided. Des., 13 (1981), 145–149.

    Google Scholar 

  • Rong Qin: 1. Spline finite — point method. J. on Numerical Methods and Computer Applications, 2 (1981), 68–81.

    Google Scholar 

  • Rong Qin: 2. Spline boundary element method. J. of Kwangsi Univ., 2 (1981), 1–15.

    Google Scholar 

  • Rong Qin: 3. Fundamentals and application of spline boundary element method. In ”Boundary Elements”, Proceeds of the Fifth Internat. Conf. Hiroshima, Japan, 1983, eds: C.A. Brebia, T. Futagami, M. Tanaka, Springer V. (1983), 949–961.

    Google Scholar 

  • Rong — Qing — Jia: 1. Linear independence of translates of a box spline. J. Approx. Theory, 40 (1984), 158–160.

    MathSciNet  MATH  Google Scholar 

  • Rong — Qing — Jia: 2. Approximation order from certain spaces of smooth bivariate splines on a three — direction mesh. Transactions of AMC, 295 (1986), No.1, 199–210.

    Google Scholar 

  • Rong — Qing — Jia: 3. LΔ — boundedness of L 2 — projections on splines for a multiple geometric mesh. Math. Comput., 48 (1987), 675–690.

    Google Scholar 

  • Rong — Qing — Jia: 4. Spline interpolation at knot averages. Constructive Approx., 4 (1988), No.1, 1–7.

    MATH  Google Scholar 

  • Ronto N.I.: Application of the method of collocation to solve boundary value problems. Ukrain. Mat. Z., 23 (1971), 415–421.

    MathSciNet  MATH  Google Scholar 

  • Roos H.G.: Global uniformly convergent schemes for a singularly perturbed boundary-value problem using patched base spline — functions. J. Comput. Appl. Math., 29 (1990), No.1, 69–77.

    MathSciNet  MATH  Google Scholar 

  • Roosen C.; Hastie T.: Automatic smoothing spline projection pursuit. J. Comput.Graphical Statistics, 3 (1994), 235–248.

    Google Scholar 

  • Ropela S.: 1. Spline Bases in Besov spaces. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys., 24 (1976), 319–325.

    MathSciNet  MATH  Google Scholar 

  • Ropela S.: 2. Decomposition lemma and unconditional spline bases. Bull. Acad. Pol. Sci. Ser. Sci. Math., 24 (1976), No.7, 467–470.

    MathSciNet  MATH  Google Scholar 

  • Ropela S.: 3. Minimum error bounds for multidimensional spline approximation. Bull. Acad. Polon Sci. Ser. Math. Astron. Phys., 24 (1976), 467–470.

    MathSciNet  MATH  Google Scholar 

  • Rose de T.D.; Barsky B.A.: Geometric continuity, shape parameters and geometric construction for Catmul — Ronn splines. ACM Transactions on Graphics, 7 (1988), 1–41.

    Google Scholar 

  • Rose L. Lauren: Modules bases for multivariate splines. J.Approx. Theory, 86 (1996), No.1, 13–20.

    MathSciNet  MATH  Google Scholar 

  • Rosen J.B.: Minimum error bounds for multidimensional spline approximation. J. Comput. Syst. Sci., 5 (1971), 430–452.

    MATH  Google Scholar 

  • Rosen J.B.; LaFata P.S.: Interactive graphical spline approximation to boundary value problem. Proc. ACM 1971, Annal. Conf. ACM, New York, (1971), 466–481.

    Google Scholar 

  • Rosenblat M.: 1. The local behaviour of the derivative of a cubic spline interpolator. J. Approx. Theory, 15 (1975), 382–387.

    Google Scholar 

  • Rosenblat M.: 2. Asymptotics and representation of cubic spline. J. Approx. Theory, 17 (1976), 332–343.

    Google Scholar 

  • Rosman B.H.: 1. Extension of results by Rice and Schumaker on spline approximation. SIAM J. Numer. Anal., 7 (1970), 314–316.

    MathSciNet  MATH  Google Scholar 

  • Rosman B.H.: 2. Another approach to the cubic interpolating spline. Amer. Math. Monthly, 80 (1973), 927–930.

    MathSciNet  MATH  Google Scholar 

  • Rouff M.: 1. The computation of C k spline functions. Computers Math. Applic., 23 (1992), No.1, 103–110.

    MathSciNet  MATH  Google Scholar 

  • Rouff M.: 2. On the use of C k -spline functions. Systems and Netwarks: Math. Theory and Appls. Math. Res. vol.79, Akad. Verlag 1994, 441–444.

    Google Scholar 

  • Rouff M.; Alaoui M.: Computation of dynamical electromagnetic problems using Lagrangian formalism and multidimensional C k -spline functions. ZAMM, 76 (1996), Suppl.1, 513–514.

    MATH  Google Scholar 

  • Rouff M.; Zhang W.L.: C k spline functions and linear operators. Comput. Math. Appl. 28 (1994), No.4, 51–59.

    MathSciNet  MATH  Google Scholar 

  • Roulier J.; McAllister D.: Interpolation by convex quadratic splines. Math. of Computation, 32 (1978).

    Google Scholar 

  • Roulier J.; Passow E.: Monotone and convex spline interpolation. SIAM J. Numer. Anal., 14 (1977), No.5.

    Google Scholar 

  • Rozenthal Paulo; Gattass Marcelo: Geometrical properties in the B — spline representation of arbitrary domains. Commun. Appl. Numer. Methods, 3 (1987), 345–349.

    MATH  Google Scholar 

  • Rozhenko A.I.: 1. Osnovîe svoistva g — splainov i algoritm ih postroenija na osnove Hermitovîh konecinov elementov. Vycisl. Alg. v Zadaciah Mat. Fiz. Novosibirsk, (1985), 113–127.

    Google Scholar 

  • Rozhenko A.I.: 2. Variational rational splines of several variables. (russian). Model. Mekh. 5 (1991), No.1, 78–88.

    MathSciNet  Google Scholar 

  • Rozhenko A.I.: 3. Estimates for the convergence of rational D m — splines. (russian). Model. Mekh. 5 (1991), No.1, 89–101.

    MathSciNet  Google Scholar 

  • Rozhenko A.I.: 4. Variational rational splines of several variables. (russian). Model. Mekh., 5 (1991), No.1, 78–88.

    MathSciNet  Google Scholar 

  • Rozhenko A.I.: 5. Variational rational splines of many variables. Bull. Nov. Comp. Center, Numer. Anal. 1 (1993), 63–85.

    Google Scholar 

  • Rozhenko A.I.: 6. On the convergence of abstract variational splines. East J. Approx., 1 (1995), No.1, 25–36.

    MathSciNet  MATH  Google Scholar 

  • Rozhenko A.I.; Vasilenko V.A.: Variational approach in abstract splines: achievements and open problems. East J. Approx., 1 (1995), No.3, 277–308.

    MathSciNet  MATH  Google Scholar 

  • Rubin S.G.; Graves R.A.: 1. Viscous flux solutions with a cubic spline approximation. Computers and Fluids, 3 (1975), 1–36.

    MathSciNet  MATH  Google Scholar 

  • Rubin S.G.; Graves R.A.: 2. Cubic Spline Approximation for Problems in Fluid Mechanics. NASA TR R-436, Washington D.C., (1975).

    Google Scholar 

  • Rubin S.G.; Khosla P.K.: Higher order numerical solutions using cubic splines. S.I. AIAA, 14 (1976), 851–858.

    MathSciNet  MATH  Google Scholar 

  • Rudenko A.A.: On the best L 1 approximation of some classes of periodic functions by generalized splines. (russian). Optimization of approximation methods. (russian), Akad. Nauk Ukrainy Inst. Mat. Kiev, (1992), 79–84.

    Google Scholar 

  • Rusakov S.V.: A parametric difference spline scheme for problems of the dynamics of a viscons fluid. Russ. Acad. Sci. Dokl. Math., 47 (1993), No.1, 73–78.

    MathSciNet  Google Scholar 

  • Russell R.D.: 1. Collocation for systems of boundary value problems. Numer. Math., 23 (1974), 119–135.

    MathSciNet  MATH  Google Scholar 

  • Russell R.D.: 2. Efficiencies of B — spline methods for solving differential equations. Proc. Fifth. Manitoba Conf. Numer. Math., 599–617.

    Google Scholar 

  • Russell R.D.: 3. A comparison of collocation and finite differences for two point boundary value problmes. SIAM J. Numer. Anal., 14 (1977), 19–39.

    MathSciNet  MATH  Google Scholar 

  • Russell R.D.; Christiansen J.: Error analysis for spline collocation methods with application to knot selection. Math. Comput., 32 (1978), 415–419.

    MathSciNet  MATH  Google Scholar 

  • Russell R.D.; Shampine L.F.: 1. A collocation method for boundary value problems. Numer. Math., 19 (1972), 1–28.

    MathSciNet  MATH  Google Scholar 

  • Russell R.D.; Shampine L.F.: 2. Numeical methods for singular boundary value problems. SIAM J. Numer. Anal., 12 (1975), 12–36.

    MathSciNet  Google Scholar 

  • Russel R.D.; Sun W.: Spline collocation differentiation matrices. SIAM J. Numer. Anal., 34 (1997), No.6, 2274–2287.

    MathSciNet  Google Scholar 

  • Russel R.D.; Varah J.M.: A comparison of global methods for linear two — point boundary value problems. Math. Comput., 29 (1975), 1007–1019.

    MathSciNet  Google Scholar 

  • Rutishauser H.: Bemerkungen zur glatten Interpolation. Z. Angew. Math. Phys. II, (1960), 508–513.

    MathSciNet  Google Scholar 

  • Rvachev V.A.: Spline representation by finite functions. Dokl. Akad. Nauk. Ukrain. SSR. Kiev, 2 (1973), 123–126.

    Google Scholar 

  • Rvachev V.A.; Fedotova E.A.: Ob izpolzovanii kubiceskix splainov v reşenii craevîh zadaci matematiceskoi fiziki. Vest. Harkov. Politehn. Inst., 113 (1976), 41–46.

    Google Scholar 

  • Rvacev V.A.; Kuznichenko V.M.: Generalized Taylor series on the basis of splines of infinite smoothness. (russian). Model. Mekh., 5 (1991), No.5, 86–94.

    MathSciNet  Google Scholar 

  • Rybalka S.A.; Schumilov B.M.: O lokalnoi approximatic ploskih krivîh splainami pervoi stepeni v Hausdorfoi metrike. Izv. Vyss. Ucebn. Zav. Matematika, 8 (1991), 80–81.

    Google Scholar 

  • S ablonniére P.: 1. Spline and Bézier polygone associated with a polynomial spline curve. Comput. Aided Des., 10 (1978), 257–261.

    Google Scholar 

  • S ablonniére P.: 2. Interpolation by quadratic splines on triangles and squares. Comput. Ind., 3 (1982), 45–52.

    Google Scholar 

  • S ablonniére P.: 3. Bernstein — Bézier methods for the construction of bivariate spline approximants. Comput. Aided. Geom. Des., 2 (1985), 29–36.

    MATH  Google Scholar 

  • S ablonniére P.: 4. Error bounds for Hermite interpolation by quadratic splines on an α — triangulation. IMA J. Numer. Anal., 7 (1987), 495–508.

    MathSciNet  MATH  Google Scholar 

  • S ablonniére P.: 5. Positive spline operators and orthogonal splines. J. Approx. Theory, 52 (1988), 28–42.

    MathSciNet  Google Scholar 

  • S ablonniére P.: 6. Quasi-interpolants associated with H-splines on a three-direction mesh. Comput. Appl. Math., 66 (1996), No.1–2, 433–442.

    MathSciNet  MATH  Google Scholar 

  • Sablonnière P.; Sbibih D.: 1. Spline integral operators exact on polynomials. Approximation Theory Appl. 10 (1994), No.3, 56–73.

    MATH  Google Scholar 

  • Sablonnière P.; Sbibih D.: 2. B — splines à supports hexagonaux sur un rèsau tridirection all règulier du plan. C.R. Acad. Sci. Paris, Ser. I 319, (1994), No.3, 277–282.

    MathSciNet  MATH  Google Scholar 

  • Sablonnière P.; Laghchim-Lahlou M.: Élément finis polynomiaux composés de classe C r. C.R. Acad. Sci. Paris, Ser. I, 316 (1993), No.5, 503–508.

    MathSciNet  MATH  Google Scholar 

  • Sabozov M.S.; Juhanotov N.N.: Priblijennoe vîčislenie singuljamovo integrala i integrala tipa Cauchy s pomosciu Hermitovîh kubiceskih splainov. Dokl. Alad. Nauk. Tadj. SSR, 25 (1982), 643–647.

    Google Scholar 

  • Safraz M.: 1. Interpolatory rational cubic spline with brased point and interval tension control. Computers and Graphics, 16 (1992), No.4, 427–430.

    Google Scholar 

  • Safraz M.: 2. A geometric rational spline with tension controls an alternative to the weighted v — splines. PUJM, 26 (1993), 27–40.

    Google Scholar 

  • Safraz M.: 3. A geometric characterization of parametric rational quadratic curves. J.Math. Punjab Univ., 26 (1993), 41–48.

    Google Scholar 

  • Safraz M.: 4. A C 2 — rational cubic spline which has linear denominator and shape control. Annales Univ. Sci. Budapest, 37 (1994), 53–62.

    Google Scholar 

  • Safraz M.: 5. Freeform rational bicubic spline surfaces with tension control. Facta Univ. Ser. Math. Inform., 9 (1994), 83–93.

    Google Scholar 

  • Said H.B.: C l interpolation on a polygon. Applied Math. and Computation, 27 (1988), No.3, 217–229.

    MathSciNet  MATH  Google Scholar 

  • Sakai M.: 1. Error estimation in piecewise Hermite interpolation. Mem. Fac. Sci. Kyushu Univ. Ser. A, 23 (1969), 171–178.

    Google Scholar 

  • Sakai M.: 2. Spline interpolation and two — point boundary value problems. Mem. Fac. Sci. Kyushu Univ. Ser. A, 24 (1970), 17–34.

    MathSciNet  MATH  Google Scholar 

  • Sakai M.: 3. Multi — dimensional cardinal spline function and its applications. Mem. Fac. Sci. Kyushu Univ. Ser. A, 24 (1970), 40–46.

    MathSciNet  MATH  Google Scholar 

  • Sakai M.: 4. Piecewise cubic interpolation and two — point boundary value problems. Publ. Res. Inst. Math. Sci., 7 (1971), 345–362.

    MathSciNet  MATH  Google Scholar 

  • Sakai M.: 5. Piecewise cubic interpolation and deferred correction. Mem. Fac. Sci. Kyushu Univ. Ser A, 26 (1972), 339–350.

    MathSciNet  MATH  Google Scholar 

  • Sakai M.: 6. Ritz method for two — point boundary value problem. Mem. Fac. Sci. Kyushu Univ. Ser. A, 27 (1973), 83–97.

    MathSciNet  MATH  Google Scholar 

  • Sakai M.: 7. Cubic spline functions and difference methods to two — point boundary value problems. Mem. Fac. Sci. Kynshu Univ. Ser A, (1974), 43–58.

    Google Scholar 

  • Sakai M.: 8. Numerical solution of boundary value problems for second order functional equations by the use of cubic splines. Mem. Fac. Sci. Kyushu Univ. A, 29 (1975), 113–122.

    MATH  Google Scholar 

  • Sakai M.: 9. Cubic spline interpolation and two — sided difference methods to two — point boundary value problems. Rep. Fac. Sci. Kagoshima Univ. (Math. Phys. Chem.), 9 (1976), 31–38.

    MATH  Google Scholar 

  • Sakai M.: 10. Two — sided quintic spline approximations for two — point boundary value problems. Rep. Fac. Sci. Kagoshima Univ., 10 (1977), 1–17.

    MATH  Google Scholar 

  • Sakai M.: 11. Spline interpolation and two — aided approximate methods for two — point boundary value problems. Rep. Fac. Sci. Kagoshima Univ., 11 (1978), 1–19.

    MATH  Google Scholar 

  • Sakai M.: 12. Cubic spline interpolation and chopping procedure for two — point boundary value problems. Rep. Fac. Sci. Kagoshima Univ., 11 (1978), 21–24.

    MATH  Google Scholar 

  • Sakai M.: 13. Polynomial spline intepolation and two — point boundary value problems. Rep. Fac. Sci. Kagoshima Univ., 12 (1979), 1–4.

    MATH  Google Scholar 

  • Sakai M.: 14. Two — sided spline approximate methods for two — point boundary value problems. Rep. Fac. Sci. Kagoshima Univ., 13 (1980), 15–31.

    MATH  Google Scholar 

  • Sakai M.: 15. Error bounds for spline interpolation. Rep. Fac. Sci. Kagoshima Univ., 13 (1980), 1–10.

    MATH  Google Scholar 

  • Sakai M.: 16. End conditions for quintic spline interpolation. Rep. Fac. Sci. Kagoshima Univ., 13 (1980), 11–13.

    MATH  Google Scholar 

  • Sakai M.: 17. Some new linear relations for odd degree polynomial splines at mid — points. Proc. Jap. Acad. Ser. A, 59 (1983), 24–25.

    MATH  Google Scholar 

  • Sakai M.: 18. Short term consistency relations for doubly polynomial splines. Proc. Jap. Acad. Ser A, 59 (1983), 104–106.

    MATH  Google Scholar 

  • Sakai M.: 19. On consistency relations for polynomial splines at mesh and mid — point. Proc. Japan. Acad. Ser. A, Math. Sci., 59 (1983), 63–65.

    MathSciNet  MATH  Google Scholar 

  • Sakai M.: 20. Some new consistency relations connecting spline values at mesh and mid points. BIT, 23 (1983), No.4, 543–546.

    MathSciNet  MATH  Google Scholar 

  • Sakai M.: 21. Quadratic spline approximation for boundary value problem. Rep. Fac. Sci. Kagoshima Univ. Math. Phys. Chem., 16 (1983), 1–14.

    MATH  Google Scholar 

  • Sakai M.: 22. Aposteriory improvment of cubic spline approximate solution of two — point boundary value problem. Publ. Res. Inst. Math. Sci., 20 (1984), No.1, 137–149.

    MathSciNet  MATH  Google Scholar 

  • Sakai M.: 23. Asymptotic error estimates for quintic — spline — on — spline interpolation. J. approx. Theory, 43 (1985), No.4, 317–326.

    MathSciNet  MATH  Google Scholar 

  • Sakai M.: 24. A characterization of a class of polynomial splines by convolution. BIT, 26 (1986), 396–397.

    MathSciNet  MATH  Google Scholar 

  • Sakai M.: 25. Biaric spline interpolation. The state of the art of scientific computing and its prospects. (japanese), Sürikaisekikenkyusho Kökyüroku, No.880 (1994), 10–18.

    Google Scholar 

  • Sakai M.; Lopez de Silanes M.C.: A simple rational splines and its application to monotonic interpolation to monotonic data. Numer. Math. 50 (1986), 171–182.

    MathSciNet  MATH  Google Scholar 

  • Sakai M.; Schimidt J.W.: Positive interpolation with rational splines. BIT, 29 (1989), 140–147.

    MathSciNet  MATH  Google Scholar 

  • Sakai M.; Shimanchi H.: Improvment of numerical integration formulas by iterated cubic splines. Rep. Fac. Sci. Kagoshima Univ. Math. Phys. Chem., No. 27 (1994), 27–33.

    MATH  Google Scholar 

  • Sakai M.; Togashi A.: On hyperbolic and trigonometric B — splines on equally spaced knots. Rep. Fac. Sci. Kagoshima Univ. Math. Phys. Chem., (1990), No.23, 13–21.

    Google Scholar 

  • Sakai M.; Usmani R.A.: 1. Cubic spline interpolation at mid — points. Congr. Numer., 34 (1982), 381–400.

    MathSciNet  Google Scholar 

  • Sakai M.; Usmani R.A.: 2. Asymptotic error estimation for spline — on — spline interpolation. Proc. Japan. Acad. 59, Ser A, (1983), 256–259.

    MathSciNet  MATH  Google Scholar 

  • Sakai M.; Usmani R.A.: 3. Quadratic splines and two — point boundary value problem. Publ. Res. Inst. Math. Sci., 19 (1983), 7–13.

    MathSciNet  MATH  Google Scholar 

  • Sakai M.; Usmani R.A.: 4. Spline solutions for nonlinear fourth — order two point boundary value problems. Publ. Res. Inst. Math. Sci., 19 (1983), 135–144.

    MathSciNet  MATH  Google Scholar 

  • Sakai M.; Usmani R.A.: 5. Some new consistency relations connecting spline values and integrals of the spline. BIT, 23 (1983), 399–402.

    MathSciNet  MATH  Google Scholar 

  • Sakai M.; Usmani R.A.: 6. Exponential quadratic splines. Proc. Japan. Acad., 60 (1984), 26–29.

    MathSciNet  MATH  Google Scholar 

  • Sakai M.; Usmani R.A.: 7. Biquadratic spline approximations. Publ. RIMS Kyoto Univ., 20 (1984), 431–446.

    MathSciNet  MATH  Google Scholar 

  • Sakai M.; Usmani R.A.: 8. Some relations between cubic spline interpolation at mid points and mesh points. Math. Jap., 29 (1984), 909–917.

    MathSciNet  MATH  Google Scholar 

  • Sakai M.; Usmani R.A.: 9. On consistency relations for cubic splines — on — splines and asymptotic error estimates. J. Approx. Theory, 45 (1985), 195–200.

    MathSciNet  MATH  Google Scholar 

  • Sakai M.; Usmani R.A.: 10. A posteriori improvement of cubic spline approximate solution of two point boundary value problems. Difference method. Mem. Numer. Math., 10 (1985), 25–41.

    Google Scholar 

  • Sakai M.; Usmani R.A.: 11. On exponential splines. J. Approx. Theory, 47 (1986), No.2, 122–131.

    MathSciNet  MATH  Google Scholar 

  • Sakai M.; Usmani R.A.: 12. A recursion relation for simple rational B — spline. BIT, 27 (1987), No.2, 282–284.

    MathSciNet  MATH  Google Scholar 

  • Sakai M.; Usmani R.A.: 13. A shape preserving area true approximation of histogram by rational splines. BIT, 28 (1988), 329–339.

    MathSciNet  MATH  Google Scholar 

  • Sakai M.; Usmani R.A.: 14. Non polynomial splines and weakly singular two — point boundary value problems. BIT, 28 (1988), 867–876.

    MathSciNet  MATH  Google Scholar 

  • Sakai M.; Usmani R.A.: 15. A class of simple exponential B — splines and their applications to numerical solution to singular perturbation problems. Numer. Math., 55 (1989), 493–500.

    MathSciNet  MATH  Google Scholar 

  • Sakai M.; Usmani R.A.: 16. On spline — on — spline numerical integration formula. J. Approx. Theory, 59 (1989), No.3, 350–355.

    MathSciNet  MATH  Google Scholar 

  • Sakai M.; Usmani R.A.: 17. On orders of approximation of plane curves by parametric cubic splines. BIT, 30 (1990), No.4, 735–741.

    MathSciNet  MATH  Google Scholar 

  • Sakai M.; Usmani R.A.: 18. An application of Chawla’s identity to a different scheme for singular problems. BIT, 30 (1990), No.3, 566–568.

    MathSciNet  MATH  Google Scholar 

  • Sakai M.; Usmani R.A.: 19. On recursion relations for splines. J. Approx. Theory, 65 (1991), No.2, 200–206.

    MathSciNet  MATH  Google Scholar 

  • Sakai M.; Usmani R.A.: 20. Polynomial approximations based on iterated cubic splines and their applications. Rep. Fac. Sci. Kogoshima Univ., Math. Phys. Chem. 26 (1993), 1–9.

    MathSciNet  MATH  Google Scholar 

  • Sakai M.; Usmani R.A.: 21. Shape preserving approximation by rational splines. In: Agarwal R.P. (ed), contrib. in Numer. Math., World Sci. Publ. Co., World. Sci. Ser. Appl. Anal. Vol. 2, (1993), 345–354.

    Google Scholar 

  • Sakai M.; Usmani R.A.: 22. Numerical integration formulas based on iterated cubic splines. Computing 52 (1994), No.3, 309–314.

    MathSciNet  MATH  Google Scholar 

  • Sakai M.; Usmani R.A.: 23. On fair parametric rational cubic curves. BIT, 36 (1996), No.2, 359–377.

    MathSciNet  MATH  Google Scholar 

  • Sakai M.; Usmani R.A.: 24. Numerical integration formulas based on iterated cubic splines II. Computing, 56 (1996), No.1, 87–93.

    MathSciNet  MATH  Google Scholar 

  • Sakakibara S.: 1. Denoising with compactly supported B-spline wavelets. Mathematics with vision (Southampton, 1995), 325–332, domput. Mech. Southampton, 1995.

    Google Scholar 

  • Sakakibara S.: 2. A practice of data smoothing by B-spline wavelets. In Chui C.K. (ed.) et al.: Wavelets: theory, algorithms and applications, Proceedings of the Internat. Conf. on Wavelets, Taormina, Italy, Oct. 1993, Academic Press. 1994, 179–196.

    Google Scholar 

  • Sakalauskas E.I.: Stohasticeskaia projektionnaia splain — reguljarizatija na asnove prinţipa nevjaski. J. Vycisl. Mat. i Mat. — Fiz., 27 (1987), No.9, 1285–1295.

    MathSciNet  MATH  Google Scholar 

  • Salkauskas K.: 1. C 1 splines for interpolation of rapidly changing data. Rocky Mt. J. Math., 14 (1984), 239–250.

    MathSciNet  MATH  Google Scholar 

  • Salkauskas K.: 2. Moving least squares interpolation with thin — plate splines and radial basis functions. Comput. Math. Appl., 24 (1992), No.12, 177–185.

    MathSciNet  MATH  Google Scholar 

  • Salkauskas K.; Bos L.: Weighted splines as optimal interpolations. Rocky Mountain J. Math., 22 (1992), No.2, 705–717.

    MathSciNet  MATH  Google Scholar 

  • Sallam S.: 1. On the stability of quasidouble step spline function approximations for solution of initial value problems. Acta Math. Acad. Sci. Hungaricae, 36 (1980), 207–210.

    MathSciNet  Google Scholar 

  • Sallam S.: 2. On interpolation by quintic splines. Bull. Fac. Sci. Assiut. Univ. A, 11 (1982), 97–106.

    MathSciNet  Google Scholar 

  • Sallam S.: 3. A deficient spline functions approximation to system of first order differential equations. Appl. Math. Modelling, 7 (1983), No.5, 380–382.

    MathSciNet  MATH  Google Scholar 

  • Sallam S.: 4. On the stability of quasidouble step spline approximations for solution of y (n)=f (x,y,y′,…,y (n-1)). Periodica Math. Hungaria, 16 (1), (1985), 1–5.

    MathSciNet  MATH  Google Scholar 

  • Sallam S.: 5. A new algorithm for periodic spline solutions to second order differential equations. Mathematica-Rev. d’Analyse Numer. et Theor. Approx., 15 (1986), No.1, 75–80.

    MathSciNet  MATH  Google Scholar 

  • Sallam S.: 6. Error bounds for certain classes of quintic splines. Acta Sci. Math., 50 (1986), 133–142.

    MathSciNet  MATH  Google Scholar 

  • Sallam S.; Ameen W.: Numerical solution of general n th — order differential equations via splines. Appl. Numer. Math., 6 (1989/90), 225–238.

    Google Scholar 

  • Sallam S.; El Tarazi M.N.: Quadratic spline interpolation on uniform meshes. Appl. Numer. Math., 11 (1993), No.5, 419–427.

    MathSciNet  MATH  Google Scholar 

  • Sallam S.; Hawary El H.M.: A deficient spline function approximation to systems of first order differential equations. I. Appl. Math. Modelling, 7 (1983), 380–382. II. Appl. Math. Modelling, 8 (1984), No.2, 128–132.

    MATH  Google Scholar 

  • Sallam S.; Hussein M.A.: Deficient spline function approximation to second order differential equations. Appl. Math. Modelling, 8 (1984), 408–412.

    MathSciNet  MATH  Google Scholar 

  • Sallam S.; Kar Aballi A.A.: A quartic C 3 -spline collocation method for solving second order initial value problems. J.Comput. Appl. Maths., 75 (1996), No.2, 295–304.

    MATH  Google Scholar 

  • Sale A.H.J.: Note on algorithm 42: Interpolation by certain quintic splines. Comut. J., 13 (1970), 115–116.

    Google Scholar 

  • Sanchez-Reyes J.: Single-valued spline curves in polar coordinates. Comput-Aided Des., 24 (1992), No.6, 307–315.

    MATH  Google Scholar 

  • Sankar P.V.; Ferrari A.: Simple algorithms and arhitectures for B — spline interpolation. IEEE Trans. Pattern. Anal. Mach. Intell., 10 (1988), No.2, 271–276.

    MATH  Google Scholar 

  • Santi E.: On the evaluation of Cauchy principal value integral by rules based on quasiinterpolating splines. J. Comput. Appl. Math., 71 (1996), 1–14.

    MathSciNet  MATH  Google Scholar 

  • Santoro E.: Some probabilistic properties of B — splines and an application to dimensional tolerance. Comput. Aided. Des., 24 (1992), No.11, 619–622.

    MATH  Google Scholar 

  • Sapidis N.S.; Kaklis P.D.: An algorithm for constructing convexity and monotonicity — preserving splines in tension. Computer Aided Geom. Design, 5 (1988), No.2, 127–138.

    MathSciNet  MATH  Google Scholar 

  • Sapidis N.S.; Farin G.: Automatic fairing algorithm for B — spline curves. Comput. Aided. Des. 22 (1990), 121–129.

    MATH  Google Scholar 

  • Sapidis N.S.; Kaklis P.D.; Loukakus T.A.: A method for computing the tension parameters in convexity — preserving spline — in — tension interpolation. Numer. Math., 54 (1988), 179–192.

    MathSciNet  MATH  Google Scholar 

  • Saranen J.: 1. On the convergence of the spline collocation with discontinuous data. Math. Methods. Appl. Sci., 9 (1987), 59–75.

    MathSciNet  MATH  Google Scholar 

  • Saranen J.: 2. The convergence of even degree spline collocation solution for potential problems in smooth domains of the plane. Numer. Math., 53 (1988), 499–512.

    MathSciNet  MATH  Google Scholar 

  • Saranen J.: 3. Extrapolation methods for spline collocation solutions of pseudodifferential equations on curves. Numer. Math., 56 (1989), 385–407.

    MathSciNet  MATH  Google Scholar 

  • Saranen J.; Wendland W.L.: On the asymptotic convergence of collocation methods with spline functions of even degree. Math. Comput., 45 (1985), No.171, 91–108.

    MathSciNet  MATH  Google Scholar 

  • Sard A.: 1. Best approximate integration formulas best approximation formulas. Amer. J. Math., 71 (1949), 80–91.

    MathSciNet  MATH  Google Scholar 

  • Sard A.: 2. Optimal approximations. J. Functional Analysis, 1 (1967), 222–244.

    MathSciNet  MATH  Google Scholar 

  • Sard A.: 3. Optimal approximations an addendum. J. Functional Analysis, 2 (1968), 368–369.

    MathSciNet  MATH  Google Scholar 

  • Sard A.: 4. Approximation based on nonscalar observations. J. Approx. Theory, 8 (1973), 315–334.

    MathSciNet  MATH  Google Scholar 

  • Sarfraz Muhamad: 1. A C 2 -rational cubic spline alternative to the NURBS. Comput. and Graphics, 16 (1992), No.1, 69–77.

    Google Scholar 

  • Sarfraz Muhamad: 2. Designing of curves and surfaces using rational cubics. Comput. and Graphics, 17 (1993), No.5, 529–538.

    Google Scholar 

  • Sarfraz Muhamad: 3. A C 2 -rational cubic spline which has linear denominator and shape control. Aun. Univ. Sci. Budap. R. Eötvös, Sect. Math. 37 (1994), 53–62.

    MathSciNet  MATH  Google Scholar 

  • Sarfraz Muhamad: 4. Freeform rational bicubic spline surfaces with tension control. Facta Univ. Ser. Math. Inf., 9 (1994), 83–93.

    MathSciNet  MATH  Google Scholar 

  • Sarkany E.F.; Liniger W.: Exponential fitting of matricol multistep methods for ordinary differential equations. Math. Comput., 28 (1974), 1035–1052.

    MathSciNet  MATH  Google Scholar 

  • Sarkar B.; Meng C.H.: Parameter optimization in approximating curves and surfaces to measurement data. Comput. Aided Geom. Design, 8 (1991), 267–290.

    MathSciNet  MATH  Google Scholar 

  • Sastry K.S.: Finite difference approximations one — dimensional. Parabolic equations using a cubic spline techique. J. Comput. Appl. Math., 2 (1976), 23–26.

    MathSciNet  MATH  Google Scholar 

  • Sastry K.S.; Bhatta S.K.: A global approximation method for second order nonlinear boundary value problems. Studia Univ. Babeş — Bolyai. Math., 35 (1990), No.1, 60–70.

    Google Scholar 

  • Satteluri U.K.—Iyengar; Radhakrishna A.K. — Pillai: Difference scheme based on spline in compresion for the numerical solution of Burger’s equation in one and two space dimensions. Jour. Math. Phy. Sci., 8 (1984), No.5, 517–540.

    Google Scholar 

  • Satterfeld St. G.; Rogers D.F.: A procedure for generating control lines from a B-spline surfaces. IEEE Computers Graphics and Applications, 5 (1985), 71–75.

    Google Scholar 

  • Sauer T.: Ein algorithmischer Zugang zu Polynomen und Splines. Math. Semesterber., 43 (1996), No.2, 169–189.

    MathSciNet  MATH  Google Scholar 

  • Saunders B.V.; Smith P.W.: Grid generation and optimization using tensor product B-splines. Approx. Theory and its Appl., 3 (1987), No.4, 120–152.

    MathSciNet  MATH  Google Scholar 

  • Savelev I.V.: 1. Spline and branched covering. Russian Math. Surveys, 50 (1995), No.4, 830–831.

    MathSciNet  Google Scholar 

  • Savelev I.V.: 2. Splines and manifolds. (russian), Uspekhi Mat. Nauk, 50 (1995), No.6, 215–216.

    MathSciNet  Google Scholar 

  • Savoie J.: Interpolation par fonctions splines et bornes d’erreurs. Ann. Sci. Math. Québec, 17(1) (1993), 99–113.

    MathSciNet  MATH  Google Scholar 

  • Savkina M. Yu: On the approximation of a function by a Hermite spline of odd degree. (russian). Optimization and approximation methods, Akad. Nauk Ukrainy, Inst. Mat. Kiev, (1992), 85–91.

    Google Scholar 

  • Saxena Anjula: 1. Solution of Cauchy’s problem by deficient lacunary spline interpolants. Studia Univ. Babeş — Bolyai Math., 32 (1987), No.2, 62–70.

    MATH  Google Scholar 

  • Saxena Anjula: 2. Interpolation by almost quartic splines. Acta Math. Hung., 51 (1988), No.3/4, 283–292.

    MATH  Google Scholar 

  • Saxena Anjula: 3. (0, 1, 2, 4) interpolation by G — splines. Periodica Math. Hungarica, 21 (1990), No.4, 261–272.

    Google Scholar 

  • Saxena Anjula: 4. Interpolation by quadratic splines. Ganita, 38 (1989), No.1/2, 76–90.

    MATH  Google Scholar 

  • Saxena Anjula: 5. Birkhoff interpolation by quintic splines. Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 33 (1990), 189–198.

    MATH  Google Scholar 

  • Saxena Anjula; Venturino Ezio: Solving two-point boundary value problems by means of deficient quartic splines. Appl. Math. Comput., 66 (1994), No.1, 25–40.

    MathSciNet  MATH  Google Scholar 

  • Saxena R.B.; Joshi T.C.: 1. Inhomogenous lacunary interpolation by splines. I.(0,2): (0,3), case. Serdica Bulgaricae Math. Publ., 6 (1980), 341–351.

    MathSciNet  MATH  Google Scholar 

  • Saxena R.B.; Joshi T.C.: 2. On quartic spline interpolation. Ganita, 33 (1981), No.2, 247–262.

    MathSciNet  Google Scholar 

  • Saxena R.B.; Joshi T.C.: 3. Lacunary interpolation by even degree polynomial splines. SEA Bull. Math., 11 (1988), No.2, 135–149.

    MathSciNet  MATH  Google Scholar 

  • Saxena R.B.; Iripathi H.C.: 1. (0, 2, 3) and (0, 1, 3) interpolation through splines. Acta Math. Hung., 50 (1987), 1–2, 63–70.

    Google Scholar 

  • Saxena R.B.; Iripathi H.C.: 2. (0, 2, 3) and (0, 1, 3) interpolation by six degree splines. J. Comput. and Apl. Math., 18 (1987), No.3, 395–401.

    MATH  Google Scholar 

  • Şaulev V.K.: Combination de la méthode de Tchaplyguine et de la collocation par spline pour de résolution des equations différentièlles. (russian). Differ. Uravn. Belorus. SSR., Bys, 14 (1978), 1520–1521.

    Google Scholar 

  • Schaback R.: 1. Spezielle rationale Splinefunktionen. J. Approx. Theory, 7 (1973), 281–292.

    MathSciNet  MATH  Google Scholar 

  • Schaback R.: 2. Konstruktion und algebraische Eigenschaften von M — Spline — Interpolierenden. Numer. Math., 21 (1973), 166–180.

    MathSciNet  MATH  Google Scholar 

  • Schaback R.: 3. Optimale Interpolations und Approximations — Systeme. Math. Z., 130 (1973), 339–349.

    MathSciNet  MATH  Google Scholar 

  • Schaback R.: 4. Interpolation mit nichtlinearen Klassen von Spline — Funktionen. J. Approx. Theory, 8 (1973), 173–188.

    MathSciNet  MATH  Google Scholar 

  • Schaback R.: 5. Interpolation with piecewise quadratic visually C 2 Bézier polynomials. Comput. Aided Geom. Design, 6 (1989), 219–233.

    MathSciNet  MATH  Google Scholar 

  • Schaback R.: 6. Adaptive rational splines. Constr. Approx., 6 (1990), 167–179.

    MathSciNet  MATH  Google Scholar 

  • Schäfer E.: Spectral approximation for compact integral operators by degenerate kernel methods. Numer. Funct. Anal. and Optimiz., 2 (1980), 43–63.

    MATH  Google Scholar 

  • Schäfer H.: 1. Glatteninterpolation bei einer Funktion von zwei Veränderlichen. ZAMP, 14 (1963), 90–96.

    MATH  Google Scholar 

  • Schäfer H.: 2. Fehlerabschätzungen bei der Spline — Blending Interpolation. ZAMM, 57 (1977), 299–301.

    Google Scholar 

  • Schatz A.H.; Wahblin L.B.: Interior maximum norm estimates for finite element methods. Math. Comput., 31 (1977), 414–442.

    MATH  Google Scholar 

  • Schechter E.: A piecewise Lagrange interpolation with application to error estimates in finite — difference methods. Studia Univ. Babeş — Bolyai Cluj, Ser. Math. Mech., 16 (1971), 67–73.

    MathSciNet  MATH  Google Scholar 

  • Scheffold E.: 1. Das Spline — Problem als ein Approximationsproblem. 3. Approx. Theory, 12 (1974), 265–282.

    MathSciNet  MATH  Google Scholar 

  • Scheffold E.: 2. Spline — Funktionen mehrerer Veränderlicher. J. Approx. Theory, 23 (1978), No.3, 242–260.

    MathSciNet  MATH  Google Scholar 

  • Schainert G.: Numerische Losung der Laplace — Gleichung mittels Spline — Funktionen. Wiss. Z. Techn. Hochsch. Ilmenau, 23 (1977), 91–99.

    MathSciNet  Google Scholar 

  • Schek H.J.: Dynamische Optimierung zur allgemainen Spline — Approximation mit Ungleichungsnebenbedingungen und Anwendung auf Optimierungsberechnungen beim Entwurf von Strassen. Computing, 10 (1972), 191–204.

    MathSciNet  MATH  Google Scholar 

  • Sehernpp W.: 1. On spaces of distributions related to Schoenberg’s approximation theorems Math. Z., 114 (1970), 340–348.

    MathSciNet  Google Scholar 

  • Sehernpp W.: 2. On the convergence of cardinal logaritmic splines. J. Approx. Theory, 23 (1978), 103–112.

    Google Scholar 

  • Sehernpp W.: 3. A note on the Newman — Schoenberg phenomenom. Math. Z., 167 (1979), 1–6.

    MathSciNet  Google Scholar 

  • Sehernpp W.: 4. Contour integral representation of cardinal spline functions. C.R. Math. Rep. Acad. Sci. Canada, 2 (1980), 165–170.

    MathSciNet  Google Scholar 

  • Sehernpp W.: 5. Periodic splines and nilpotent harmonic analysis. C.R. Math. Rep. Acad. Sci. Canada, 3 (1981), 69–74.

    MathSciNet  Google Scholar 

  • Sehernpp W.: 6. Cardinal exponential splines and Laplace transform. J. Approx. Theory, 31 (1981), 261–271.

    MathSciNet  Google Scholar 

  • Sehernpp W.: 7. A contour integral representation of Euler — Frobenius polynomials. J. Approx. Theory, 31 (1981), 272–278.

    MathSciNet  Google Scholar 

  • Sehernpp W.: 8. Cardinal logarithmic splines and Mallin transform. J. Approx. Theory, 31 (1981), 279–287.

    MathSciNet  Google Scholar 

  • Sehernpp W.: 9. On cardinal exponential splines of higher order. J. Approx. Theory, 31 (1981), 288–297.

    MathSciNet  Google Scholar 

  • Schempp W.; Tippenhauer U.: Reprokerne zu Spline — Grundräumen. Math. Z., 136 (1974), 357–369.

    MathSciNet  MATH  Google Scholar 

  • Scherer K.: 1. On the best approximation of continuous functions by splines. SIAM J. Numer. Anal., 7 (1970), 418–423.

    MathSciNet  MATH  Google Scholar 

  • Scherer K.: 2. A comparision approach to direct theorems for polynomial spline approximation. Proc. Conf. on Theory of Approximation, Poznan, 1972.

    Google Scholar 

  • Scherer K.: 3. Characterization of generalized Lipschitz classes by best appproximation with splines. SIAM J. Numer. Anal., 11 (1974), 283–304.

    MathSciNet  MATH  Google Scholar 

  • Scherer K.: 4. Best approximation by Chebyshevian splines and generalized Lipschitz spaces. Revue Anal. Numer. Theory Approx., 5 (1976), 87–95.

    MathSciNet  MATH  Google Scholar 

  • Scherer K.: 5. Optimal degree of approximation by splines. Proc. Internat. Sympos. Freudenstadt 1976, Plenum, New York, (1977), 139–149.

    Google Scholar 

  • Scherer K.; Shadrin A.Yu.: New upper bound for the B-spline basis condition number. East J. Approx., 2 (1996), No.3, 331–342.

    MathSciNet  MATH  Google Scholar 

  • Scherer K.; Smith P.W.: Existence of best parametric interpolation by curves. SIAM J. Math. Anal., 20 (1989), 160–168.

    MathSciNet  MATH  Google Scholar 

  • Scherer K.; Schumaker L.L.: A dual basis for L — splines and applications. J. Approx. Theory, 29 (1980), 151–169.

    MathSciNet  MATH  Google Scholar 

  • Schlöglmann W.: Eliptische Differetialoperatoren und splines. ZAMM, 58 (1978), 438–439.

    Google Scholar 

  • Schlosser K.H.: Mehrdimensionale Spline — Interpolation mittels Spline — Systemen. ZAMM, 55 (1975) 260–262.

    MathSciNet  Google Scholar 

  • Schmeisser C.: Optimal Quadraturformeln mit semidefiniten Kernen. Numer. Math., 20 (1972), 32–53.

    MathSciNet  MATH  Google Scholar 

  • Schmidt E.; Lancaster P.; Watkins D.: Basis of splines associated with constant coefficient differential operators. SIAM J. Numer. Anal., 12 (1972), 630–645.

    MathSciNet  Google Scholar 

  • Schmidt G.: 1. Zur Spline — Kollocation für Pseudodifferential — gleichungen. Rept. Inst. Math. Akad. Wiss. DDR, 1 (1983), 59–83.

    Google Scholar 

  • Schmidt G.: 2. On spline collocation for singular integral equations. Math. Nachr., 111 (1983), 177–196.

    MathSciNet  MATH  Google Scholar 

  • Schmidt G.: 3. The convergence of Galerkin and collocation methods with splines for pseudodifferential equations on closed curves. Z. Anal. Anwend., 3 (1984), 371–384.

    MATH  Google Scholar 

  • Schmidt G.: 4. On spline collocation methods for boundary integral equation in the plane. Math. Methods in Appl. Sci., 7 (1985), 74–89.

    MATH  Google Scholar 

  • Schmidt G.: 5. Spline collocation for singular integro — differential equations over (0,1). Numer. Math., 50 (1987), 337–352.

    MathSciNet  MATH  Google Scholar 

  • Schmidt G.: 6. Complex splines and singular integral equations — Splines in numerical analysis. (Weissig, 1989), Math. Res., 52, Akademie-Verlag, Berlin (1989), 151–158.

    Google Scholar 

  • Schmidt Jochen W.: 1. Zur Konvergenz von kubiceschen Interpolations — splines. ZAMM, 58 (1978), 109–110.

    MATH  Google Scholar 

  • Schmidt Jochen W.: 2. Bestimmung minimal gekrümmter Splines mit Hilfe dualer Aufgaben. Seminarber. Humboldt — Univ., Berlin, Sekt. Math., (1986), No.80, 92–97.

    Google Scholar 

  • Schmidt Jochen W.: 3. An unconstrained dual program for computing convex C 1 — spline approximants. Computing, 39 (1987), 133–140.

    MathSciNet  MATH  Google Scholar 

  • Schmidt Jochen W.: 4. Results and problems in shape preserving interpolation and approximation with polynomial splines. Math. Research, Vol.52, Berlin, Akademie Verlag, (1989), 159–170.

    Google Scholar 

  • Schmidt Jochen W.: 5. On shape preserving spline interpolation: existence theorems and determination of optimal splines. Banach Center Publ, vol.22, Warsaw. Polish Scient. Publ. (1989), 377–389.

    Google Scholar 

  • Schmidt Jochen W.: 6. Monotone data smoothing by quadratic splines via dualization. (german). ZAMM, 70 (1990), No.8, 299–307.

    MATH  Google Scholar 

  • Schmidt Jochen W.: 7. Convex interval interpolation with cubic splines. I. BIT, 26 (1986), No.3, 377–387; II. BIT, 31 (1991), 328–340.

    MATH  Google Scholar 

  • Schmidt Jochen W.: 8. Rational biquadratic C 1 — splines in S — convex interpolation. Computing, 47 (1991), 87–96.

    MathSciNet  MATH  Google Scholar 

  • Schmidt Jochen W.: 9. Beiträge zur konvexen Interpolation, Histopolation und Approximation durch Spline — Funktionen. Mitt. Math. Gesellsch. Hamburg, 12 (1991), No.3, 603–628.

    MATH  Google Scholar 

  • Schmidt Jochen W.: 10. Dual algorithms for solving convex partially separable optimization problems. Iber. d. Dt. Math. — Verein, 94 (1992), 40–62.

    MATH  Google Scholar 

  • Schmidt Jochen W.: 11. Constrained smoothing of Histogram by quadratic splines. Computing, 48 (1992), 97–107.

    MathSciNet  MATH  Google Scholar 

  • Schmidt Jochen W.: 12. Vereinheitlichte Darlegung von dualen Algorithmen zum restringierten. Ausgleichen von Punktmengen und Histogrammen durch quadratische Spline — Funkitionen. Wiss. Z. Tech. Univ. Dresden, 41 (1992), No.4, 68–74.

    MathSciNet  MATH  Google Scholar 

  • Schmidt Jochen W.: 13. Positive, monoton and S — convex C l — interpolation on rectangular grids. Computing, 48 (1992), 363–371.

    MathSciNet  MATH  Google Scholar 

  • Schmidt Jochen W.: 14. Positive, monotone and S — convex C 1 — histopolation on rectangular grids. Computing 50, (1993), No.1, 19–30.

    MathSciNet  MATH  Google Scholar 

  • Schmidt Jochen W.: 15. Staircase algorithm and convex spline interpolation. ZAMM 75 (1995), Supl. I-II, 661–662.

    Google Scholar 

  • Schmidt Jochen W.: 16. Positive and S-convex C 1 -interpolation of gridded three dimensional data. Numer. Funct. Anal. Optimization, 16 (1995), No.1–2, 233–246.

    MATH  Google Scholar 

  • Schmidt Jochen W.: 17. S-convexity preserving interpolation of gridded three dimensional data using rational C 1 splines. In Bainov D. (ed), Proceeds. Third. Internat. Colloq. on Numer. Anal. Plovdiv, Bulgaria, 1994, Utrecht V.S.P., (1995), 161–170.

    Google Scholar 

  • Schmidt Jochen W.: 18. Staircase algorithm and construction of convex spline interpolant up to the continuity C 3. Comput. Math. Appl., 31 (1996), No.4–5, 67–79.

    MATH  Google Scholar 

  • Schmidt Jochen W.: 19. Upper bounds for the second order derivatives in convex spline interpolation. Investigacion Oper., 17 (1996), 144–157.

    Google Scholar 

  • Schmidt Jochen W.: 20. Strip interpolations using splines on refined grids. In: Recent Advances in Appl. Math., Kuwait Univ. Abstracts, (1996), 149–157.

    Google Scholar 

  • Schmidt J.W.; Hess W.: 1. Schwach verkoppelte Ungleichunssysteme und Konvexe Spline — Interpolation. Elem. der Math., 39 (1984), 85–95.

    MathSciNet  MATH  Google Scholar 

  • Schmidt J.W.; Hess W.: 2. Positive interpolation with rational quadratic splines. Computing, 38 (1987), No.3, 261–267.

    MathSciNet  MATH  Google Scholar 

  • Schmidt J.W.; Hess W.: 3. Quadratic and related exponential splines in shape preserving interpolation. J. Comput. and Appl. Math., 18 (1987), No.3, 321–329.

    MathSciNet  MATH  Google Scholar 

  • Schmidt J.W.; Hess W.: 4. An unconstrained dual program for computing convex C 1 — spline approximants. Computing, 39 (1987), No.2, 133–140.

    MathSciNet  MATH  Google Scholar 

  • Schmidt J.W.; Hess W.: 5. Positivity of cubic polinomials on intervals and positve spline intepolation. BIT, 28 (1988), 340–352.

    MathSciNet  MATH  Google Scholar 

  • Schmidt J.W.; Hess W.: 6. Spline interpolation under two — sided restrictions on the derivatives. ZAMM, 69 (1989), No.10, 353–365.

    MathSciNet  MATH  Google Scholar 

  • Schmidt J.W.; Hess W.: 7. Shape preserving C 2 -spline histopolation. J. Approx. Theory, 75 (1993), No.3, 325–345.

    MathSciNet  MATH  Google Scholar 

  • Schmidt J.W.; Hess W.: 8. S — convex, monotone and positive interpolation with rational bicubic splines of C 2 — continuity. BIT, 33 (1993), No.3, 496–511.

    MathSciNet  MATH  Google Scholar 

  • Schmidt J.W.; Hess W.: 9. An always successful method in univariate convex C 2 interpolation. Numer. Math. 71 (1995), No.2, 237–252.

    MathSciNet  MATH  Google Scholar 

  • Schmidt J.W.; Hess W.: 10. Fair upper bounds for the curvature in univariate convex interpolation. BIT, 37 (1997), No.4, 948–960.

    MathSciNet  MATH  Google Scholar 

  • Schmidt J.W.; Hess W.; Nordheihm T.: Shape preserving histopolation using rational quadratic splines. Computing, 44 (1990), 245–258.

    MathSciNet  MATH  Google Scholar 

  • Schmidt J.W.; Metke H.: Convergenz von quadratischen Interpolations und Flächenabgleichssplines. Computing, 19 (1978), 351–363.

    MATH  Google Scholar 

  • Schmidt J.W.; Sakai M.: A criterion for the positivity of rational cubic C 2 — spline interpolants. Computing, 44 (1990), No.4, 365–368.

    MathSciNet  MATH  Google Scholar 

  • Schmidt J.W.; Scholz Isa: A dual algorithm for convex — concave data smoothing by cubic C 2 — splines. Numer. Math., 57 (1990), 333–350.

    MathSciNet  MATH  Google Scholar 

  • Schmidt J.W.; Walther M.: Tensor product splines on refined grids in S-convex interpolation. In: Multivariate Approximation (W. Haussmann e.a. eds.), MR, Vol.101, 189–202, Akademie Verlag, Berlin, 1997.

    Google Scholar 

  • Schneider B.O.: Ray tracing rational B-spline patches in VLSI. In ”Advanced in Computer Graphics Hardware II” (eds. Kuijk A.A.M. and Strasser W.) Springer V., 1988.

    Google Scholar 

  • Schneider R.: Stability of a spline collocation method for strongly elliptic multidimensional singular integral equations. Numer. Math., 58 (1991), 855–873.

    MathSciNet  MATH  Google Scholar 

  • Schoenberg I.J.: 1. Contribution to the problem of approximation of equidistant data by analitic functions. Part. A: On the problem of smoothing of graduations. A first class of analitic approximation formulae. Quart. Appl. Math., 4 (1946), 45–88. Part B: On the problem of osculatory interpolation. A second class of analitic approximation formulae. Quart. Appl. Math., 4 (1946), 112–441.

    MathSciNet  Google Scholar 

  • Schoenberg I.J.: 2. Spline functions, convex curves and mechanical quadratures. Bull. Amer. Math. Soc., 64 (1958), 352–357.

    MathSciNet  MATH  Google Scholar 

  • Schoenberg I.J.: 3. Spline interpolation and best quadrature formulae. Bull. Amer. Math. Soc., 70 (1964), 143–148.

    MathSciNet  MATH  Google Scholar 

  • Schoenberg I.J.: 4. Spline interpolation and the higher derivatives. Proc. Nat. Acad. Sci. USA, 51 (1964), 24–28.

    MathSciNet  MATH  Google Scholar 

  • Schoenberg I.J.: 5. On best approximation of linear operators. Indag. Math., 26 (1964), 155–163, and Nederl. Akad. Wetensch. Proc. Ser. A, 67 (1964), 155–163.

    MathSciNet  Google Scholar 

  • Schoenberg I.J.: 6. On trigonometric spline interpolation. J. Math. Mech., 13 (1964), 795–825.

    MathSciNet  MATH  Google Scholar 

  • Schoenberg I.J.: 7. Spline functions and the problem of graduation. Proc. Nat. Acad. Sci. USA, 52 (1964), 947–950.

    MathSciNet  MATH  Google Scholar 

  • Schoenberg I.J.: 8. On monosplines of least deviation and best quadrature formulae. SIAM J. Numer. Anal., 2 (1965), 144–170.

    MathSciNet  Google Scholar 

  • Schoenberg I.J.: 9. On monosplines of least square deviation and best quadrature formulae. II. SIAM J. Numer. Anal., 3 (1966), 321–328.

    MathSciNet  MATH  Google Scholar 

  • Schoenberg I.J.: 10. On Hermite — Birkhoff interpolation. J. Math. Anal. Appl., 16 (1966), 538–543.

    MathSciNet  MATH  Google Scholar 

  • Schoenberg I.J.: 11. On the Ahlberg — Nilson extension of spline interpolation the g — splines and their optimal properties. J. Math. Anal. Appl., 21 (1968), 207–231.

    MathSciNet  MATH  Google Scholar 

  • Schoenberg I.J.: 12. On spline interpolation at all integer points of the real axis. Mathematica (Cluj), 10 (1968), 151–170.

    MathSciNet  Google Scholar 

  • Schoenberg I.J.: 13. Spline interpolation and the higher derivatives. Abhandlungen aus Zahlentheorie und Analysis. Hrsg. von Turân, Deutsch. Verlag Wiss. Berlin, (1968), 279–295.

    Google Scholar 

  • Schoenberg I.J.: 14. Cardinal interpolation and spline functions. J. Approx. Theory, 2 (1969), 167–206.

    MathSciNet  MATH  Google Scholar 

  • Schoenberg I.J.: 15. Spline interpolation and the higher derivatives. Number Theory and Analysis (papers in honor of Edmund Landau), Plenum, New York, (1969), 279–295.

    Google Scholar 

  • Schoenberg I.J.: 16. A second look at approximate quadrature formulae and spline interpolation. Advances in Math., 4 (1970), 277–300.

    MathSciNet  MATH  Google Scholar 

  • Schoenberg I.J.: 17. On equidistant cubic spline interpolation. Bull. Amer. Math. Soc., 77 (1971), 1039–1044.

    MathSciNet  MATH  Google Scholar 

  • Schoenberg I.J.: 18. The perfect B — splines and a time control problem. Israel J. Math., 10 (1971), 261–274.

    MathSciNet  MATH  Google Scholar 

  • Schoenberg I.J.: 19. Notes on spline functions. I. The limit of the interpolating periodic spline functions as their degree tends to infinity. Nederl. Akad. Wetensch. Proc. Ser A, 75 (1972), 412–422.

    MathSciNet  MATH  Google Scholar 

  • Schoenberg I.J.: 20. Cardinal interpolation and spline functions. II. Interpolation of data of power growth. J. Approx. Theory, 6 (1972), 404–420.

    MathSciNet  MATH  Google Scholar 

  • Schoenberg I.J.: 21. Notes on spline function III. On the convergence of the interpolating cardinal splines as their degree tends to infinity. Israel J. of Math., 16 (1973), 87–93.

    MathSciNet  MATH  Google Scholar 

  • Schoenberg I.J.: 22. The elementary cases of Landan’s problem of inequalities between derivatives. Amer. Math. Monthly, 80 (1973), 121–158.

    MathSciNet  MATH  Google Scholar 

  • Schoenberg I.J.: 23. Spline and histograms. Spline functions and Approx. Theory, Eds: A. Meier and A. Shama, Birkhäuser Verlag, Basel — Stuttgart, (1973), 277–328 and 329–358.

    Google Scholar 

  • Schoenberg I.J.: 24. Spline functions and differential equations — first order equations. Studies in Numerical Analysis. Ed. by B.K.P. Scaife. Acad. Press, London-New York, (1974), 311–324.

    Google Scholar 

  • Schoenberg I.J.: 25. Cardinal interpolation and spline functions. VI. Semicardinal interpolation and quadrature formulae. J. d’Analyse Math., 27 (1974), 159–204.

    MathSciNet  MATH  Google Scholar 

  • Schoenberg I.J.: 26. Cardinal interpolation and spline function. VII. The bihaviour of cardinal spline interpolants as their degree tends to infinity. J. d’Analyse Math., 27 (1974), 205–229.

    MathSciNet  MATH  Google Scholar 

  • Schoenberg I.J.: 27. On semicardinal quadrature formulae. Math. Comput., 28, (1974), 483–492.

    MathSciNet  MATH  Google Scholar 

  • Schoenberg I.J.: 28. Notes on spline functions V. Orthogonal or Legendre splines. J. Approx. Theory, 13 (1975), 84–104.

    MathSciNet  MATH  Google Scholar 

  • Schoenberg I.J.: 29. On cardinal spline smoothing. In Proc. Internat. Symposium on Approx. Theory, Campinas, Brazil, 1177 J. B. Prolla ed. North — Holland Publ. Co. (1979), 383–407.

    Google Scholar 

  • Schoenberg I.J.: 30. Interpolating splines as limits of polynomials. Linear Algebra Appl., 52–53 (1983), 817–828.

    MathSciNet  Google Scholar 

  • Schoenberg I.J.: 31. A new approach to Euler splines. J. Approx. Theory, 39 (1983), 324–337.

    MathSciNet  MATH  Google Scholar 

  • Schoenberg I.J.: 32. Euler’s contributions to cardinal spline interpolation. In Leonardt Euler, 1707–1789, Beiträge zu Leben und Werk. Birkhäuser Verlag, Basel, (1984), 199–213.

    Google Scholar 

  • Schoenberg I.J.; Curry H.B.: On Pólya frequency junction. IV. The fundamental spline functions and their limits. J. Anal. Math., 17 (1966), 71–107.

    MathSciNet  MATH  Google Scholar 

  • Schoenberg I.J.; Lipow P.R.: 1. Cardinal interpolation and spline functions. IV. The B — splines for cardinal Hermite interpolation. Linear Algebra and its Applic., 7 (1973), 1–42.

    MATH  Google Scholar 

  • Schoenberg I.J.; Lipow P.R.: 2. Cardinal interpolation and spline function III. Cardinal Hermite Interpolation. Linear Algebra and Appl., 6 (1973), 273–304.

    MathSciNet  MATH  Google Scholar 

  • Schoenberg I.J.; Richards F.B.: Notes on spline functions IV.: A cardinal spline analogue of the theorem of the brothers Markov. Israel J. Math., 16 (1973), 94–102.

    MathSciNet  MATH  Google Scholar 

  • Schoenberg I.J.; Sharma A.: 1. The interpolatory background of the Euler — Maclaurin quadrature formula. Bull. Amer. Math. Soc., 77 (1971), 1034–1038.

    MathSciNet  MATH  Google Scholar 

  • Schoenberg I.J.; Sharma A.: 2. Cardinal interpolation and spline functions. V. The B — splines for cardinal Hermite interpolation. Linear Algebra and its Applic., 7 (1973), 1–42.

    MathSciNet  MATH  Google Scholar 

  • Schoenberg I.J.; Whitney A.: 1. Sur la positività des déterminants de translation des fonctions de fréquence de Pólya avec une application à une problème d’interpolation. C.R. Acad. Sci. Paris Sér. A, 228 (1949), 1996–1998.

    MathSciNet  MATH  Google Scholar 

  • Schoenberg I.J.; Whitney A.: 2. On Pólya frequency functions. III. The positivity of translation determinants with an application to the interpolation problem by spline curves. Trans. Amer. Math. Soc., 74 (1953), 246–259.

    MathSciNet  MATH  Google Scholar 

  • Schoenberg I.J.; Ziegler Z.: On cardinal monosplines of least L — norm on the real axis. J. Analysis Math., 23 (1970), 409–436.

    MathSciNet  MATH  Google Scholar 

  • Schoenberg H.: Tschebyscheff — Approximation mit rationalen Splines bei freien Knoten. J. Approx. Theory, 23 (1978), 214–228.

    MathSciNet  Google Scholar 

  • Schoembie S.W.: Spline Petrov — Galerkin methods for the numerical solution of the Korteweg — de Vries equations. IMA J. Numer. Anal., 2 (1982), 95–109.

    MathSciNet  Google Scholar 

  • Schreiner M.: The combination of spline approximation und numerical filtering in satellite gradiometry. ZAMM, 75 (1995), Supl. I-II, 665–666.

    Google Scholar 

  • Schultz M.H.: 1. Error bounds for the Rayleigh — Ritz — Galerkin methods. J. Math. Anal. Appl., 27 (1969), 524–533.

    MathSciNet  MATH  Google Scholar 

  • Schultz M.H.: 2. Multivariate L — spline interpolation. J. Approx. Theory, 2 (1969), 127–135.

    MATH  Google Scholar 

  • Schultz M.H.: 3. L — multivariate approximation theory. SIAM J. Numer. Anal., 6 (1969), 161–183.

    MathSciNet  MATH  Google Scholar 

  • Schultz M.H.: 4. L 2 — multivariate approximation theory. SIAM J. Numer. Anal., 6 (1969), 181–209.

    Google Scholar 

  • Schultz M.H.: 5. L 2 — approximation theory of even order multivariate splines. SIAM J. Numer. Anal., 6 (1969), 467–475.

    MathSciNet  MATH  Google Scholar 

  • Schultz M.H.: 6. Rayleigh — Ritz — Galerkin methods for multidimensional problems. SIAM J. Numer. Anal., 6 (1969), 523–538.

    MathSciNet  MATH  Google Scholar 

  • Schultz M.H.: 7. Approximation theory of multivariate spline functions in Sobolev spaces. SLAM J. Numer. Anal., 6 (1969), 570–582.

    MATH  Google Scholar 

  • Schultz M.H.: 8. The Galerkin method for nonselfadjoint differential equations. J. Math. Anal. Appl., 28 (1969), 647–651.

    MathSciNet  MATH  Google Scholar 

  • Schultz M.H.: 9. Elliptic spline functions and the Rayleigh — Ritz — Galerkin method. Math. Comput., 24 (1970), 65–80.

    MATH  Google Scholar 

  • Schultz M.H.: 10. Error bounds for polynomial spline interpolation. Math. Comput., 24 (1970), 507–515.

    MATH  Google Scholar 

  • Schultz M.H.: 11. L 2 — error bounds for the Rayleigh — Ritz — Galerkin method. SLAM J. Numer. Anal., 8 (1971), 737–748.

    MATH  Google Scholar 

  • Schultz M.H.: 12. Discrete Tchebycheff approximation for multivariate splines. J. Comput. System Sci., 6 (1972), 298–304.

    MathSciNet  MATH  Google Scholar 

  • Schultz M.H.: 13. Quadrature — Galerkin approximations to solutions of elliptic differential equations. Proc. Amer. Math. Soc., 33 (1972), 511–515.

    MathSciNet  MATH  Google Scholar 

  • Schultz M.H.: 14. Error bounds for a bivariate interpolation scheme. J. Approx. Theory, 8 (1973), 189–194.

    MATH  Google Scholar 

  • Schultz M.H.; Varga R.S.: L — splines. Numer. Math., 10 (1967), 345–369.

    MathSciNet  MATH  Google Scholar 

  • Schumaker L.L.: 1. Uniform approximation by Tchebycheffian spline functions. J. Math. Mech., 18 (1968), 369–377.

    MathSciNet  MATH  Google Scholar 

  • Schumaker L.L.: 2. Uniform approximation spline functions. II. Free knots. SIAM J. Numer. Anal., 5 (1968), 647–656.

    MathSciNet  MATH  Google Scholar 

  • Schumaker L.L.: 3. On the smoothness of best spline approximations. J. Approx. Theory, 2 (1969), 410–418.

    MathSciNet  MATH  Google Scholar 

  • Schumaker L.L.: 4. On Tchebycheffian spline functions. J. Approx. Theory, 18 (1976), 278–303.

    MathSciNet  MATH  Google Scholar 

  • Schumaker L.L.: 5. Zeros of spline functions and applications. J. Approx. Theory, 18 (1976), 152–168.

    MathSciNet  MATH  Google Scholar 

  • Schumaker L.L.: 6. Optimal spline solutions of systems of ordinary differential equations. Differential equations (Sao Paulo, 1981), Lect. Notes Math., 957 (1982), 272–283.

    MathSciNet  Google Scholar 

  • Schumaker L.L.: 7. On recursion for generalized splines. J. Approx. Theory, 36 (1982), 16–31.

    MathSciNet  MATH  Google Scholar 

  • Schumaker L.L.: 8. On hyperbolic splines. J. Approx. Theory, 38 (1983), 144–166.

    MathSciNet  MATH  Google Scholar 

  • Schumaker L.L.: 9. On shape preserving quadratic spline interpolation. SIAM J. Numer. Anal., 20 (1983), 854–864.

    MathSciNet  MATH  Google Scholar 

  • Schumaker L.L.: 10. Bounds of the dimension of space of multivariate piecewise polynomials. Rouchy Mountain J. of Math., 14 (1984), 251–264.

    MathSciNet  MATH  Google Scholar 

  • Schumaker L.L.: 11. Splines and computer — aided design. Delft Progr. Rep., 9 (1984), No.4, 292–304.

    MathSciNet  MATH  Google Scholar 

  • Schumaker L.L.: 12. Dual bases for spline spaces on cells. Comput. Aided Geom. Des., 5 (1988), 277–284.

    MathSciNet  MATH  Google Scholar 

  • Schumaker L.L.: 13. On super splines and finite elements. SIAM J. Numer. Anal., 26 (1989), No.4, 997–1005.

    MathSciNet  MATH  Google Scholar 

  • Schumaker L.L.: 14. Recent progress on multivariate splines. The Math. of Finite Elements and Applics. VII (Uxbridge 1990), Acad. Press, London, (1991), 535–562.

    Google Scholar 

  • Schumaker L.L.: 15. On shape preserving quadratic spline interpolation. SIAM J. Numer. Anal. 20 (1993), 854–864.

    MathSciNet  Google Scholar 

  • Schumaker L.L.: 16. Applications of multivariate splines. Math. of Comput., 1943–1993, Proc. Sympos. Appl. Math., 48 AMS, Providence, RI, 177–203.

    Google Scholar 

  • Schumaker L.L.: 17. Triangulations in CAGD. IEEE Computer Graphics Apples., Jan. 1993, 47–52.

    Google Scholar 

  • Schumaker L.L.; Stanley S.S.: Shape — preserving knot removal. CAGD, 13 (1996), No.9, 851–872.

    MathSciNet  MATH  Google Scholar 

  • Schumaker L.L.; Traas Cornells: Fitting scattered data on spherelike surfaces using tensor products of trigonometric and polynomial splines. Numer. Math., 60 (1991), No.1, 133–144.

    MathSciNet  MATH  Google Scholar 

  • Schumaker L.L.; Utreras F.: 1. Asymptotic properties of complete smoothing splines and applications. SIAM J. Sci. Stat. Comput., 9 (1988), No.1, 24–38.

    MathSciNet  MATH  Google Scholar 

  • Schumaker L.L.; Utreras F.: 2. On generalized cross validation for tensor smoothing splines. SIAM J. Sci. Stat. Comput., 11 (1990), No.4, 713–731.

    MathSciNet  MATH  Google Scholar 

  • Schumaker L.L.; Volk W.: Efficient evaluation of multivariate polynomials. CAGD, 3 (1986), No.2, 149–155.

    MATH  Google Scholar 

  • Schurer F.: A note on interpolating periodic quintic splines with equally spaced nodes. J. Approx. Theory, 1 (1968), 493–500.

    MathSciNet  MATH  Google Scholar 

  • Schurer F.; Cheney F.W.: On interpolating cubic splines with equally — spaced nodes. Nederl. Akad. Wetensch. Proc. Ser A, 71 (1968), 517–524.

    MATH  Google Scholar 

  • Schütze T.; Schwetlick H.: Constrained approximation by splines with free knots. BIT, 37 (1997), No.1, 105–137.

    MathSciNet  MATH  Google Scholar 

  • Schweikerrt D.G.: An interpolation curves using a spline in tension. J. Math. Phys., 45 (1966), 312–317.

    Google Scholar 

  • Schwetlick H.; Kunert V.: Spline smoothing under constraints on derivatives. BIT, 33 (1993), No.3, 512–528.

    MathSciNet  MATH  Google Scholar 

  • Schwetlick H; Schütze T.: Least squares approximation by splines with free knots. BIT, 35 (1995), nr.3, 361–384.

    MathSciNet  MATH  Google Scholar 

  • Schwerdtfeger H.: 1. Notes on numerical analysis II. Interpolation and curve fitting by sectionally linear functions. Canad. Math. Bull., 3 (1960), 41–57.

    MathSciNet  MATH  Google Scholar 

  • Schwerdtfeger H.: 2. Notes on numerical analysis III. Further remarks on sectionally linear functions. Canad. Math. Bull., 4 (1961), 53–55.

    MathSciNet  MATH  Google Scholar 

  • Seatzu S.: 1. Un metodo per la construzione di smoothing splines naturali mono e bidimensionali. Calcolo, 12 (1975), 253–265.

    MathSciNet  Google Scholar 

  • Seatzu S.: 2. Sulla equivalenza tra formule di quadrature e monosplines. Atti Acad. Sci. Torino, 111 (1977), 81–88.

    MathSciNet  MATH  Google Scholar 

  • Seatzu S.: 3. Sulla construeioni di basi a supporto minimo per splines generazzatte con nodi multipli. Calcolo, 14 (1977), 385–398.

    MathSciNet  Google Scholar 

  • Seatzu S.: 4. On the uniform approximation by natural quintic interpolating splines having double nodes. Rend. Sem. Mat. Univ. Politec. Torino, 39 (1981), 129–137.

    MathSciNet  MATH  Google Scholar 

  • Seatzu S.; Spano P.: On the evaluation of interpolation errors in C m[a,b] by quintic splines. Rend. Mat., 5 (1985), No.1–2, 71–80.

    MathSciNet  MATH  Google Scholar 

  • Secrest D.: 1. Best approximate integration formulas and best error bounds. Math. Comput., 19 (1965), 79–83.

    MathSciNet  MATH  Google Scholar 

  • Secrest D.: 2. Error bounds for interpolation and differentiation by the use of spline functions. SIAM J. Numer. Anal., 2 (1965), 440–447.

    MathSciNet  Google Scholar 

  • Sederberg T.W.: 1. Planar piecewise algebraic curves. Comput. Aided. Geom. Design, 1 (1984), 241–255.

    MATH  Google Scholar 

  • Sederberg T.W.: 2. Piecewise algebraic surface patches. CAGD, 2 (1985), 53–59.

    MathSciNet  MATH  Google Scholar 

  • Seemann D.; Sündermann Burkhard: On a minimlal property of cubic periodic Lagrangian Splines. J. Approx. Theory, 39 (1983), 236–240.

    MathSciNet  Google Scholar 

  • Segethové J.: Numerical construction of the hill functions. SIAM J. Numer. Anal., 9 (1972), 199–204.

    MathSciNet  Google Scholar 

  • Seidel H.P.: 1. A new multiaffine approach to B — spline. Computer Aided Geometric Design, 6 (1989), 23–32.

    MathSciNet  MATH  Google Scholar 

  • Seidel H.P.: 2. Computing B — spline control points. Theory and practice of geometric modelling. (Blaubeuren, 1989), Springer, Berlin, (1989), 17–32.

    Google Scholar 

  • Seidel H.P.: 3. Symmetric triangular algorithms for curves. Comput. Aided. Geom. Design, (special issue), 7 (1990), No.1–4, 57–67.

    MathSciNet  MATH  Google Scholar 

  • Seidel H.P.: 4. Symmetric recursive algorithms for surfaces: B — patches and the de Boor algorithms for polynomial over triangles. Constr. Approx., 7 (1991), 257–279.

    MathSciNet  MATH  Google Scholar 

  • Seidel H.P.: 5. On Hermite interpolation with B — splines. Computer Aided Geom. Design, 8 (1991), No.6, 439–441.

    MathSciNet  MATH  Google Scholar 

  • Seidel H.P.: 6. Polar forms and triangular B-splines surfaces in ”Blossoming: The New Polar Forms Approch to Spline and Surfaces”. Siggraf 1991, No.26, ACM New York, 1991, pp.8.1–8.52

    Google Scholar 

  • Seidel H.P.: 7. New algorithms and techniques for computing with geometric continuous spline curves of arbitrary degree. Math. Modelling and Numer. Anal., 26 (1992), No.1, 149–176.

    MathSciNet  MATH  Google Scholar 

  • Seidel H.P.: 8. Polar forms for geometrically continuous spline curves of arbitrary degree. Trans. Graphics, 12 (1993), 1–35.

    MATH  Google Scholar 

  • Seidel H.P.: 9. An introduction to polar forms. IEEE Computer Graphics and Apples, Jan. 1993, 38–46.

    Google Scholar 

  • Seidman T.I.; Korsan R.J.: Endpoint formulas for interpolatory cubic splines. Math. Comput., 26 (1972), 879–900.

    MathSciNet  Google Scholar 

  • Seitelman L.H.: New user — transparent edge conditions for bicubic spline surface fitting. Rocky Mountain J. of Math., 14 (1984), No.2, 351–371.

    MathSciNet  MATH  Google Scholar 

  • Selle G.: Lösung singulärer Integralgleichungen der Elastizitätstheorie mit Hilfe von B-splines. ZAMM, 57 (1977), No.5, 151–153.

    MathSciNet  Google Scholar 

  • Semenkov Oleg L.; Vasiliev Vladimir P.: An application of the B — spline technique for sculptured surface modelling. Comput. Ind., 3 (1982), 31–35.

    Google Scholar 

  • Semenyuk V.B.: 1. Approximation of functions and their derivatives by some splines on domains with an exterior peak. (russian). Studies in the theory of approx. of functions (russian). A.N. Ukrayn. SSR, Inst. Math. Kiev., (1991), 100–109.

    Google Scholar 

  • Semenyuk V.B.: 2. Approximation of differentiable functions by polynomial splines on domains an exterior peak. Ukrain. Mat. Zh., 46 (1994), No.9, 1224–1233.

    MathSciNet  Google Scholar 

  • Sendman T.I.; Korsan R.J.: Endpoint formulas for interpolatory cubic splines. Math. Comput., 26 (1972), 897–900.

    Google Scholar 

  • Sendov B.: 1. Best Hausdorf approximation with equidistant knots by spline functions. C.R. Acad. Bulg., 29 (1976), 1717–1719.

    MathSciNet  MATH  Google Scholar 

  • Sendov B.: 2. Exact estimation for the best Hausdorf spline approximation. C.R. Acad. Bulg. Sci., 30 (1977), 187–190.

    MathSciNet  MATH  Google Scholar 

  • Sendov B.: 3. Two — dimensional approximation splines. Comptes Rendus de l’Acad. Bulgare Sci., 42 (1989), No.3, 29–32.

    MathSciNet  MATH  Google Scholar 

  • Sendov B.: 4. Approximation splines. Math. Balk. New Ser, 3 (1989), No.1, 106–121.

    MathSciNet  MATH  Google Scholar 

  • Sendov B.: 5. Approximation with minimal derivative. (russian). C.R. Acad. Bulg. Sci., 42 (1989), No.1, 27–30.

    MathSciNet  MATH  Google Scholar 

  • Sendov B.; Popov V.A.: 1. The approximation by spline functions. C.R.Acad. Bulg. Sci., 25 (1970), 755–758.

    MathSciNet  Google Scholar 

  • Sendov B.; Popov V.A.: 2. Approximation of curves by piecewise polynomial curves. C.R. Acad. Bulg. Sci., 23 (1970), 639–643.

    MathSciNet  MATH  Google Scholar 

  • Sendov B.; Popov V.A.: 3. O klassah characteriznemîh nailuceşim priblijeniem splain — funkţiami. Mat. Zamet., 8 (1970), No.1, 59–65.

    MathSciNet  Google Scholar 

  • Serrano E.P.: Sorae remarks about compactly supported spline wavelets. Appl. Comput. Harmonic Analysis, 3 (1996), No.1, 57–64.

    MathSciNet  MATH  Google Scholar 

  • Sevalgin V.P.: L — splainî i pepereciniki. Matem. Zamet., 33 (1985), 735–744.

    Google Scholar 

  • Shabozov M. Sh.: 1. Error estimation of cubature formulas exact for splines at certain classes of functions of two variables. (russian). Ukrain. Mat. J., 31 (1979), 74–82.

    MathSciNet  MATH  Google Scholar 

  • Shabozov M. Sh.: 2. On the evaluation of cubature formulas piecewise for Hermitian splines. (russian). Dokl. Akad. Nauk. Tadzhik SSR, 28 (1985), No.9, 495–500.

    MathSciNet  MATH  Google Scholar 

  • Shabozov M. Sh.: 3. On interpolation of functions by Hermite parabolic splines. (russian). Dokladî. Akad. Nauk. Tadjik. SSR, 30 (1987), No.2, 85–88.

    MathSciNet  MATH  Google Scholar 

  • Shabozov M. Sh.: 4. Lacunary interpolaton by cubic splines. (russian). Dokl. Akad. Nauk. Tadzhik. SSR, 32 (1989), No.7, 441–443.

    MathSciNet  MATH  Google Scholar 

  • Shabozov M. Sh.: 5. On approximation of functions by interpolation splines given on nonuniform meshes. (russian). Mat. Sb., 181 (1990), No.9, 1236–1255.

    Google Scholar 

  • Shabozov M. Sh.: 6. On the error of interpolation by biliniar splines. (russian), Ukrain. Mat. Zh., 46 (1994), No. 11, 1554–1560.

    MathSciNet  Google Scholar 

  • Shabozov M. Sh.: 7. On interpolation by biliniar splines. (russian), Dopov., Nats. Akad. Nauk. Ukraini, 6 (1995), 30–32.

    MathSciNet  Google Scholar 

  • Shabozov M. Sh.: 8. Sharp estimates of the simultaneous approximation of function of two variables and their derivatives by bilinear splines. (russian). Mat. Zametki, 59 (1996), No.1, 142–152.

    MathSciNet  Google Scholar 

  • Shabozov M. Sh.; Shabozov O.: Approximate calculation of continual integrals according to Gaussian measures by local splines of minimal defect. (russian). Dokl. Akad. Nauk. Tadj. SSR, 30 (1987), No.11, 688–691.

    MathSciNet  MATH  Google Scholar 

  • Shabozov M.Sh.; Yukhanonov N.N.: Approximate calculation of a singular integral and an integral of Cauchy type by means of Hermite cubic splines. Dokl. Akad. Nauk Tadzhik SSR, 25 (1982), No.11, 643–647.

    MathSciNet  MATH  Google Scholar 

  • Shadrin Yu.A.: 1. Precise estimates for uniform approximation on classes W 2 2 and W 2 2 by interpolating cubic splines. Sov. J. Numer. Anal. Math. Modelling, 3 (1988), No.4, 325–335.

    MathSciNet  Google Scholar 

  • Shadrin Yu.A.: 2. On the error of the approximation of functions by smoothing splines. (russian). Variational difference methods in problems of numerical analysis. Akad. Nauk. SSSR, Sibirsk. Otdel Vychisl. Tsentr. Novosibirsk, (1988), 147–162.

    Google Scholar 

  • Shadrin Yu.A.: 3. On the rate of convergence of interpolation splines defined on nonuniform meshes. Soviet: Math. Dokl., 40 (1990), No.1, 266–268.

    MathSciNet  Google Scholar 

  • Shadrin Yu.A.: 4. Inequalities of Kolmogorov type and estimates of spline interpolation on periodic classes W 2 m. Matem. Zametki, 48 (1990), No.4, 1058–1063.

    MathSciNet  MATH  Google Scholar 

  • Shadrin Yu.A.: 5. Approximation of functions by interpolation splines given on nonuniform grids. Mat. Sb., 181 (1990), No.9, 1236–1255.

    MATH  Google Scholar 

  • Shadrin Yu.A.: 6. On the approximation of functions by interpolating splines defined of nonuniform nets. Mat. Sb., 71 (1991), No.1, 81–100.

    MathSciNet  Google Scholar 

  • Shadrin Yu.A.: 7. On L p — boundedness of the L 2 — projector onto splines. J. Approx. Theory 77 (1994), No.3, 331–348.

    MathSciNet  MATH  Google Scholar 

  • Shadrin Yu.A.: 8. Interpolation by Lagrange polynomials B-splines and bounds of errors. Anal. Math., 20 (1994), No.3, 213–224.

    MathSciNet  MATH  Google Scholar 

  • Shah J.M.: Two — dimensional polynomial splines. Numer. Math., 15 (1970), 1–14.

    MathSciNet  MATH  Google Scholar 

  • Shaidaeva T.A.: Quadrature formulae with least error estimate for some classes of functions. (russian). Trudy Mat. Inst. Steklov, 53 (1959), 313–341.

    MathSciNet  Google Scholar 

  • Sha Zhen: 1. On the saturation of spline approximation. (chinese). Acta Math. Sinica, 19 (1976).

    Google Scholar 

  • Sha Zhen: 2. A theorem on lacunary interpolation by splines. (chinese). Acta Math. Sinica, 2 (1979), 1–5.

    Google Scholar 

  • Sha Zhen: 3. The averaging approximation of junctions with discontinuous derivatives by splines. (chinese). Numer. Math. J. Chinese Univ., 2 (1980), 87–91.

    MathSciNet  MATH  Google Scholar 

  • Sha Zhen: 4. On the degree of approximation with P — type and Q — type interpolation splines. (chinese). Math. Numer. Sinica, 5 (1983), 129–135.

    MathSciNet  MATH  Google Scholar 

  • Sha Zhen: 5. A generalization of splines. (chinese). Chinese Ann. Math. Ser A, 14 (1983), 331–336.

    Google Scholar 

  • Sha Zhen: 6. On interpolation by S1 3m,n (1)). I. Approx. Theory Appl., 1 (1985), No.4, 1–18, II, Approx. Theory Appl. 1 (1985), No.2, 71–82.

    MATH  Google Scholar 

  • Sha Zhen: 7. On interpolation by S 2 1m,n 2). Approx. Theory Appl., 1 (1985), 1–18.

    MATH  Google Scholar 

  • Sha Zhen: 8. An identity for S 2 1(Δ m,n 2). (chinese). Numer. Math. J. Chinese Univ., 12 (1990), No.1, 54–58.

    MathSciNet  MATH  Google Scholar 

  • Sha Zhen; Weng Zu Yin: On seventh degree lacunary interpolation splines. (chinese). Zhejiang Daxue Xuebao, 1 (1981), 56–61.

    Google Scholar 

  • Sha Zhen; Wu Zheng Chang: 1. On interpolation by splines in tension. (chinese). Zhejiang Daxue Xuebao, 2 (1981), 65–74. 2. Degree of approximation and asymptotic formula for a fourth order Λ — spline interpolator. (chinese). J. Math. Res. Exposition, 3 (1983), No.3, 99–108.

    Google Scholar 

  • Sha Zhen; Xuan Peicai: 1. Periodic bivariate cubic spline on type II triangulations. (chinese). Math. Numer. Sin., 10 (1988), No.3, 253–265.

    MathSciNet  MATH  Google Scholar 

  • Sha Zhen; Xuan Peicai: 2. On interpolation by S 3 1. I–II. (chinese). Zhejiang Daxue Xuebao, 22 (1988), No.5, 11–20.

    MathSciNet  MATH  Google Scholar 

  • Sha Zhen; Xuan Peicai: 3. On a class of interpolation and approximation by S 3 1,1 (Δ m,n (2)). J. Math. Res. Exposition, 14 (1994), No.3, 379–389.

    MathSciNet  MATH  Google Scholar 

  • Shantz M.; Lien S.L.: Rendering trimmed NURBS with adaptive forward differencing. Computer Graphics-Proceedings of SIGGRAPH’88, 22 (1988), 189–198.

    Google Scholar 

  • Sharma A.; Meir A.: Degree of approximation of spline interpolation. J. Math. Mech., 15 (1966), 759–767.

    MathSciNet  MATH  Google Scholar 

  • Sharma A.; Tzimbalario J.: 1. Cardinal interpolation and generalized exponential Euler splines. Canad. J. Math., 28 (1976), 291–300.

    MathSciNet  MATH  Google Scholar 

  • Sharma A.; Tzimbalario J.: 2. Cardinal t — perfect L — splines. SIAM J. Numer. Anal., 13 (1976), 915–922.

    MathSciNet  MATH  Google Scholar 

  • Sharma A.; Tzimbalario J.: 3. A class of cardinal trigonometric splines. SLAM J. Math. Anal., 7 (1976), No.6, 809–819.

    MathSciNet  MATH  Google Scholar 

  • Sharma A.; Tzimbalario J.: 4. Quadratic splines. J. Approx. Theory, 19 (1977), 186–193.

    MathSciNet  MATH  Google Scholar 

  • Shekhtman B.: 1. The limit of abstract splines. Numer. Funct. Anal. Optim., 2 (1980), 375–385.

    MathSciNet  MATH  Google Scholar 

  • Shekhtman B.: 2. Unconditional convergence of abstract splines. J. Approx. Theory, 30 (1980), 237–246.

    MathSciNet  MATH  Google Scholar 

  • Shelley M.J.; Baker G.R.: Order preserving approximation to succesive derivatives of periodic functions by iterated splines. SIAM J. Numer. Anal., 25 (1988), No.6, 1442–1452.

    MathSciNet  MATH  Google Scholar 

  • Shen Guangxing: A sufficient and necessary condition for the existence and uniqueness of cubic splines. (chinese). Numer. Math. Nanking, 9 (1987), No.2, 182–184.

    MATH  Google Scholar 

  • Shen Zuowei: Birkhoff interpolation by Chebyshevian splines. Approx. Theory Appl., 6 (1990), No.3, 59–77.

    MathSciNet  MATH  Google Scholar 

  • Shepelenko V.N.: The use of splines for the evaluation of integrals and solving the transcendent equations. Chisl. Met. Meh. Splosh. Spedy (Novosibirsk), 4 (1973), No.5, 125–133.

    Google Scholar 

  • Shetty S.; White P.R.: Curvature — continuous extensios for rational B — spline curves and surfaces. Comput. Aided. Des., 23 (1991), No.7, 484–491.

    MATH  Google Scholar 

  • Shevaldina O. Ya.: Approximation of the class W p r by polynomial splines in the mean. (russian). Approx. in Concret and Abstract Banach Spaces, Acad. Nauk. SSSR, Ural Nauch. Tsentr. Sverdlosk, 126 (1987), 113–120.

    MathSciNet  Google Scholar 

  • Shevaldin V.T.: 1. L — splines and diameters. (russian). Mat. Zametki, 5 (1983), 735–744.

    MathSciNet  Google Scholar 

  • Shevaldin V.T.: 2. L — splines and widths. (russian). Mat. Zametki, 33 (1993), No.5, 735–744.

    MathSciNet  Google Scholar 

  • Shevaldin V.T.: 3. Interpolation periodic splines and widths of classes of functions with a bounded noninteger derivative. (russian). Dokl. Akad. Nauk, 328 (1993), No.3, 296–298.

    MathSciNet  Google Scholar 

  • Shi Pei De; Zhang Z.J.: Robust nonparametric regression based on L 1 -norms and B-splines. Systems Sci. Math. Sci., 8 (1995), No.2, 187–192.

    MathSciNet  MATH  Google Scholar 

  • Shi Xi Quan: 1. The error estimation of the cubic C 1 — interpolation finite element scheme in ℝ n. (chinese). Acta Sci. Natur. Univ. Jilin, 3 (1989), 24–38.

    Google Scholar 

  • Shi Xi Quan: 2. An interpolation method for multivariate spline functions. (chinese). Numer. Math. J. Chinese Univ., 12 (1990), No.2, 142–150.

    MathSciNet  Google Scholar 

  • Shi Xi Quan: 3. The dimensions of splines spaces and their singurality. J. Comput. Math. 10 (1992), No.3, 224–230.

    MathSciNet  Google Scholar 

  • Shi Xi Quan: 4. Dimension of splines on O — starts in ℝ 3. (chinese). Approx. Theory Appl. 10 (1994), No.1, 1–13.

    Google Scholar 

  • Shi Xi Quan: 5. Spline spaces on type 2 triangulations in ℝ 3. (chinese), Math. Numer. Sinica, 16 (1994), No.3, 296–303.

    Google Scholar 

  • Shi Xi Quan: 6. The dimension of spline spaces S k n (Δ). (chinese) Acta Math. Sin., 38 (1995), No.1, 77–85.

    Google Scholar 

  • Shi Xi Quan; Wang Renhong: Decomposition method for studing multivariate splines. J. Math. Res. Expo. 14 (1994), No.2, 215–216.

    Google Scholar 

  • Shi Xian Liang: Cebysev property of circle splines. (chinese). Acta Math. Appl. Sinica, 4 (1981), 14–20.

    MathSciNet  MATH  Google Scholar 

  • Shi Yuog Gang: Dealing with of numerics measured from disk can using binary arc spline. (chinese). J. Zhejiang Univ., 6 (1986), No.19, 51–64.

    Google Scholar 

  • Shi Zhong Ci: A note on nonsingularity of the interpolating periodic splines. (chinese). Math. Numer. Sinica, 5 (1983), 195–203.

    MathSciNet  MATH  Google Scholar 

  • Shian J.: Efficient algorithms for smoothing spline estimation of functions with and without discontinuities. In Computer Science and Statistic, 19 th Conf. on the Interface, E. Wegman ed. Amer. Statist. Assoc. Washington DC, (1988).

    Google Scholar 

  • Shiau J.J.; Wahba G.; Johnson D.H.: Partial spline models for the inclusion of tropopause and frontal boundary information in otherwise smooth two and three dimensional objective analysis. J. Ocean Atmos. Techn., 3 (1986), 714–725.

    Google Scholar 

  • Shih Chung — tze: On spline finite element method. (chinese). Math. Numer. Sinica, 1 (1979), No.1.

    Google Scholar 

  • Shih H. Ming; Yu Tzu-Yi; Soni B.K.: Interactive grid generation and NURBS applications. Appl. Math. Comput., 65 (1994), No.3, 279–294.

    MathSciNet  MATH  Google Scholar 

  • Shindler A.A.: 1. Some theorems of the general theory of approximate methods of analysis and their application to the collocation, moments and Galerkin methods. Siberian Math. J., 8 (1967), 302–314.

    Google Scholar 

  • Shindler A.A.: 2. Rate of convergence of the enriched collocation method for ordinary differential equations. Siberian Math. J., 10 (1969), 160–163.

    Google Scholar 

  • Shirman L.A.; Séquin C.H.: 1. Procedural interpolation with curvature — continuous cubic splines. Comput. Aided Des., 24 (1992), No.5, 278–286.

    MATH  Google Scholar 

  • Shirman L.A.; Séquin C.H.: 2. Procedural interpolation with geometrically continuous cubic splines. Comput. Aided Des. 24 (1992), No.5, 267–277.

    MATH  Google Scholar 

  • Shisha O.: 1. Trenda in approximation theory. Appl. Mech. Rev., 21 (1968), 337–341.

    MathSciNet  Google Scholar 

  • Shisha O.: 2. Characterization of smoothness properties of functions by means of their degree of approximation by splines. J. Approx. Theory, 12 (1974), 365–371.

    MathSciNet  MATH  Google Scholar 

  • Shisha O.: 3. On the degree of approximation by step functions. J. Approx. Theory, 12 (1974), 435–436.

    MathSciNet  MATH  Google Scholar 

  • Shisha O.: 4. On saturation with splines. J. Approx. Theory, 13 (1975), 491–494.

    MathSciNet  MATH  Google Scholar 

  • Shmukin A.A.; Lazucenkov N.M.: The use of splines for boundary value problems couceming the heat conduction. (russian). Inj. fiz. Jurnal, 34 (1978), 338–343.

    Google Scholar 

  • Shore W. Bruce: Solving the rational Schrodinger equation by using cubic — spline basis functions. J. of Chemical Physics, 58 (1973), No.9, 3855–3866.

    Google Scholar 

  • Shougri M.M.: Numerical calculation of discontinuities by shape preserving splines. J. Comput. Phys., 49 (1983), 334–341.

    Google Scholar 

  • Shougri M.M.; Shougri R.M.: The application of shape preserving splines for the solution of differential equations. Internat. J. Numer. Meth. in Ing., 20 (1984), 689–695.

    Google Scholar 

  • Shreve C.D.: L p — approximation of Fourier transforms and certain interpolating splines. Math. Comput., 28, No.127, 779–787.

    Google Scholar 

  • Shridbar M.; Balatoni N.: 1. A generalized cubic spline technique for identification of multivariable systems. J. Math. Anal. Appl., 47 (1974), 78–90.

    MathSciNet  Google Scholar 

  • Shridbar M.; Balatoni N.: 2. Cubic spline identification of distributed parameter systems. J. Math. Anal. Appl., 54 (1976), No.1, 286–299.

    MathSciNet  Google Scholar 

  • Shrivastava M.: 1. A note on convergence of quadratic interpolatory splines. J. Approx. Theory, 58 (1989), No.2, 242–243.

    MathSciNet  MATH  Google Scholar 

  • Shrivastava M.: 2. Cubic interpolatory spline matching the areas. Proc. Japan Acad. Ser. A. Math. Sci., 67 (1991), No.7, 235–237.

    MathSciNet  MATH  Google Scholar 

  • Shrivastava M.: 3. Discrete cubic interpolatory splines. Publ. Res. Inst. Math. Sci., 28 (1992), No.5, 825–832.

    MathSciNet  MATH  Google Scholar 

  • Shrivastava M.: 4. A best approximation property of discrete quadratic interpolatory splines. Approx.Theory Appl., 9 (1993), No.2, 81–88.

    MathSciNet  MATH  Google Scholar 

  • Shrivastava M.: 5. Generalized mean averaging interpolation by discrete cubic splines. Publ. Res. Inst. Math. Sci. 30 (1994), No.1, 89–95.

    MathSciNet  MATH  Google Scholar 

  • Shu Shi: On the error estimation of S 2 1 Δ m,n (2)) interpolation splines. (chinese), Nat. Sci. J. Xinagtan Univ., 15 (1993), suppl. 25–34.

    Google Scholar 

  • Shu Shi; Gao Xie Ping: 1. Spline intepolation on a semi — infinite interval. (chinese). Natur Sci. J. Xiangtan Univ. 15 (1993), No.3, 33–38.

    MathSciNet  MATH  Google Scholar 

  • Shu Shi; Gao Xie Ping: 2. Asymptotic error estimates for threefold quintic spline-on-spline interpolation. (chinese), Nat. Sci. J. Xinagtan Univ., 15 (1993), No.4, 1–2.

    MATH  Google Scholar 

  • Shu Shi; Gao Xie Ping: 3. The term-by-term asymptotic expansion of type(I) quintic interpolation splines on a finite interval. (chinese), Natur. Sci. J. Xinagtan Univ., 16 (1994), No.2, 1–9.

    MATH  Google Scholar 

  • Shu Shi; Gao Xie Ping; Jin Ji Cheng: Term-by-term asymptotic expansion of quadratic splines and spline-on-spline approximation of f”(x) on [0, ∞). (chinese), Natur. Sci. J. Xiangtan Univ., 15 (1993), suppl. 35–40.

    Google Scholar 

  • Shumeřko A.A.: 1. The choice of nodes for local mixed spline. (russian). Investigations in current problems in numeration and approximation of functions and their applications. (russian). Dnepropetrovsk. Gos. Univ. (1987), 71–78.

    Google Scholar 

  • Shumeřko A.A.: 2. Choise of nodes for interpolation parabolic splines. (russian). Vyssh. Ucebn. Zaved. Mat., (1990), No.4, 67–71.

    Google Scholar 

  • Shumilov B.M.: 1. A local spline approximation that is sharp on polynomials with respect to a given coordinate system. (russian). Vyčisl. Sistemy, 87 (1981), 25–34.

    MathSciNet  MATH  Google Scholar 

  • Shumilov B.M.: 2. On local interpolation by cubic splines with additional knots. (russian). Vychisl. Sistemy, (1985), No.108, 37–43.

    Google Scholar 

  • Shumilov B.M.: 3. Local uniform minimal approximation by splines. (russian). Izv. Vyssh. Ucebn. Zaved. Mat., (1986), No.12, 72–75.

    Google Scholar 

  • Shumilov B.M.: 4. On Lagrange interpolation by parabolic splines with additional knots. (russian). Izv. Vyssh. Uchebn. Zaved. Mat., 1 (1987), 58–62.

    MathSciNet  Google Scholar 

  • Shumilov B.M.: 5. Local methods for addition and compression in information by cubic splines. (russian). Vychisl Sist., 121 (1987), 96–101.

    MathSciNet  MATH  Google Scholar 

  • Shumilov B.M.: 6. Hermitian interpolation of surfaces by implicitly quadratic splines. (russian). Vychisl. Sist., 128 (1988), 99–108.

    MathSciNet  MATH  Google Scholar 

  • Shumilov B.M.: 7. On local interpolation on a uniform triangular mesh by fourth — degree splines of smoothness C 1. Izv. Vuz. Matematica 5 (1988), 71–81.

    Google Scholar 

  • Shumilov B.M.: 8. Recurent method to construct interpolating cubic splines with deficiency one and complimentary knots. (russian). Analog — tzifro Vychisl. sist. i ih primineuie. Tom. Politehn. Just. Tomsk, (1989), 102–106.

    Google Scholar 

  • Shumilov B.M.: 9. Recursive interpolation by cubic splines with additional nodes. (russian). Zh. Vychisl. Mat. i Fiz., 30 (1990), No.2, 179–185.

    MathSciNet  Google Scholar 

  • Shumilov B.M.: 10. Smooth interpolation of surf aces by parametric splines of the second degree on an irregular triangular grid. (russian). Zh. Vycisl. Mat. i Mat. Fiz., 32 (1992), No.5, 802–807.

    MathSciNet  Google Scholar 

  • Shumilov B.M.: 11. Spline approximation schemes that are exact on polynomials. (russian). Zh. Vycisl. Mat. i Mat. Fiz., 32 (1992), No.8, 1187–1196.

    MathSciNet  MATH  Google Scholar 

  • Shure L.; Parker R.; Backus G.: Harmonic splines for geometric modelling. J. Phys. Earthy Planetary Interiors, 28 (1982), 215–229.

    Google Scholar 

  • Sibson R.; Stone G.: Computation of thin — plate spline. SIAM J. Sci. Stat. Comput., 12 (1991), No.6, 1304–1313.

    MathSciNet  MATH  Google Scholar 

  • Siddiqi S.S.; Twizell E.H.: Spline solutions of linear twelth order boundary-value problems. J. Comput. Appl. Math., 78 (1997), No.2, 371–390.

    MathSciNet  MATH  Google Scholar 

  • Sidhu G.S.; Weinert H.L.: 1. Dynamical recursive algorithms for Lg — spline interpolation of E.H.D. data. Appl. Comput., 5 (1979), 157–185.

    MathSciNet  MATH  Google Scholar 

  • Sidhu G.S.; Weinert H.L.: 2. Vector value Lg — splines. Interpolating splines. J. Math. Anal. Appl. 70 (1979), No.2, 505–529.

    MathSciNet  MATH  Google Scholar 

  • Siepmann D.: 1. Stabile Darstellung periodicher interpolierender Polynom — Splines. bzgl. äquidistant verteilter Knoten. ZAMM, 67 (1987), 498–499.

    MathSciNet  Google Scholar 

  • Siepmann D.: 2. Cardinal interpolation by polynomial splines: interpolation of data with exponential growth. J. Approx. Theory, 53 (1988), No.2, 167–183.

    MathSciNet  Google Scholar 

  • Siepmann D.; Sündermann B.: On a minimal property of cubic periodic Lagrangian Splines. J. Aprox. Theory, 39 (1983), 236–240.

    MATH  Google Scholar 

  • Silaev D.A.; Yakushina G.I.: Approximation of smooth functions by S — splines. (russian). Tr. Sem. Im. I.G. Petrovskogo, 10 (1984), 197–206.

    MathSciNet  MATH  Google Scholar 

  • Sillimann S.D.: The numerical evaluation by splines of Fourier transforms. J. Approx. Theory, 12 (1974), 32–51.

    Google Scholar 

  • Silverman B.W.: 1. A fast and efficient cross — validation method for smoothing parameter choise in spline regression. J. Amer. Stat. Assoc., 79 (1984), 584–589.

    Google Scholar 

  • Silverman B.W.: 2. Spline smoothing: the equivalent variable kernel methods. Ann. Statis., 12 (1984), 898–916.

    MATH  Google Scholar 

  • Silverman B.W.: 3. Some aspect of the spline smoothing approach to non — parametric regression curve fitting. J.R. Stat. Soc. Ser. B, 47 (1985), 1–52.

    MATH  Google Scholar 

  • Simerka Carmen: The L bound of projection onto splines. Acta Polytech. Prace C.V.U.T., 4 (1978), 53–67.

    Google Scholar 

  • Simps S.E.: A note of some convergence properties of spline functions. Comput. Math. Appl., 2 (1978), 277–279.

    Google Scholar 

  • Simpson R.B.: 1. Approximation on the minimizing element for a class of functionals. SIAM J. Numer. Anal., 5 (1968), 26–41.

    MathSciNet  MATH  Google Scholar 

  • Simpson R.B.: 2. The Rayleigh — Ritz process for the simplest problem in the calculus of variations. SIAM J. Numer. Anal., 6 (1969), 258–271.

    MathSciNet  MATH  Google Scholar 

  • Sincovec R.F.: 1. On the solution of the equations arising from collocation with cubic B-splines. Math. Comput., 26 (1972), 893–895.

    MathSciNet  MATH  Google Scholar 

  • Sincovec R.F.: 2. On the relative efficiency of higher order collocation methods for solving two — point boundary value problems. SIAM J. Numer. Anal., 14 (1977), 112–123.

    MathSciNet  MATH  Google Scholar 

  • Sincovec R.F.: 3. Generalized collocation method for time — dependent nonlinear boundary value problems. Soc. Pet. Eng. J., 17 (1977), 345–352.

    Google Scholar 

  • Singh P.: A note on the solution of two — dimension Volterra integral eguations by splines. Indiana J. Math., 18 (1976), 61–64.

    MATH  Google Scholar 

  • Sirisena H.R.; Tan K.S.: Solution of nonlinear two — point boundary value problems using spline functions. J. Optim. Theory Applc., 16 (1975), 245–254.

    MathSciNet  MATH  Google Scholar 

  • Sivakumar M.: 1. On a univariate cardinal interpolation by shifted splines. Rocky Mountain J. Math., 19 (1989), 481–489.

    MathSciNet  MATH  Google Scholar 

  • Sivakumar M.: 2. On bivariate cardinal interpolation by shifted splines on a three — direction mesh. J. Approx. Theory, 61 (1990), No.2, 178–193.

    MathSciNet  MATH  Google Scholar 

  • Sivakumar M.: 3. Concerning the linear dependence of integer translates of exponential box — splines. J. Approx. Theory, 64 (1991), No.1, 95–118.

    MathSciNet  MATH  Google Scholar 

  • Sjöhn Per; Strömberg Jan-Olov: Spline systems as bases in Hardy spaces. Israel J. Math., 45 (1983), 147–156.

    MathSciNet  MATH  Google Scholar 

  • Sleptzov A.G.: The convergence of local collocation method for ordinary differential equations. J. Vychisl. Mat. Mat.-Fiz., 15 (1975), 1447–1456.

    Google Scholar 

  • Sloan I.H.; Tran Dat; Fairweather G.: A fourth — order cubic spline method for linear second order two — point boundary value problems. IMA J. Numer. Anal., 13 (1993), 591–607.

    MathSciNet  MATH  Google Scholar 

  • Sloan I.H.; Wendland W.I.: A quadrature — based approach to improving the collocation method for splines of even degree. Z. Zeitschr. Anal. u. Anwend., 8 (1989), 361–376.

    MathSciNet  MATH  Google Scholar 

  • Smarzewski R.: X — Splines of odd degree. J. Approx. Theory, 44 (1985), No.4, 295–314.

    MathSciNet  MATH  Google Scholar 

  • Smarzewski R.; Bujalska A.: 1. Uniform convergence of cubic and quadratic X — spline interpolants. IMA J. Numer. Analysis, 3 (1983), 353–372.

    MathSciNet  MATH  Google Scholar 

  • Smarzewski R.; Bujalska A.: 2. Quartic X — Spline. Numer. Math., 45 (1984), 135–148.

    MathSciNet  MATH  Google Scholar 

  • Smarzewski R.; Malinowski H.: 1. A numerical method for solving the Abel integral equation. Zastosowanie Math., 16 (1978), 275–281.

    MathSciNet  MATH  Google Scholar 

  • Smarzewski R.; Malinowski H.: 2. Numerical solution of a class of Abel integral equations. J. Inst. Math. Appl., 22 (1978), 159–170.

    MathSciNet  MATH  Google Scholar 

  • Smarzewski R.; Malinowski H.: 3. Numerical solution of generalized Abel integral equations by spline functions. Zastosowanie Math., 17 (1983), 677–687.

    MathSciNet  MATH  Google Scholar 

  • Smelov V.V.: 1. A simple unified method for the realization of generalized splines using the matrix sweep algorithm. (russian). Siberian Math. J., 36 (1995), No.3, 562–568.

    MathSciNet  MATH  Google Scholar 

  • Smelov V.V.: 2. A new version of splines representation and their realization by the matrix sweep method. Nova J. Math. Game Theory Algebra, 4 (1996), No.3–4, 241–252.

    MathSciNet  MATH  Google Scholar 

  • Smirnov V.M.: A method for the smooth interpolation of functions. J. Vycisl. Mat. i Mat. Fiz., 8 (1968), 1330–1331.

    MATH  Google Scholar 

  • Smith Patricia: Splines as a useful and convenient statistical tool. The American Statistician, 33 (1979), 57–62.

    Google Scholar 

  • Smith W.P.: 1. W(r,p)(R) — splines. J. Approx. Theory, 10 (1974), 337–357.

    MATH  Google Scholar 

  • Smith W.P.: 2. H 2,∞ (R) — and W r,∞ (R) — splines. Transactions of the Amer. Math. Soc., 192 (1974), 275–284.

    MATH  Google Scholar 

  • Smith W.P.: 3. On knots and nodes for spline interpolation. Algorithms for approximation, II. (Shrivenham, 1988), Chapman and Hall, London, (1990), 72–77.

    Google Scholar 

  • Smith P.W.; Ward J.D.: Quasi — interpolant from spline interpolation operators. Constr. Approx., 6 (1990), 97–110.

    MathSciNet  MATH  Google Scholar 

  • Smoljak S.A.: 1. On the optimal reconstruction of functions in connection with geometrical characteristics of sets. Trudy 3 — i Zymm. Skoly po Mat. Programir i Smeži. Voprp., 21 (1964), 107–121.

    Google Scholar 

  • Smoljak S.A.: 2. Splines and their applications. (russian). Ekonom. i Mat. Metody, 7 (1971), 419–431.

    MathSciNet  Google Scholar 

  • Smoluk A.: 1. On piecewise approximation of functions. Prace Nauk Szkoly Ekon. Wroklav, 6 (1967), 101–108.

    Google Scholar 

  • Smoluk A.: 2. Examples of piecewise approximation of functions. Prace Nauk Wyzsej Skoly Ekon. Wroklav, 6 (1967), 109–126.

    Google Scholar 

  • Smoluk A.: 3. On the approximation with piecewise functions. Zeszyty Nauk, Wyz. Szkol Ekon. Wroklav., 3 (1970), 509–557.

    Google Scholar 

  • Snigirev V.F.: 1. Construction of a two — dimensional parametric interpolation spline. J. Sov. Math. 45 (1989), No.4, 119–127.

    MathSciNet  Google Scholar 

  • Snigirev V.F.: 2. The construction of degenerate splines for solving function interpolation problems and geometric modelling of lines. Comput. Mat. Mat. Phys. 32 (1992), No.7, 1027–1028.

    MathSciNet  Google Scholar 

  • Snigirev V.F.: 3. A nonclassical variant of boundary conditions for a cubic vector spline. (russian). Zh. Vychisl. Mat. i Mat. Fiz., 36 (1996), No.12, 23–27.

    MathSciNet  Google Scholar 

  • Soanes Royce W.: 1. V.P. — splines, an extension of twice differentiable interpolation. Proc. of the 1976 Army Numer. Anal. and Computer. Conf., USA Army Research Office, (1976), 141–152 (ARO Report, 76-3.).

    Google Scholar 

  • Soanes Royce W.: 2. V.P. — Splines and their application to adaptive integration. Int. Symp. Innovative Numer. Anal. Appl. Eng. Sci. Versailles, S, 1 (1977), 3/35–3/38.

    Google Scholar 

  • Sobolevskii P.E.; Hoang Van Lai: The theory of Hermite splines and algorithms of optimum type. (russian). Cisl. Methody Meh. Spolsn. Sredy, 8 (1977), No. 1, Mat. Modelirovanie, 135–143.

    Google Scholar 

  • Socea D.: 1. Asupra integrarii approximative a ecuaţiei diferenţiale de ordinul I prin funcţii spline. Bul. Univ. Braşov C, 19 (1977), 89–94.

    MathSciNet  MATH  Google Scholar 

  • Socea D.: 2. Sur l’approximation des solutions des équations différentielles par des fonctions spline à déficience. Studia Univ. Babeş — Bolyai Math., 26 (1981), 71–75.

    MathSciNet  MATH  Google Scholar 

  • Socea D.: 3. Une resolution numérique du problème de Cauchy relative à l’équation différentielle non — linéaire de premiér order. Bull. Transylv. Univ. Braşov, Ser. C. 33 (1991), 65–70.

    MathSciNet  MATH  Google Scholar 

  • Soh B.C.: 1. Fourier series of B — splines. J. Comput. Appl. Math., 21 (1988), 125–127.

    MathSciNet  MATH  Google Scholar 

  • Soh B.C.: 2. On the degree of approximation to periodic functions by a trigonometric spline convolution operator. J. Comput. Appl. Math., 26 (1989), No.3, 251–255.

    MathSciNet  MATH  Google Scholar 

  • Sommer M.: 1. Characterization of continuous selections for metric projection for generalized splines. SIAM J. Math. Anal., 11 (1980), 23–40.

    MathSciNet  MATH  Google Scholar 

  • Sommer M.: 2. Continuous selections and convergence of best L p — approximations in subspaces of spline functions. Numer. Funct. Anal. and Optimiz., 6 (1983), 213–234.

    MathSciNet  MATH  Google Scholar 

  • Sommer M.: 3. L p — approximations and Chebyshev approximations in subspaces of spline functions. Approx. and Optimiz. in Math. Phys., Meth. Verf. Math. Phys., 27 (1983), 105–139.

    MathSciNet  Google Scholar 

  • Sommer M.: 4. Parametric approximation by splines. Numer. Funct. Anal. and Optimiz., 7 (1984/1985), 1–21.

    MathSciNet  MATH  Google Scholar 

  • Sommer M.; Strauss H.: 1. Unicity of best one — sided L 1 — approximations for certain classes of spline functions. Numer. Funct. Anal. Optim., 4 (1981/1982), 413–435.

    MathSciNet  Google Scholar 

  • Sommer M.; Strauss H.: 2. Weak Descartes Systems in generalized spline spaces. Constructive Approx., 4 (1988), No.2, 135–146.

    MathSciNet  Google Scholar 

  • Sommer M.; Strauss H.: 3. Order of strong uniqueness in best L — approximation by spline spaces. Acta Math. Hung., 61 (1993), No.3–4, 259–280.

    MathSciNet  MATH  Google Scholar 

  • Sommer M.; Strauss H.: 4. Interpolation by uni-and multivariate generalized splines. J. Approx. Theory, 83 (1995), No.3, 423–447.

    MathSciNet  MATH  Google Scholar 

  • Sommer M.; Strauss H.: 5. A condition of Schoenberg-Whitney type for multivariate spline interpolation. Adv. Comput. Math., 5 (1996), No.4, 381–397.

    MathSciNet  MATH  Google Scholar 

  • Song-Chang Ho: Some considerations on cubic splines. Suhak kamuli, 3 (1975), 29–33.

    Google Scholar 

  • Soni B.K.; Yang Shaochen: NURBS-based surface grid redistribution and remapping algorithms. CAGD 12 (1995), No.7, 675–692.

    MATH  Google Scholar 

  • Sonnenveld P.: Error in cubic spline interpolation. J. Engrg. Math., 3 (1969), 107–117.

    MathSciNet  Google Scholar 

  • Sopta L.; Domandzic D.; Traven F.: Approximation of curves with linear curvature by splines. Bull. Appl. Math., 42 (1986), 185–194.

    MATH  Google Scholar 

  • Soroka R.A.; Krak Ju V.: Postroenie programîh dvijenii manipulaţionîh rabotov v vide Splainov cetvertovo poriadka. Vychisl. i prikl. Mat. (Kiev), 69 (1989), 114–120.

    Google Scholar 

  • Späth H.: 1. Ein Verfahren zur flächentreuen Approximation von Treppenfunktionen durch glatte Kurven. ZAMM, 48 (1968), 106–107.

    Google Scholar 

  • Späth H.: 2. Algorithmus 10; Zweidimensionale glatte Interpolation. Computing, 4 (1969), 178–182.

    MATH  Google Scholar 

  • Späth H.: 3. Exponential spline interpolation. Computing, 4 (1969), 225–233.

    MATH  Google Scholar 

  • Späth H.: 4. Algorithms 40; Spline interpolation of degree three. Comput. J., 12 (1969), 198–199.

    Google Scholar 

  • Späth H.: 5. Algorithms 42; interpolation by certain quintic splines. Comput. J., 12 (1969), 292–293.

    Google Scholar 

  • Späth H.: 6. Algorithm 16; Two — dimensional exponential splines. Computing, 7 (1971), 364–369.

    MATH  Google Scholar 

  • Späth H.: 7. Die numerische Berechnung von Interpolierenden Spline — funktionen mit Blockunterrelaxation. ZAMM, 51 (1971), Sonderheft, 73.

    Google Scholar 

  • Späth H.: 8. The numerical calculation of high degree Lidstone splines with equidistant knots by blockunterrelaxation. Computing, 7 (1971), 65–74.

    MATH  Google Scholar 

  • Späth H.: 9. The numerical calculation of quintic splines by blockunderrelaxation. Computing, 7 (1971), 75–82.

    MATH  Google Scholar 

  • Späth H.: 10. Rationale Spline — Interpolation. Angew. Informatik, 13 (1971), 357–359.

    Google Scholar 

  • Späth H.: 11. Zur Glätting empirischer Häufigkeitverteilungen. Computing, 10 (1972), 353–357.

    MATH  Google Scholar 

  • Späth H.: 12. Verallgemeinerte kubische Spline-Interpolation. ZAMM, 54 (1974), 234–235.

    Google Scholar 

  • Späth H.; Meier J.: Flexible smoothing with periodic cubic splines and fitting with closed curves. Computing, 40 (1988), 293–300.

    MathSciNet  MATH  Google Scholar 

  • Speckman P.: Spline smoothing and optimal rates of convergence in nonparametric regression models. Ann. Statist., 13 (1985), 970–983.

    MathSciNet  MATH  Google Scholar 

  • Spline Functions Group: Math. Research. Institute, Acad. Sinica B — splines: I-II-III-IV. (Chinese). Knowledge Practice Math., No.1-2-3-4, (1979), 62–70; 65–73; 70–80; 61–68.

    Google Scholar 

  • Spyropoulos Kyriakos J.: Application of Hermite splines to the initial value problem. Bull. Soc. Math. Grece, 16 (1975), 1–8.

    MathSciNet  MATH  Google Scholar 

  • Stancu D.D.: 1. A generalization of the Schoenberg approximating spline operator. Studia Univ. Babeş — Bolyai Math., 26 (1981), 37–42.

    MathSciNet  MATH  Google Scholar 

  • Stancu D.D.: 2. On some spline — type operators of approximation. Studia Univ. Babeş— Bolyai, 4 (1987), 47–54.

    MathSciNet  Google Scholar 

  • Stancu Felicia: Approximation of functions of several variables by means of a class of spline operators. Prepr. ”Babeş— Bolyai” Univ. Fac. Math. Res. Semin., 2 (1983), 153–158.

    MATH  Google Scholar 

  • Stein M.L.: Spline smoothing with an estimated order parameter. The Annals of Statistic, 21 (1993), No.3, 1522–1544.

    MATH  Google Scholar 

  • Stepanets A.I.; Serdyuk A.K.: On the existence of interpolation SK-splines. (russian), Ukrain. Mat. Zh., 46 (1994), No.11, 1546–1553.

    MathSciNet  Google Scholar 

  • Stephenson J.W.; Sun J.: Collocation cubic elements for elliptic equations. Utilitas Math. 41 (1992), 41–50.

    MathSciNet  MATH  Google Scholar 

  • Stern M.D.: Optimal quadrature formulae. Comput. J., 9 (1967), 396–403.

    MathSciNet  MATH  Google Scholar 

  • Stewart N.F.: On line — robotic trajectory control based on spline interpolation. INFOR, 23 (1985), No.2, 159–170.

    Google Scholar 

  • Stieglitz M.: Der Satz von Budan Fourier für allgemeinen polynomiale Monosplines. ZAMM, 59 (1979), 217–223.

    MathSciNet  MATH  Google Scholar 

  • Stoer J.: Curve fitting with clothoidal splines. J. Res. Nat. Bur. Standards, 87 (1982), 317–346.

    MathSciNet  MATH  Google Scholar 

  • Stoichkov S.: Discrete polysplines. C.R. Acad. Bulgare Sci., 45 (1992), No.8, 17–20.

    MathSciNet  MATH  Google Scholar 

  • Stojanovië M.: 1. A uniformly convergent quadratic spline difference scheme for singular perturbation problems. Mat. Vesn., 39 (1987), 463–473.

    Google Scholar 

  • Stojanovië M.: 2. Numerical solution of initial and singularly perturbed two — point boundary value problems using adaptive spline — function approximation. Publications de l’Institut Math. Nouvelle serie, 43(57) (1988), 155–163.

    Google Scholar 

  • Stojanovië M.: 3. Adaptive spline difference scheme for singular perturbation problem with mixed boundary conditions. Mathematica-Rev. Anal. Numer. Théor. Approximation, 18 (1989), No.2, 171–181.

    MathSciNet  Google Scholar 

  • Stojanovië M.: 4. A posteriori improvement of adaptive spline function approximation. Math. Balkanica, 3 (1989), No.3–4, 257–263.

    MathSciNet  Google Scholar 

  • Stojanovië M.: 5. Numerical solution of a singularly perturbed problem via exponential splines. BIT, 30 (1990), 171–176.

    MathSciNet  Google Scholar 

  • Stojanovië M.: 6. Exponential cubic splines and singular perturbation problem. Facta Univ. Ser. Math. Inform., (1990), No.5, 129–141.

    Google Scholar 

  • Stojanovië M.: 7. A uniformly accurate spline collocation method for a singular perturbation problem. Calcolo, 27 (1990), No.1–2, 81–88.

    MathSciNet  Google Scholar 

  • Stojanovië M.: 8. Exponential splines difference scheme for singular perturbation problem with mixed boundary conditions. Comm. Appl. Numer. Methods, 7 (1991), No.8, 625–632.

    MathSciNet  Google Scholar 

  • Stojanovië M.: 9. On the optimally convergent splines difference scheme. Analele Univ. ”Ovidius” Constanţa, 1 (1993), 41–52, and Mathematica 35 (1993), No.1, 77–82.

    Google Scholar 

  • Stojanovië M.: 10. ∈-convergent splines difference scheme. Publ. Math. Debrecen, 45 (1994), No.3–4, 397–405.

    MathSciNet  Google Scholar 

  • Stojanovië M.: 11. Singularly perturbed spline collocation method. J. Maths. Phys. Sci., 29 (1995), No.5, 189–205.

    Google Scholar 

  • Stojanovië M.: 12. Spline difference methods for a singular perturbation problem. Appl. Numer. Math., 21 (1996), No.3, 321–333.

    MathSciNet  Google Scholar 

  • Stojanovič M.; Kulpinski M.: A quadratic spline collocation method for singular two — point boundary value problems. Zb. Rad. Filoz. Fak. Nišn., Ser. Mat., 3 (1989), 43–49.

    MATH  Google Scholar 

  • Stojchev L.I.: A method for fitting real zeros of a function using an interpolation spline. Bull. Inst. Politeh. Bucureşti, Ser. Electroteh., 49 (1987), 19–22.

    MATH  Google Scholar 

  • Stone C.J.: 1. Uniform error bounds involving logspline models. In Probability, Statistics and Mathematics Papers in Honor of S. Karlin (T.W. Anderson, K.B. Athrega and DL. Iglehat, eds), Acad. Press, (1989), 335–355.

    Google Scholar 

  • Stone C.J.: 2. Large sample interference for logspline models. Annals of Statistics, 18 (1990), 717–741.

    MathSciNet  MATH  Google Scholar 

  • Stone C.J.: 3. Asymptotics for double flexible logspline, response models. The Annals of Statistics, 19 (1991), No.4, 1832–1854.

    MathSciNet  MATH  Google Scholar 

  • Stone C.J.: 4. The use of polynomial splines and their tensor products in multivariate function estimation. Ann. Statist., 22 (1994), 118–184.

    MathSciNet  MATH  Google Scholar 

  • Stone C.J.; Koo C.Y.: 1. Adaptive splines in statistics. In 1985 Statis. Comput. Sect. Proc. Amer. Status. Assoc., Amer. Statist. Assoc. Washington D.C. 45–48.

    Google Scholar 

  • Stone C.J.; Koo C.Y.: 2. Logspline density estimation. Contemporany Mathematics, 59 (1986), 1–15.

    MathSciNet  Google Scholar 

  • Storchai V.F.: 1. The deviation of polygonal functions in the L p — metric. Math. Zamet., 5 (1969), 31–37.

    Google Scholar 

  • Storchai V.F.: 2. On the approximaton of continuous functions of two variables using spline functions in the metric C. Sb. Issled. Sevr. Probi. Summir. Pribl. Funk. i ih Priloj., Dnepropetrovsk, (1972), 66–68.

    Google Scholar 

  • Storchai V.F.: 3. On deviation of interpolating splines in metrics of C and L p. (russian). In Teoria priblij. Funckţii i eë pril. Kiev, (1974), 148–157.

    Google Scholar 

  • Storchai V.F.: 4. Approximation of functions by some forms of local spline. (russian). Naukova Dumka, Kiev, 227 (1989), 194–201.

    MathSciNet  Google Scholar 

  • Storchai V.F.: 5. Sharp norm estimates on some function classes. Proceed. Steklov. Just. Math., 3 (1989), 245.

    Google Scholar 

  • Storchai V.F.: 6. On approximation of functions by some kinds of local splines. (russian). Current Anal. and its Appls., Kiev, Nauka Domka, (1989), 194–201.

    Google Scholar 

  • Storejenko E.A.: Priblijenie funkţij interpolaţionîmi v arednem splainami. Izv. Vyčisl. Ucebn. Zaved. Mat., 12 (1975/1976), 82–95.

    Google Scholar 

  • Stöckler J.: Multivariate Bernoulli Splines and the periodic interpolation problem. Constr. Approx., 7 (1991), 105–122.

    MathSciNet  MATH  Google Scholar 

  • Starry D.J.T.; Ball A.A.: Design of an n — sided surface patch from Hermite boundary data. Comput. Aided Geom. Design, 6 (1989), 111–120.

    MathSciNet  Google Scholar 

  • Strang G.: 1. Approximation in the finite element method. Numer. Math., 19 (1972), 81–98.

    MathSciNet  MATH  Google Scholar 

  • Strang G.: 2. Piecewise polynomials and the finite element method. Bull. Amer. Math. Soc., 79 (1973), 1128–1137.

    MathSciNet  Google Scholar 

  • Strang G.: 3. The dimension of piecewise polynomials and one — sided — approximation. Lecture Notes, 365, Springer-Verlag, 144–152.

    Google Scholar 

  • Strauss H.: 1. Eidentigkeit bei der gleichmässiden Approximation mit Tschebyscheffenschen Splinefunktionen. J. Approx. Theory, 15 (1975), 78–82.

    MATH  Google Scholar 

  • Strauss H.: 2. Optimale Quadraturformeln und Perforktsplines. J. Approx. Theory, 27 (1979), 203–226.

    MathSciNet  MATH  Google Scholar 

  • Strauss H.: 3. Chebyshev approximations in subspaces of spline functions. Numer. Funct. Anal. Optim., 5 (1982/1983), 421–448.

    MathSciNet  Google Scholar 

  • Strauss H.: 4. Comparison theorems for monosplines and best one — sided approximation. Numer. Funct. Anal. Optim., 6 (1983), No.4, 423–445.

    MathSciNet  MATH  Google Scholar 

  • Strauss H.: 5. Characterization of strict approximations in subspaces of spline functions. J. Approx. Theory, 4 (1984), 309–328.

    Google Scholar 

  • Strauss H.: 6. An algorithm for the computation of strict approximations in subspaces of spline functions. J. Approx. Theory, 41 (1984), 329–344.

    MathSciNet  MATH  Google Scholar 

  • Strauss H.: 7. Monotonicity of quadrature formulae of Gauss type and comparison theorems for monosplines. Numer. Math., 44 (1984), 337–348.

    MathSciNet  MATH  Google Scholar 

  • Strauss H.: 8. Best L 1 — Approximations. J. Approx. Theory, 41 (1984), 297–308.

    MathSciNet  MATH  Google Scholar 

  • Strauss H.: 9. Über beste L — Approximation durch Splinefunktionen. ZAMM, 65 (1985), No.5, 404–405.

    Google Scholar 

  • Strauss H.: 10. Uniqueness ob best Chebyshev approximations in spline subspaces. J. Approx. Theory, 44 (1985), No.3, 230–240.

    MathSciNet  MATH  Google Scholar 

  • Strelkov N.A.: Spline trigonometric bases in L 2 and interpolation of entire functions of exponential type. (russian). Math. Zametki, 32 (1982), 835–840.

    MathSciNet  MATH  Google Scholar 

  • Strom K.: 1. On concolutions of B — splines. J. Comput. Appl. Math. 55 (1994), 1–29.

    MathSciNet  Google Scholar 

  • Strom K.: 2. B-splines with homogenized knots. Adv. Comput. Math., 3 (1995), No.3, 291–308.

    MathSciNet  Google Scholar 

  • Stromberg J.O.: A modified Franklin system and higher order spline systems on ℝ n as unconditional bases for Hardy spaces. Proc. Conf. in Honor of A. Zygmund, vol II. W. Beckner et al. (ads), Wadsworth, NY, (1981), 475–493.

    Google Scholar 

  • Strygin V.V.: The parabolic spline collocation method of the solution to an optimal control problem with aftereffect. Doklady Mathematics, 53 (1996), No.2, 225–226.

    MATH  Google Scholar 

  • Strygin V.V.; Blatov I.A.; Pokornaya I.Yu.: Collocation method for solving singularly perturbed boundary-value problems by using cubic splines. Ukr. Math. J., 46 (1994), No.4, 433–440.

    MathSciNet  MATH  Google Scholar 

  • Studden W.J.; Van Arman D.J.: Admissible design for polynomial spline regression. Ann. Math. Statist., 40 (1969), 1557–1569.

    MathSciNet  MATH  Google Scholar 

  • Stys Tadeusz T.: The method of collocation by cubic splines for nonlinear parabolic equations. Bull. Acad. Polon. Sci. Ser. Sci. Math., 29 (1981), 91–98.

    MathSciNet  MATH  Google Scholar 

  • Su Buchin: 1. S orne notes on parametric cubic spline curves. Acta Math. Appl. Sinica, 1976, No.1, 49–58, (chinese).

    Google Scholar 

  • Su Buchin: 2. A theorem on parametric cubic spline curves. Acta Math. Appl. Sinica, 1977, No.1, 49–54. (chinese).

    Google Scholar 

  • Subbotin Yu N.: 1. Piecewise polynomial spline interpolation. Mat. Zametki, 1 (1967), 63–70.

    MathSciNet  Google Scholar 

  • Subbotin Yu N.: 2. Interpolation by functions with n — th derivative of minimum norms. Trudy Mat. Inst. Steklov, 88 (1967), 30–60.

    MathSciNet  Google Scholar 

  • Subbotin Yu N.: 3. Piecewise polynomial interpolation. Poisk. Extremma. Tomskii Institut. Tomsk, 248.

    Google Scholar 

  • Subbotin Yu N.: 4. Approximation of functions of class W k H p by m — order splines. Dokl. Akad. Nauk. SSSR, 195 (1970), 1039–1041.

    MathSciNet  Google Scholar 

  • Subbotin Yu N.: 5. Diameter of class W r L in L(0, 2) and spline function approximation. Math. Zametki, 7 (1970), 43–52.

    MathSciNet  MATH  Google Scholar 

  • Subbotin Yu N.: 6. On a linear method for the approximation of differentiable functions. Mat. Zametki, 7 (1970), 423–430.

    MathSciNet  MATH  Google Scholar 

  • Subbotin Yu N.: 7. A relation between spline approximation and the problem of the approximation of one class by another. Mat. Zametki, 9 (1971), 501–510.

    MathSciNet  MATH  Google Scholar 

  • Subbotin Yu N.: 8. Approximation by spline functions and estimates of diameters. Trudy Mat. Inst. Steklov, 109 (1971), 35–60.

    MathSciNet  MATH  Google Scholar 

  • Subbotin Yu N.: 9. Approximation by splines and smooth bases in C(0, 2). Mat. Zametki, 2 (1972), 43–51.

    MathSciNet  Google Scholar 

  • Subbotin Yu N.: 10. Extremal functional interpolation and approximation by splines. Mat. Zametki, 16 (1974), 843–854.

    MathSciNet  MATH  Google Scholar 

  • Subbotin Yu N.: 11. Extremal functional interpolation and splines. Dokl. Akad. Nauk. SSSR, 214 (1974), 56–58.

    MathSciNet  Google Scholar 

  • Subbotin Yu N.: 12. Extremalnîe zadaci funktionalnoe interpolaţii i interpolaţionîe v arednem splainî. Trudy Mat. Inst. Akad. Nauk. SSSR, 138 (1975), 118–173.

    MathSciNet  MATH  Google Scholar 

  • Subbotin Yu N.: 13. Odnostoronîe priblijenia splainami pri dopolnitelnîh organiceniah vostanovlenie funkţii i proizvodnţh. Mat. Zametki, 28 (1980), 223–238.

    MathSciNet  MATH  Google Scholar 

  • Subbotin Yu N.: 14. Interpoljaţionnîe L — splainî treteve poriadka. Variaţ. raznosti metodi v mat. fiz. M, (1984), 215–219.

    Google Scholar 

  • Subbotin Yu N.: 15. Normt interpoljaţionîh splainov necetnoi stepeni v prostranstve W 2 k. Matem. Zametki, 44 (1988), No.6, 843–849.

    MathSciNet  Google Scholar 

  • Subbotin Yu N.: 16. The dependence of estimates of a multidimensional piecewise — polynomial approximations on the geometric characteristics of a triangulation. (russian). Trudy Mat. Inst. Steklov., 189 (1989), 117–137.

    MathSciNet  Google Scholar 

  • Subbotin Yu N.: 17. The error in multidimensional piecewise polynomial approximation. Proceed. Steklov Inst. Math., 3 (1989), 246–247.

    Google Scholar 

  • Subbotin Yu N.; Chernykh N.I.: The order of the best spline approximations of certain classes of functions. (russian). Mat. Zametki, 7 (1970), 31–42.

    MathSciNet  MATH  Google Scholar 

  • Subbotin Yu.N.; Patsko N.L.: Applicati on of B — splines in the finite — element method. (russian). Model. Mekh., 5 (1991), No.5, 110–117.

    MathSciNet  Google Scholar 

  • Suchomski Piotr: Method of optimal variable — in the L 2 discrete norm. Internat. J. System Sci., 22 (1991), No.11, 2263–2274.

    MATH  Google Scholar 

  • Sun Dao Xun: 1. On the existence and uniqueness theorems for cubic spline. (chinese). Numer. Math. Sinica, 2 (1980), 65–74.

    Google Scholar 

  • Sun Dao Xun: 2. Cubic spline interpolation with convexity. (chinese). Numer. Math. J. Chinese Univ., 3 (1981), 370–372.

    MathSciNet  Google Scholar 

  • Sun Jaichang: The Fourier transform of the general B-splines. (chinese), Acta. Math. Appl. Sin., 7 (1989), 147–156.

    Google Scholar 

  • Sun Jaichang; Nasim C.: The Fourier transform approach to general B — splines. Indian J. Pure Appl. Math., 14 (1983), 811–829.

    MathSciNet  MATH  Google Scholar 

  • Sun Jia Chang: 1. The spline function in local coordinates and circular spline curve. (chinese). Acta Mathematica Sinica, 20 (1977), 28–40.

    MathSciNet  MATH  Google Scholar 

  • Sun Jia Chang: 2. Existence and uniqueness of interpolatory cubic splines on general end conditions. (chinese). Math. Numer. Sinica, 1978, No.2, 1–9.

    Google Scholar 

  • Sun Jia Chang: 3. The spline interpolation for space curves in local coordinates. Acta Math. App. Sin. (China), 2 (1979), No.4, 340–343.

    Google Scholar 

  • Sun Jia Chang: 4. Generalized splines in local coordinates. (chinese). Numer. Math. Sinica, 2 (1980), 142–145.

    MATH  Google Scholar 

  • Sun Jia Chang: 5. The Fourier transform approach to multivariate B — splines. (chinese). Math. Numer. Sinica, 8 (1986), No.2, 191–199.

    MathSciNet  Google Scholar 

  • Sun Jia Chang: 6. The B — net approach to B — splines in one dimension. (chinese). Math. Numer. Sinica, 11 (1989), No.1, 73–84.

    Google Scholar 

  • Sun Jia Chang: 7. The B — net structure and recurrence algorithms for B — splines in three directions. Chinese J. Math. Appl., 13 (1991), No.1, 48–59.

    Google Scholar 

  • Sun Jia Chang: 8. Dual basis and quasi — interpolants of B — splines in S 3 1 with three direction meshes. (chinese). Acta Math. Sin., 14 (1991), No.4, 470–477.

    Google Scholar 

  • Sun Jia Chang: 9. A fast parallel algorithm of bivariate spline surfaces. J. Comput. Math. 12 (1994), No.3, 195–202.

    MathSciNet  Google Scholar 

  • Sun Jianquan: An investigation on the weights of rational B — spline curves. (chinese). J. Nanjing Univ. Aeronant. Astronaut. 26 (1994), No.3, 389–397.

    MathSciNet  MATH  Google Scholar 

  • Sun Jia Chang; Lii Bing Kun: 1. A bivariate B — spline finite element method on type — 1 triangulations. (chinese). J. Numer. Methods Comput. Appl., 12 (1991), No.2, 102–113.

    Google Scholar 

  • Sun Jia Chang; Lii Bing Kun: 2. Parallel multilevel B — spline preconditi oners for the biharmonic problem. Proceed. Internat. Conf. Sci. Computation (Hagzhou 1991), Ser. Appl. Math. 1, World Sci. Publishing, River Edge, NJ, (1992), 137–151.

    Google Scholar 

  • Sun Jun Yi; Mao Ze Chun: Asymptotic expansion of the remainder term for type I interpolation by cubic splines with nonequidistant noedes. (chinese). J. Xinjiang Univ. Natur. Sci., 5 (1988), No.2, 19–28.

    MathSciNet  Google Scholar 

  • Sun Yongsheng: Some extremal problems on a class of perfect splines. Sci. Sinica (Series A), 27 (1984), 253–266.

    MATH  Google Scholar 

  • Sun Yougsheng; Li Chun: Best approximation of certain classes of smooth functions on the real axis by splines of higher order. Matem. Zametki, 48 (1990), No.4, 1038–1043.

    Google Scholar 

  • Sun Yongsheng; Liu Yong Ping: Best one — sided approximation of some classes of smooth functions on the whole real axis by cardinal splines of higher order. Approx. Theory Appl., 7 (1991), No.1, 108–123.

    MathSciNet  MATH  Google Scholar 

  • Sun W.: 1. Iterative algorithms for orthogonal spline collocation linear systems. SIAM J. Sc. Computing, 16 (1995), No.3, 720–737.

    MATH  Google Scholar 

  • Sun W.: 2. Block iterative algorithms for solving Hermite bicubic collocation equations. SLAM J. Numer. Anal., 33 (1996), No.2, 589–601.

    MATH  Google Scholar 

  • Surla Katarina: 1. The numerical solution of Fredholm’s integral equations by means of spline approximations. (serbisch). Review of Researech Fakulty of Science (Series Math.), Univ. Novi Sad, 8 (1978), 113–119.

    MATH  Google Scholar 

  • Surla Katarina: 2. Accuracy increase for some spline solutions of two — point boundary value problems. Review of Research Faculty of Science (Series Math.), Univ. Novisad, 14 (1984), No.1, 51–61.

    MATH  Google Scholar 

  • Surla Katarina: 3. On the spline solution of boundary value problems of the second order. Numer. Math. and Approx. Theory, Niš, (ed. G. Milovanovici), (1984), 131–136.

    Google Scholar 

  • Surla Katarina: 4. Spline difference scheme for a singular perturbation problem with mixed boundary conditions. Numer. Mat. and Approx. Theory II, Novi Sad, (ed. D. Herceg), (1985), 13–18.

    Google Scholar 

  • Surla Katarina: 5. A uniformly convergence spline difference scheme for singular perturbation problems. ZAMM, 66 (1986), 328–329.

    Google Scholar 

  • Surla Katarina: 6. The singularly perturbed spline collocation method for boundary value problems with mixed boundary conditions. Review of Research, Mathematics Series Novi Sad, 16 (1986), No.2, 131–144.

    Google Scholar 

  • Surla Katarina: 7. Numerical solution of singularly perturbed boundary — value problems using adaptive spline function approximation. Mathematica Revue d’Analyse Numer. et de Théorie de l’Approximation, 16 (1987), No.2, 175–189.

    Google Scholar 

  • Surla Katarina: 8. A uniformly convergence spline difference scheme for a selfadjoint singular perturbation problem. Univ. u Novom Sadu Zb. Rad. Prirod — Mat. Fak. Ser. Mat., 17 (1987), No.2, 31–38.

    MathSciNet  MATH  Google Scholar 

  • Surla Katarina: 9. A quadratic spline difference scheme for a self adjoint boundary value problem. Review of Research. Faculty of Sci., Math. Series, 19 (1989), No.2, 139–148.

    Google Scholar 

  • Surla Katarina: 10. A collocation by spline in tension. Approx. Theory Appl., 6 (1990), No.2, 101–110.

    MathSciNet  Google Scholar 

  • Surla Katarina; Herceg D.; Cvetkovic L.: A family of exponential spline difference schemes. Review of Research, Fac. Sci., Math. Series, 20,1 (1990), 17–26.

    MATH  Google Scholar 

  • Surla Katarina; Jerkoič V.: 1. Some possibilities of applying spline collocations to singular perturbation problems. Numer. Meth. and Approx. Theory II. Novi Sad (ed. D. Herceg), (1985), 19–25.

    Google Scholar 

  • Surla Katarina; Jerkoič V.: 2. An exponentially fitted quadratic spline difference scheme on a nonuniform mesh. Univ. u Novom Sadu Zb. Rad. Prirod. Mat. Fak. Ser. Mat., 19 (1989), No.1, 1–10.

    Google Scholar 

  • Surla Katarina; Jerkoič V.: 3. A quadratic spline difference scheme for a selfadjoint boundary value problem. Ibidem, 19 (1989), No.2, 139–147.

    Google Scholar 

  • Surla Katarina; Jerkoič V.: 4. Spline difference scheme on a nonuniform mesh. Ibidem, 19 (1989), No.2, 149–160.

    Google Scholar 

  • Surla Katarina; Jerkoič V.: 5. On collocations with cubic and quadratic splines. Applied Mathematics. Proc. 7th Conf. Osijek/Yugosl. (1989), 201–208.

    Google Scholar 

  • Surla Katarina; Jerkoič V.: 6. Collocation spline methods in solving boundary value problems. Review of Research Fac. of Science, Math. Series, Novi. Sad, 23 (1993), No.2, 345–350.

    MATH  Google Scholar 

  • Surla K.; Stojanovic M.: A solving singularly perturbed boundary value problem by spline in tension. J. Comput. Appl. Math., 24 (1988), 355–363.

    MathSciNet  MATH  Google Scholar 

  • Surla Katarina; Uzelac Zorica: 1. Sufficient conditions for uniform convergence of a class of spline difference schemes for singularly perturbed problems. Publ. Inst. Math. Beograd, 44(58), (1988), 127–136.

    MathSciNet  Google Scholar 

  • Surla Katarina; Uzelac Zorica: 2. The uniform convergence of a class of spline difference schemes. VI Conference on Applied Mathematics, Tara. 31.8-3.9. 1988 Univ. of Belgrad. (1989), 219–223.

    Google Scholar 

  • Surla Katarina; Uzelac Zorica: 3. Sufficient conditions for a uniform convergence family of quadratic spline difference scheme. Univ. u Novom Sadu Zb. Rad. Prirod — Mat. Fak. Ser. Mat., 19 (1989), No.2, 161–170.

    MathSciNet  MATH  Google Scholar 

  • Surla Katarina; Uzelac Zorica: 4. Some uniformly convergent spline difference schemes for singularly perturbed boundary value problems. IMA J. Numer. Anal., 10 (1990), 209–222.

    MathSciNet  Google Scholar 

  • Surla Katarina; Uzelac Zorica: 5. On a collocation method for singularly pertubed problems. ZAMM, 70 (1990), No.6, 656–658.

    Google Scholar 

  • Surla Katarina; Uzelac Zorica: 6. A family of tension spline difference schemes. ZAMM, 71 (1991), No.6, 781–783.

    Google Scholar 

  • Surla Katarina; Uzelac Zorica: 7. A uniformly accurate difference scheme for singular perturbation problem. Indian J. Pure Appl. Math., 27 (1996), No.10, 1005–1016.

    MathSciNet  MATH  Google Scholar 

  • Surla Katarina; Vukoslavčevic V.: A spline difference scheme for boundary value problem with small parameter. Zb. Rad. Prirod-Mat. Fak. Ser. Mat., 25 (1995), No.2, 159–166.

    MathSciNet  MATH  Google Scholar 

  • Suslin V.P.: 1. Smooth approximation by cubic splines. (russian). Vychisl. Tehn. i Mashin. (Minsk), 3 (1980).

    Google Scholar 

  • Suslin V.P.: 2. Smooth approximation of surfaces by bicubic splines. Idem, 3 (1980), 11–19.

    Google Scholar 

  • Suturin M.G.; Zheludev V.A.: On the approximation of finite intervals and local spline extrapolation. (russian). J. Numer. Anal. Math. Modelling 9 (1994), No.1, 75–89.

    MathSciNet  MATH  Google Scholar 

  • Svoboda Z.: Über eine lenkbare Interpolationsfunktion. Angew. Inform., 2 (1975), 55–58.

    Google Scholar 

  • Swartz B.: 1. O(h 2n+2-1) bounds on some spline interpolation errors. Bull. Amer. Math. Soc., 74 (1968), 1072–1078.

    MathSciNet  MATH  Google Scholar 

  • Swartz B.: 2. Conditioning collocation. SIAM J. Numer. Anal., 25 (1988), No.1, 124–147.

    MathSciNet  MATH  Google Scholar 

  • Swartz B.; Varga R.S.: 1. Error bounds for spline and L — spline interpolation. J. Approx. Theory, 6 (1972), 6–49.

    MathSciNet  MATH  Google Scholar 

  • Swartz B.; Varga R.S.: 2. A note onlacunary interpolation by splines. SIAM J. Numer. Anal., 10 (1975), 443–447.

    MathSciNet  Google Scholar 

  • Swartz B.; Wendroff B.: 1. The relation between the Galerkin and collocation methods using smooth splines. SIAM J. Numer. Anal., 11 (1974), 994–996.

    MathSciNet  MATH  Google Scholar 

  • Swartz B.; Wendroff B.: 2. The relative efficiency of finite difference and finite element method. I. Hyperbolic problems and splines. SIAM J. Numer. Anal., 11 (1974), 979–993.

    MathSciNet  MATH  Google Scholar 

  • Sweeney M.A.I.; Bartels R.H.: Ray tracing free — form B — spline surfaces. IEEE Computer Graphics and Applications, 6 (1986), 41–49.

    Google Scholar 

  • Swetits J.J.; Weinstein S.E.; Xu Yuesheng: Best L p — approximation with multiple constraints for 1 ≤ p < ∞. J. Approx. Theory, 65 (1991), 90–108.

    MathSciNet  MATH  Google Scholar 

  • Székelyhidi L.: 1. L p — approximation by splines. In Constuctive Theory of Functions, 84, Sofia (1984), 835–839.

    Google Scholar 

  • Székelyhidi L.: 2. L p — approximation by splines. Annal. Univ. Sci. Budapestiensis, Sectio Computatorica, 7 (1987), 33–40.

    MATH  Google Scholar 

  • Szeliski R.; Lavallee St.: Maching 3-D anatomical surfaces with non-rigid deformations using octree-splines. Internat. J. Comput. Vision, 18 (1996), No.2, 171–186.

    Google Scholar 

  • Szeliski R.; Terzopoulos D.: From Spline to Fractals. Computer Graphics, 23 (1989), No.3, 51–60.

    Google Scholar 

  • Szilvasi-Nagy M.: 1. Tubular NURBS surfaces with boundary control. Math. Pannonica, 6 (1995), 217–228.

    MathSciNet  MATH  Google Scholar 

  • Szilvasi-Nagy M.: 2. Shaping and fairing of tubular B-splines surfaces. CAGD, 14 (1997), No.8, 699–706.

    MathSciNet  MATH  Google Scholar 

  • Szymkiewicz R.: Solution of the advection — diffusion equation using the spline function and finite elements. Comm. Numer. Methods Engrg., 9 (1993), No.3, 197–206.

    MathSciNet  MATH  Google Scholar 

  • Szyszka U.: 1. Splinekollokationsmethoden für singulären Integralgleichungen auf geschlossenen Kurven in L 2. Seminar. Analysis Berlin, 1988/1989, 141–152, Akad. Wiss. DDR Berlin, (1989), 153–184, (L 2 — Raum).

    Google Scholar 

  • Szyszka U.: 2. Periodic spline interpolation on uniform meshes. Math. Nachr., 153 (1991), 109–121.

    MathSciNet  MATH  Google Scholar 

  • Ta’ani A.A.: Univariate interpolation by C-splines. J. Inst. Math. Comput. Sci. Math. Ser., 9 (1996), No.2, 153–156.

    MathSciNet  Google Scholar 

  • Taijeron H.J.; Gibson A.G.; Chandler C.: Spline interpolation and smoothing on hyperspheres. SIAM Sci. Comput. 15 (1994), No.5, 1111–1125.

    MathSciNet  MATH  Google Scholar 

  • Takagi S.: Numerical differentiation by spline functions applied to a lake temperature observation. J. Comput. Phys., 8 (1971), 285–291.

    Google Scholar 

  • Tan Jie Qing: Interpolating multivariate rational splines of special forms. J. Math. Res. Exposition, 13 (1993), No.1, 73–78.

    MathSciNet  MATH  Google Scholar 

  • Tan Jie Qing; Zhu Gong Qin: A few construction of generalized rational splines. J. Math. Res. Exposition, 15 (1995), No.4, 485–498.

    MathSciNet  Google Scholar 

  • Tan S.T.; Chan K.C.: Bi — quadratic B — spline surfaces generated from arbitrary polyhedra meshes. A Constructive approach. Comput. Vision Graphics Image Process, 39 (1987), 144–166.

    MATH  Google Scholar 

  • Tan S.T.; Lee C.K.: Inversed rational B — spline for interpolation. Comput. and Structures, 43 (1992), No.5, 889–895.

    MathSciNet  MATH  Google Scholar 

  • Tang T.: 1. Superconvergence of numerical solutions to weakly singular Volterra integrodifferential equations. Numer. Math., 61 (1992), No.3, 373–382.

    MathSciNet  MATH  Google Scholar 

  • Tang T.: 2. A note on collocation methods for Volterra integro — differential equations with weakly singular hernels. IMA J. Numer. Anal., 13 (1993), No.1, 93–99.

    MathSciNet  MATH  Google Scholar 

  • Tang Yuehong; Shen Qingyun; Xu Youxin: Tri-quadratic spline function and computation. L Surface fitting over H-D space. (chinese). J. Nanjing Univ. Aeronaut. Astronaut., 28 (1996), No.5, 614–620.

    MATH  Google Scholar 

  • Tang Yuehong; Xu Youxin: Optimal error estimation of a class of two — dimensional spline interpolation function. (chinese). J. Naujing Univ. Aeronaut Astronaut. 25 (1993), No.4, 568–574.

    MATH  Google Scholar 

  • Tang Xu Hui: Approximation of some class of diff. functions with cardinal L — splines onℝ. Approx. Theory Appl., 3 (1987), 1–17.

    MATH  Google Scholar 

  • Tao Fu Zhou: On semilogarithmic interpolation of type II. (chinese). Sichuan Daxue Xuebao, (1984), No.2, 36–42.

    Google Scholar 

  • Tao Fu Zhou; Cheng Jummo: The mixed interpolation spline of exponent and algebra. (chinese). J. Sichuan Univ. Nat. Sci. Ed., 4 (1986), 10–24.

    Google Scholar 

  • Tao Fu Zhou; Fan Jun: On exponential splines. (chinese). J. Sichuan Univ. Nat. Sci. Ed. 1984, (1984), No.4, 19–27.

    Google Scholar 

  • Tao Fu Zhou; Li Xu Wei: A class of generalized fourth — order interpolation splines. (chinese). Sichuan Daxue Xuebao, 27 (1990), No.1, 10–15.

    MathSciNet  Google Scholar 

  • Tao Tang: On the collocation methods for high — order Volterra integro — differential equations. J. Comput. Math., 8 (1990), No.2, 183–194.

    MathSciNet  MATH  Google Scholar 

  • Tao Wen: On the convexity — preserving spline interpolation. Math. Numer. Sinica, 4 (1982), 346–355.

    MathSciNet  MATH  Google Scholar 

  • Tarazi El M.N.: Quadratic spline interpolation on uniform meshes. BIT, 30 (1990), 484–489.

    MathSciNet  MATH  Google Scholar 

  • Tarazi El M.N.; Anwar M.V.: A direct cubic spline with application to initial value problem. J. Inst. Math. Comput. Sci. Math. Ser., 2 (1989), No.1, 91–101.

    MathSciNet  MATH  Google Scholar 

  • Tarazi El M.N.; Karaballi A.A.: 1. On even — degree splines with application to quadratures. J. Approx. Theory, 60 (1990), 157–167.

    MathSciNet  MATH  Google Scholar 

  • Tarazi El M.N.; Karaballi A.A.: 2. Direct nonperiodic and periodic cubic splines. Serdica, 17 (1991), No.2–3, 111–119.

    MathSciNet  MATH  Google Scholar 

  • Tarazi El M.N.; Sallam S.: 1. On quartic splines with applications to quadratures. Computing, 38 (1987), 355–361.

    MathSciNet  MATH  Google Scholar 

  • Tarazi El M.N.; Sallam S.: 2. Interpolation by quadratic spline with periodic derivative on uniform meshes. J. Comput. Appl. Math., 33 (1990), No.3, 307–314.

    MathSciNet  MATH  Google Scholar 

  • Taylor R.J.: Interpolation using the cubic spline function. Pi, Mu Epsilon J., 6 (1977), 387–393.

    MathSciNet  MATH  Google Scholar 

  • Terenkov T.S.: On a linear positive piecewise polynomial operator. Ucen. Zap. Stavropol. Gos. Ped. Inst. Mat., Stavropol, (1970), 63–65.

    Google Scholar 

  • Terentiev S.A.: 1. Polirogramî splain — interpoljaţii funkţii odnoi i dvuh peremenîh. Metody Modelir. Sloj. Proizv. System i Neprerîvn Tehnol. Procesonv. Tomsk, (1978), 140–150.

    Google Scholar 

  • Terentiev S.A.: 2. On one modification of Hermite splines, Avtom — Anal. i Sintez. Str. EVM i Vuchisl. algoritmov. Omsk, (1979), 127–130.

    Google Scholar 

  • Terihova N.I.: 1. Cubic smoothed spline. Moscow, Preprint 170, Inst. Appl. Math. USSR Academy of Sciencis (1985).

    Google Scholar 

  • Terihova N.I.: 2. Cubic smoothing splines. (russian). Mat. Model., 2 (1990), No.8, 112–118.

    MathSciNet  Google Scholar 

  • Terzopoulos D.; Qin H.: Dynamic NURBS with geometric constraints for interactive sculpting. ACM Trans. on Graphics, 13 (1994), 103–106.

    MATH  Google Scholar 

  • Tewarson R.P.: On the use of splines for the numerical solution of nonlinear two point boundary value problems. BIT, 20 (1980), 223–232.

    MathSciNet  MATH  Google Scholar 

  • Thakur L.S.: 1. Optimal interpolation with convex splines of second degree. SLAM J. Control and Optimization, 24 (1986), No.1, 157–168.

    MathSciNet  MATH  Google Scholar 

  • Thakur L.S.: 2. A computable convex programming characterization of optimal interpolatory quadratic splines with free knots. J. Math. Anal. Appl., 114 (1986), 278–288.

    MathSciNet  MATH  Google Scholar 

  • Thakur L.S.: 3. A direct algorithm for optimal quadratic splines. Numer. Math., 57 (1990), 313–332.

    MathSciNet  MATH  Google Scholar 

  • Theiheimer F.; Starkweather W.: The fairing of ship linear on a high — speed computer. Math. Comput., 15 (1961), 338–355.

    Google Scholar 

  • Theodoracatos V.E.; Katti V.: An automated and iteractive approach for fitting B-spline surfaces through 3 D planar visual data. Adv. Des. Automat. 2 (1991), 23–31.

    Google Scholar 

  • Thiele H.: Zur Glättung von Beobachtungsreihem mit Spline — Funktionen. Biom. Z., 17 (1975), 415–430.

    MathSciNet  MATH  Google Scholar 

  • Thingvold J.A.; Cohen E.: Physical Modeling with B — spline surfaces for interactive design and animation. Computer Graphics, 24 (1990), No.2, 129–137.

    Google Scholar 

  • Thomman J.: Obtention de la fonction spline d’interpolation à 2 variables sur un domain rectangulaire ou circulaire. Procédures Algol en Analyses Numerique II, Centre National. Rech. Sci. Paris, (1970), 83–94.

    Google Scholar 

  • Thomas-Agnan C.: 1. A family of splines for nonparametrsic regression and their relationship with kriging. Statistics, 21 (1990), 533–548.

    MathSciNet  MATH  Google Scholar 

  • Thomas-Agnan C.: 2. Smoothing periodic curves by a method of regularization. SIAM J. Sci. Statist. Comput., 11 (1990), 482–502.

    MathSciNet  MATH  Google Scholar 

  • Thomas-Agnan C.: 3. Spline functions and stochastic filtering. The Annals of Statistics, 19 (1991), No.3, 1512–1527.

    MathSciNet  MATH  Google Scholar 

  • Thomas D.H.: Pseudospline interpolation for space curves. Math. Comput., 30 (1976), 58–67.

    MathSciNet  MATH  Google Scholar 

  • Thomee Vidar: 1. Convergence estimates for semi-discrete Galerkin methods for initial value-problems. Lecture Notes in Math., 333 (1973), 243–262.

    Google Scholar 

  • Thomee Vidar: 2. Convergence estimates for Galerkin methods for variable coefficient initial value problems. SIAM J. Numer. Anal., 11 (1974), 1059–1068.

    MathSciNet  MATH  Google Scholar 

  • Thomee Vidar: 3. High — order local approximations to derivatives in the finite element method. Math. Comput., 31 (1977), 652–660.

    MATH  Google Scholar 

  • Thong-Tran: Ellipse, arc of ellipse and elliptic spline. Comput. and Graphics, 7 (1983), No.2, 169–175.

    Google Scholar 

  • Tian Jie: Smooth joing of rational Bézier surfaces. (chinese). J. Northwest Univ., 20 (1990), No.3, 15–20.

    MathSciNet  Google Scholar 

  • Tihomirov M.V.: 1. Best methods of approximation and interpolations of differentiable functions in the space C[-l,+l]. Mat. Sbornik, 80 (1969), 290–304.

    MathSciNet  Google Scholar 

  • Tihomirov M.V.: 2. Some problems in approximation theory. Mat. Zametki, 9 (1971), 593–607.

    MathSciNet  Google Scholar 

  • Tihomirov M.V.: 3. On the approximation of continuous functions using piecewise polynomial interpolation operators. Sb. Statei Konstr. Teor. Funkt. Extrem. Probl. Funkt. Analiza, Kalinin, (1972), 138–150.

    Google Scholar 

  • Tihomirov M.V.: 4. Harmonic means of approximation and splines on locally compact abelian groups. Uspekhi Mat. Nauk, 49 (1994), No.3, 193–194.

    MathSciNet  Google Scholar 

  • Tihomirov M.V.: 5. Harmonics and splines as optimal means of approximation and reconstruction. (russian), With a supplement by G.G. Magaril-Il’yaev. Uspekhi Mat. Nauk, 50 (1995), No.2, 125–174.

    Google Scholar 

  • Tiller W.: 1. Rational B — splines for curve and surface representation. IEEE Comp. Graphics Appl., 3(6), (1983), 61–69.

    Google Scholar 

  • Tiller W.: 2. Knot — removal algorithms for NURBS curves und surfaces. Computer — Aided Des. 24 (1992), 445–453.

    MATH  Google Scholar 

  • Timol M.G.; Kalthia N.L.; Doctor H.D.: Spline solution of magnetohydrodynamic flow of non — Newtonian fluids. Numer. Meth. Laminar and Turbulent Flow, Proc. 5th Int. Conf. Montreal, July 1987, vol.3, Pt.2, (1987), 1217–1227.

    Google Scholar 

  • Tippenhauer U.: 1. Mehrdimensionale invariante Interpolations — systeme in Hilberträumen. ZAMM, 52 (1972), 222–224.

    Google Scholar 

  • Tippenhauer U.: 2. Spline — Projektoren in Banachräumen. Math. Nachr., 80 (1977), 245–251.

    MathSciNet  MATH  Google Scholar 

  • Tippenhauer U.: 3. Zur Bestimmung von Spline — Funktionen. ZAMM, 55 (1975), 264–265.

    MathSciNet  Google Scholar 

  • Tippenhauer U.: 4. Über eine Klasse von L — spline Funktionen. Acta Math. Acad. Sci. Hung., 28 (1976), 241–246.

    MathSciNet  MATH  Google Scholar 

  • Tischkin E.V.: Teoremî ob uzhah dlja monosplinenov s kratnîmi uzlami. Maternat. Zametki, 50 (1991), No.2, 131–141.

    Google Scholar 

  • Tishin A.P.; Shinkin G.P.: 1. Construction of the smooth curves with the aid of local splines, (russian). Izv. Vuzov. Aviatz. Tech., 1 (1991), 71–75.

    Google Scholar 

  • Tishin A.P.; Shinkin G.P.: 2. Polynomial local splines with mixture. (russian). Zhurnal Vychisl. Mat. i Mat. Fiz., 31 (1991), No.11, 1745–1748.

    MATH  Google Scholar 

  • Tishin A.P.; Shinkin G.P.: 3. Formation of smooth surfaces based on local splines with mixture. (russian), Zh. Vychisl.Mat. i Mat. Fiz., 35 (1995), No.9, 1432–1439.

    MathSciNet  Google Scholar 

  • Tivonchuk V.I.: 1. On a spline — iterative method for the solution of nonlinear Volterra integral equations. (russian). Vychisl. Sist., 93 (1982), 73–82.

    MATH  Google Scholar 

  • Tivonchuk V.I.: 2. Spline iteration method for the system of integral equations with constant limits. (russian). Mat. Fiz. i Nelin. Mech. (Kiev), 13 (1990), 25–31.

    MathSciNet  Google Scholar 

  • Tivoncuk V.J.; Slepakov L.N.: 1. On a convergence conditions and error estimation of a spline — iterative method for solving nonlinear Hammerstein integral equations. (russian). Approx. Qualit. Meth. Theory Diff. Funct. Diff. Eqs. Akad. Nauk. Ukrain. SSR, Inst. Mat. Kiev, (1979), 75–84.

    Google Scholar 

  • Tivoncuk V.J.; Slepakov L.N.: 2. Solution of systems of Volterra — Fredholm linear integral equations by the spline — iterative method. (russian). Akad. Nauk. Ukrain SSR., Inst. Mat. Kiev, (1979).

    Google Scholar 

  • Tkacenko R.A.: O metode priblijenia programîh traektorii polinomialnîmi Splainami. Vestu. Livov Politehn. Inst., 248 (1990), 135–137.

    Google Scholar 

  • Tkebucava G.E.: Ciesielski’s interpolation splines. (russian). Sokharth. SSR Mecn. Akad. Moambe, 86 (1977), 285–287.

    MathSciNet  MATH  Google Scholar 

  • Tobler W.; Lan J.: Interpolation of images via histosplines. Comput. Graph. Image Process, 9 (1979), 77–81.

    Google Scholar 

  • Todorov N.; Mikhailov R.A.: An algorithm for generating polyhedron envelopes of B-spline surfaces. (russian). Avtom. Izcislitelna Tehn. — Avtom. Sist., (1986), No.11/12, 85–93.

    Google Scholar 

  • Tokuyama Y.; Konno K.: Approximate conversion of a rational boundary Gregory patch to a nonuniform B-spline surface. Visual Computer, 11 (1995), No.7, 360–368.

    Google Scholar 

  • Toraichi Kazuo; Kawada Masaru: Knot positions for the smoothest periodic quadratic spline interpolation of equispaced data. Linear Algebra Appl., 221 (1995), 245–251.

    MathSciNet  MATH  Google Scholar 

  • Toraichi Kazuo; Sekita Iwao; Mori Ryoichi: Algorithm by hybrid splines. Int. J. Syst. Sci., 19 (1988), No.8, 1547–1557.

    MATH  Google Scholar 

  • Torrens J.J.: Sur l’erreur d’approximation par élément finis en utilisant la méthode des plaquette splines. Numer. Math., 76 (1997), No.1, 61–86.

    MathSciNet  Google Scholar 

  • Totkov G.A.: 1. O variaţiah i splain — priblijeniah mnogomernîh funkţii. C.R. Acad. Bulg. Sci., 31 (1978), 159–162.

    MathSciNet  MATH  Google Scholar 

  • Totkov G.A.: 2. Ob approximaţii splain — funkţiami v prostranstvah Orlicza. C.R. Acad. Bulg. Sci., 32 (1979), 1035–1036.

    Google Scholar 

  • Totkov G.A.: 3. Converse theorems for onesided spline approximations. Dokl. Bulg. Akad. Nauk., 32 (1979), 875–878.

    MathSciNet  MATH  Google Scholar 

  • Totkov G.A.: 4. Obratnîe teoremî dlja priblijenii splainami v prostranstvah Orlicza. Serdica Bulg. Math. Publ., 6 (1980), 187–197.

    MathSciNet  Google Scholar 

  • Totkov G.A.: 5. On the convergence of some interpolation splines in a uniform metric. (bulgarian). Plovdiv Univ. Nauchn. Trud., 20 (1982), No.1, 299–313.

    MathSciNet  MATH  Google Scholar 

  • Totkov G.A.; Bazelkov M.S.: 1. Approximation of classes W k H ω by local interpolation splines in metric C. (russian). Univ. Annal. Appl. Math. (Sofia), 18 (1982), No.3, 41–46.

    MathSciNet  Google Scholar 

  • Totkov G.A.; Bazelkov M.S.: 2. Uniform approximation of classes W k M by local interpolational splines. (bulgarian). God. Vissh. Ucebn. Zaved. Prilozhna Mat., 18 (1982), 41–46.

    MathSciNet  Google Scholar 

  • Totkov G.A.; Bazelkov M.S.: 3. Metric properties of the modulus of continuity and interpolation by splines on triangular grids. (russian). Constructive function theory, 81 (Varna, 1981), Bulg. Acad. Sci. Sofia, (1983), 171–177.

    Google Scholar 

  • Totkov G.A.; Kirov G.H.; Bazelkov M.S.: Approximation of functions in classes W p r [0, 1] by rational interpolation splines. (russian). University Annual Appl. Math. (Sofia), 18 (1982), No.3, 33–40.

    MathSciNet  Google Scholar 

  • Totolici I.: On the approximation of the generalized solution of the mean axis equation by means of the finite element. An. Univ. Galaţi Metal., 6(11) (1988), No.2, 9–11.

    MathSciNet  Google Scholar 

  • Töpfer H.J.; Volk W.: Die numerische Behandlung von Integralgleichungen zweiter Art mittels Splinefunktionen. Ser. Int. Anal. Num., 53 (1980), 228–243.

    Google Scholar 

  • Toraichi Kazno: Discrete B — spline transformation pairs and their properties. Tensor, New Ser., 45 (1987), 214–221.

    Google Scholar 

  • Toraichi Kazuo; Mori Ryoichi: Effect of sampling rates on computational complexity of spline interpolation. Int. J. Syst. Sci., 17 (1986), No.3, 417–432.

    MATH  Google Scholar 

  • Traas C.R.: 1. C n — approximation of functions on the sphere with splines. Memo 514, Tech. Mog. Twente, (1980).

    Google Scholar 

  • Traas C.R.: 2. Smooth approximation of data on the sphere with splines. Computing, 38 (1987), 177–184.

    MathSciNet  MATH  Google Scholar 

  • Traversoni Leonardo: An algoritm for natural spline interpolation. Numer. Algorithms 5, (1993), No.1–4, 63–70.

    MathSciNet  MATH  Google Scholar 

  • Triebel H.: Spline basis and spline representation in function spaces. Arch. Math. (Basel), 36 (1981), 348–359.

    MathSciNet  MATH  Google Scholar 

  • Trigiante Rocco: Il probleme delie curve standali risolto mediante le fuzioni spline cubiche. Ric. Oper., 9 (1979), 39–54.

    Google Scholar 

  • Tripathy H.C.: On interpolation by deficient quintic splines. J. Nat. Acad. India, 6 (1988), No.1, 58–67.

    Google Scholar 

  • Troian V.N.: Priminenie splain funkţii dlja approksimaţii geofiziceskoi informaţii. Voprosî Dinam. Teorii Rasprast. Seismî Voln. Leningrad, 20 (1981), 184–197.

    Google Scholar 

  • Trummer M.R.: A note on the evaluation of bounded L 2 -Junctionals at B-splines and its application to singular equations. ZAMP, 34 (1983), No.6, 953–955.

    MathSciNet  MATH  Google Scholar 

  • Tsao Nai Kuan; Sun Tze Chien: On the numerical computation of the derivatives of a B — spline series. IMA J. Numer. Anal., 13 (1993), No.3, 343–364.

    MathSciNet  MATH  Google Scholar 

  • Tsao S.: Approximate calculation of longitudinal modes of vibration in elastic cylindres using quadratic spline functions. Comput. Aided. Eng. (Proc. Symp. Univ. Waterloo), Waterloo (Ontarion), (1971), 561–677.

    Google Scholar 

  • Tsay D.M.; Huey C.O.: 1. Cam motion synthesis using spline functions. ASME J. Mechanisms, Transmition and Automat. Des., 110 (1988), No.2, 161–165.

    Google Scholar 

  • Tsay D.M.; Huey C.O.: 2. Application of rational B-splines to the synthesis of cam-follower motion programs. ASME J. Mech. Des., 115 (1993), No.3, 621–626.

    Google Scholar 

  • Tsay D.M.; Lin B. J.: Improving the geometry design of cilindrical cams using nonparametric rational B-splines. Computer-Aided Design, 28 (1996), No.1, 5–15.

    MATH  Google Scholar 

  • Turmatov T.: Numerical solution of the Arbenz integral equation by means of cubic splines. (russian). Vopr. Vychisl. Prikl. Mat., 68 (1982), 155–159.

    MATH  Google Scholar 

  • Turner M.G.; Ghia K.N.; Keith J.S.: Application of a polynomial spline in higher order accurate vîscouse — flow computations. Lect. Notes. Phys., 170 (1982), 499–506.

    Google Scholar 

  • Tuzov I.A.: Numerical solution of initial value problem of plastin theory for the sistem of differential equations using spline functions. (russian). Inst. Meh. Akad. Nauk. USSR, Kiev, (1990), 154–160.

    Google Scholar 

  • Tzimbalario J.: 1. Lebesgue constants for cardinal L — splines interpolation. Canadian J. Math., 29 (1977), 441–448.

    MathSciNet  MATH  Google Scholar 

  • Tzimbalario J.: 2. On a class a interpolatory splines. J. Approx. Theory, 23 (1978), 142–145.

    MathSciNet  MATH  Google Scholar 

  • Tzimbalario J.: 3. Interpolation by complex splines. Transaction, AMS 243 (1978), 213–222.

    MathSciNet  MATH  Google Scholar 

  • Tzimbalario J.: 4. Cardinal discrete splines. Appl. Anal., 11 (1980), 85–101.

    MathSciNet  MATH  Google Scholar 

  • Uba P.: 1. Convergence of interpolational cubic splines on nonuniform grids. (russian). Eesti N.S.V. tead. Akad. Toimetised. Füüs — Mat., 31 (1982), No.4, 399–409.

    MathSciNet  MATH  Google Scholar 

  • Uba P.: 2. A collocation method with cubic splines to the solution of multidimensional weakly singular integral equation. Ucen. Zap. Tart. Gos. Univ., 863 (1989), 19–25.

    MathSciNet  Google Scholar 

  • Uba P.: 3. A collocation method with cubic splines for multidimensional weakly singular nonlinear integral equations. J. of Integral Eqs. Appls. 6 (1994), No.2, 257–266.

    MathSciNet  MATH  Google Scholar 

  • Uba P.: 4. On grid-point concentration in the solution of weakly singular integral equations by the cubic spline-collocation method. Differential Equations, 30 (1994), No.2, 276–284.

    MathSciNet  Google Scholar 

  • Ueda Kenyi: Convex combination NURBS. Ann. Numer. Math., 3 (1991), No.1–4, 387–399.

    Google Scholar 

  • Uferev V.S.: Approximation locale par des fonctions splines cubiques. (russian). Z. Vycisl. Mat. Fiz., 21 (1981), 5–10.

    Google Scholar 

  • Ugulava D.K.: On the notion of a spline in Banach space. Trud. Inst. Vychisl. Mat. Im. N.I. Muskhelishvili, 26 (1986), No.1, 234–241.

    MathSciNet  MATH  Google Scholar 

  • Uhlmann H.: Zur Analyse nichtlinearer fremderregter elektrischer Netzwerke nach der Kollokationsmethode mit Spline — Ansatz. Wiss. Z. der Tech. Hochsch. Ilmenau, 4 (1982), 181–188.

    Google Scholar 

  • Uko C.E.A.; Cusens A.R.: Application of spline finite strip analysis to variable depth bridges. Comm. Appl. Numer. Methods, 4 (1988), 273–278.

    MATH  Google Scholar 

  • Ullel A.N.: Spline — Funktionen und ihre Anwendungen. Melliand. Textilber. Int., 56 (1975), 488–492.

    Google Scholar 

  • Uluchev Rumen K.: B — splines with Birkhoff knots. Applications in the approximations and shape — preserving interpolation. Math. Balkanica, 3 (1989), No.2, 225–239.

    MathSciNet  MATH  Google Scholar 

  • Umar A.S.; Strayer M.R.: Numerical methods for nuclear mean — field dynamics. Computer. Physics Comunications, 63 (1991), 179–202.

    MATH  Google Scholar 

  • Umar A.S.; Wu J.; Strayer M.R.; Bottcher C.: Basis — spline collocation method for the lattice solution of boundary value problems. J. Comput. Phys., 93 (1991), No.2, 426–448.

    MathSciNet  MATH  Google Scholar 

  • Umar A.S.; Wu J.; Stranyer M.R.; Dean D.J.; Güclü M.C.: Nuclear Hartree — Fock calculations with splines. Physical Review C, 44 (1991), No.6, 2512–2522.

    Google Scholar 

  • Unser M.; Aldroubi Akram; Eden Murray: 1. On the asymptotic convergence of B-spline wavelets to Gabor functions. IEEE Trans. Inform. Theory, 38 (1992), No.2, 864–872.

    MathSciNet  MATH  Google Scholar 

  • Unser M.; Aldroubi Akram; Eden Murray: 2. Polynomial spline signal approximations: filter design and asymptotic equivalence with Shanon’s sampling theorem. IEEE Trans. Inf. Theory, (1992), No.1, 95–103.

    Google Scholar 

  • Unser M.; Aldroubi Akram; Eden Murray: 3. Polynomial splines and wavelets — a signal processing perspectives. Wavelets: a tutorial in theory and applications. Wavelet Anal. Appl., 2 (1992), 91–122.

    Google Scholar 

  • Unser M.; Aldroubi Akram; Eden Murray: 4. A family of polynomial spline wavelet transform. Signal Process., 30 (1993), No.2, 141–162.

    MATH  Google Scholar 

  • Usmani Riaz A.L.: 1. On a connection between an O(h 6) finite difference and a sextic spline solution of a two — point boundary value problem. Proc. Conf. Numer. Math. Comput. Univ. Manitoba, Winnipeg, (1978), 469–477.

    Google Scholar 

  • Usmani Riaz A.L.: 2. Spline solution for nonlinear two point boundary value problems. Int. J. Math. Sci., 3 (1980), 151–167.

    MathSciNet  MATH  Google Scholar 

  • Usmani Riaz A.L.: 3. Smooth spline approximations for the solution of a boundary value problems with engineering applications. J. Comput. Appl. Math., 6 (1980), 93–98.

    MathSciNet  MATH  Google Scholar 

  • Usmani Riaz A.L.: 4. On quadratic spline interpolation. BIT, 27 (1987), 615–622.

    MathSciNet  MATH  Google Scholar 

  • Usmani Riaz A.L.: 5. The use of quartic splines in the numerical solution of a fourth — order boundary value problem. J. Comput. Appl. Math., 44 (1992), No.2, 187–199.

    MathSciNet  MATH  Google Scholar 

  • Usmani Riaz A.L.: 6. On certain intrinsec properties of cubic polynomial splines in C[a,b]. Numerantium, 99 (1994), 199–204.

    MathSciNet  MATH  Google Scholar 

  • Usmani Riaz A.L.: 7. On non periodic quartic spline interpolation. Intern. J. Computer Math., 57 (1995), No.3–4, 197–211.

    MATH  Google Scholar 

  • Usmani Riaz A.L.: 8. Error bounds in periodic quartic spline interpolation. Approx. Theory Appl., 12 (1996), No.3, 1–9.

    MathSciNet  MATH  Google Scholar 

  • Usmani Riaz A.; Mohammed Isa: Quintic spline solution of a boundary value problem. Int. J. Comput. Math., 11 (1982), 169–184.

    MathSciNet  MATH  Google Scholar 

  • Usmani Riaz A.; Sakai M.: 1. A note on quadratic spline interpolation at mid points. BIT, 22 (1982), 261–267.

    MathSciNet  MATH  Google Scholar 

  • Usmani Riaz A.; Sakai M.: 2. Asymptotic error estimation for spline — on — spline interpolation. Proc. Jap. Acad. A, 59 (1983), 256–259.

    MathSciNet  MATH  Google Scholar 

  • Usmani Riaz A.; Sakai M.: 3. Quartic spline solution for two — point boundary value problems involving third order differential equations. Jour. Math. Phy. Sci., 18 (1984), No.4, 365–380.

    MathSciNet  MATH  Google Scholar 

  • Usmani Riaz A.; Sakai M.: 4. A connection between quartic spline solution and Numerov solution of a boundary value problem. Rep. Fac. Sci. Kagoshima Univ. Math. Phys. Chem., 20 (1987), 1–10. and Int. J. Comput. Math., 26 (1989), No.3/4, 263–273.

    MathSciNet  MATH  Google Scholar 

  • Usmani Riaz A.; Sakai M.: 5. Numerical integration formulas based on iterated cubic splines II. Computing, 56 (1996), No.1, 87–93.

    MathSciNet  MATH  Google Scholar 

  • Usmaniu Riaz A.; Warsi S.A.: 1. Quintic spline solution of boundary value problems. Comput. and Math., 6 (1980), 197–203.

    Google Scholar 

  • Usmaniu Riaz A.; Warsi S.A.: 2. Smooth spline solutions for boundary value problems in plate deflection theory. Comput. and Math. with Appl., 6 (1980), 205–211.

    Google Scholar 

  • Uta P.: O shodimosti interpoljaţionîh kubiceskih splainov na neravnomernîh setkah. Izv. Akad. Nauk. J. SSR. Fiz. — Mat., 31 (1982), 399–409.

    Google Scholar 

  • Utreras Florencio D.: 1. Sür le choix du paramètre d’ajustement dans le lissage par fonctions spline. Numer. Math., 34 (1980), 15–28.

    MathSciNet  MATH  Google Scholar 

  • Utreras Florencio D.: 2. On the eigenvalue problem associated with cubic splines: the arbitrary spaces knots case. SIGMA, 6 (1980), No.3.

    Google Scholar 

  • Utreras Florencio D.: 3. Optimal smoothing of noisy data using spline functions. SLAM J. Sci. Statist. Comput., 2 (1981), 349–362.

    MathSciNet  MATH  Google Scholar 

  • Utreras Florencio D.: 4. On computing robust splines and applications. SLAM J. Sei. Statist. Comput., 2 (1981), 153–163.

    MathSciNet  MATH  Google Scholar 

  • Utreras Florencio D.: 5. Convergence rates for monotone cubic spline interpolation. J. Approx. Theory, 36 (1982), 86–90.

    MathSciNet  MATH  Google Scholar 

  • Utreras Florencio D.: 6. Natural spline functions, their associated eigenvalue problem. Numer. Math., 42 (1983), 107–117.

    MathSciNet  MATH  Google Scholar 

  • Utreras Florencio D.: 7. Positive thin plate splines. Approx. Theory Appl., 1 (1985), No.3, 77–108.

    MathSciNet  MATH  Google Scholar 

  • Utreras Florencio D.: 8. Convergence rates for constrained spline functions. Rev. Math. Appl., 9 (1987), No.1, 87–95.

    MathSciNet  MATH  Google Scholar 

  • Utreras Florencio D.: 9. On generalized cross — validation for multivariate smoothing spline functions. SLAM J. Sci. Statist. Comput., 8 (1987), No.4, 630–643.

    MathSciNet  MATH  Google Scholar 

  • Utreras Florencio D.: 10. Convergence rates for multivariate smoothing spline functions. J. Approx. Theory, 52 (1988), 1–27.

    MathSciNet  MATH  Google Scholar 

  • Uzelac Z.; Surla K.: 1. A spline difference scheme for a singular perturbation problem. ZAMM, 68 (1988), No.5, 424–426.

    MathSciNet  Google Scholar 

  • Uzelac Z.; Surla K.: 2. A family of uniformly convergent spline difference schemes for self — adjoint problems. VI Conference on Applied Math. Tara, 318 — 3.9.1988 Univ. of Belgrad, (1989), 243–248.

    Google Scholar 

  • Uzelac Z.; Surla K.: 3. A family of quadratic spline difference schemes for a singularly perturbed boundary value problems. ZAMM, 69 (1989), 140–142.

    MathSciNet  Google Scholar 

  • Uzelac Z.; Surla K.: 4. An exponential spline difference scheme for solving parabolic equations with small parameter. ZAMM, 74 (1994), No.6, 575–577.

    Google Scholar 

  • Vagans A.A.: On a smooth piecewise — polynomial approximation method. Latvian Math. Yearbokk, II, Izdat. Zinatne Riga, (1972), 15–23.

    Google Scholar 

  • Vakarchuk S.B.: 1. Approximation of curves and surface by splines. (russian). Akad. Nauk. Ukrain. SSR., Inst. Mat. Preprint, 32 (1982), 48.

    MathSciNet  Google Scholar 

  • Vakarchuk S.B.: 2. On spline curve — aided approximation of curves preset in a parametric form. (russian). Ukrain Mat. J., 35 (1983), 352–355.

    MathSciNet  Google Scholar 

  • Vakarchuk S.B.: 3. Approximation by spline — curves of curves given in parametric form. Ukr. Math. J., 35 (1983), 303–306.

    MATH  Google Scholar 

  • Vakarchuk S.B.: 4. On interpolation by bilinear splines. (russian). Mat. Zametki, 47 (1990), No.5, 26–30.

    MathSciNet  Google Scholar 

  • Vainikko G.: 1. On the stability and convergence of the collocation method. Differential Equations, 1 (1965), 186–194.

    MathSciNet  MATH  Google Scholar 

  • Vainikko G.: 2. The convergence of the collocation method for non — linear differential equations. USSR. Comput. Math. and Math. Phys., 6 (1966), 47–58.

    MathSciNet  Google Scholar 

  • Vainikko G.: 3. Approximative methode for nonlinear equations two approaches to the convergence problem. Nonlinear Anal., 2 (1978), 647–687.

    MathSciNet  MATH  Google Scholar 

  • Vainikko G.; Uba P.: A piecewise polynomial approximation to the solution of an integral equation with weakly singular kernel. J. Austr. Math. Soc. Ser B., 22 (1981), 431–438.

    MathSciNet  MATH  Google Scholar 

  • Valeev K. G.; Voloscenko A.B.: Reşenie integralnovo uravnenija Fredholma s pomosciu splainov. Mat. met. isled. filtraţii i massoperenosa, Kiev, (1984), 134–137.

    Google Scholar 

  • Van Daele M.; Vanden Berghe G.; De Meyer H.: A smooth approximation for the solution of a fourth — order boundary value problem based on nonpolynomial splines. J. Comput. Appl. Math. 51 (1994), 383–394.

    MathSciNet  MATH  Google Scholar 

  • Van Erp G.M.; Yuen S.W.; Swannell P.: A new type of B 3 -spline interpolation. Commun. Numer. Methods Eng., 10 (1994), No.12, 1013–1020.

    MATH  Google Scholar 

  • Van Overfeld C.W.A.M.; Viaud M.L.: Sticky splines: definition and manipualtion of spline structures with maintained topological relation. ACM Trans. on Graphics, 15 (1996), No.1, 72–98.

    Google Scholar 

  • Vanags A.A.: Ob adnom sposobe gradpoi kusocino — polynomialnoi approksimaţia. Letv. mat. ejegodnik., 11 (1972), 15–23.

    MathSciNet  MATH  Google Scholar 

  • Varah J.M.: 1. On the condition number of local bases for piecewise cubic polynomials. Math. Comput., 31 (1977), 37–44.

    MathSciNet  MATH  Google Scholar 

  • Varah J.M.: 2. A spline least square method for numerical parameter estimation in differential equations. SIAM J. Sci-Statist. Comput., 3 (1982), pp. 28–46.

    MathSciNet  MATH  Google Scholar 

  • Varas M.L.: On the computation of the monoton cubic spline functions. Approx. Theory and its Appl., 3 (1987), No.2–3, 91–105.

    MATH  Google Scholar 

  • Varma A.K.: Lacunary interpolation by splines. I — II. (0,4) and (0,1,3) cases. Acta Math. Acad. Sci. Hung., 31 (1978), No.34, I. 185–I. 192; II. 193–203.

    MathSciNet  Google Scholar 

  • Varma A.K.; Prasad J.: On certain splines and related quadrature formula. Granita, 47 (1996), No.1, 45–49.

    MathSciNet  MATH  Google Scholar 

  • Varma A.K.; Saxena A.; Saxena R.B.: Lacunary interpolation (0,1,4) modified. In “Approxi mation Theory” ed. by G.A. Anastassiou Lect. Notes in Pure and Appl. Math. Series 138, M. Dekkler Inc. New York, (1992).

    Google Scholar 

  • Vasicenko V.A.: Spline approximation in the Euclidian spaces. Lect. Notes Econ. Math. Syst., 134 (1976), 66–70.

    Google Scholar 

  • Vasileva V.N.: 1. The use of splines to inversely Sturm — Liouville problem. (russian). Isled. po Sovrem. probl. sumir. i pribl. funkţii. Dnepropetrovsk, (1973), No.4, 16–19.

    Google Scholar 

  • Vasileva V.N.: 2. The use of cubic and parabolic splines to solve the liniar differential equations for conjugate domain. (russian). Prikladn. Matematika, Irkutsk, (1978), 122–132.

    Google Scholar 

  • Vasiliev A.A.: 1. Approximaţia splainami proizvolnovo defekta a dvustoronami ograniceniami. Vestnic Leningradsk. Univ., 19 (1980), 20–27.

    Google Scholar 

  • Vasiliev A.A.: 2. Kratnaia interpoljaţia i approximaţia splainami provizvolnovo defekta. Izv. Vyec. Ucebn. Zav. Mat., 7 (1981), 14–20.

    Google Scholar 

  • Vasiliev A.A.: 3. Approximation by interpolational splines of arbitrary deficiency. Mat. Zametki, 29 (1981), 743–748.

    MathSciNet  Google Scholar 

  • Vasiliev A.A.; Malozemov V.N.; Pevnyi A.B.: 1. Interpolait on and approximation by spline functions of an arbitrary defect. Vestnik. Leningradsk. Univ., 4 (1979), 23–30.

    Google Scholar 

  • Vasiliev A.A.; Malozemov V.N.; Pevnyi A.B.: 2. Asnovî teorii B-splainov s kratnîmi uzlami. Metody Vycislenii (Leningrad), 13 (1983), 171–185.

    Google Scholar 

  • Vasiliev M.G.; Juferev V.S.: 1. An application of splines to the approximation of discontinuous solutions of ordinary differential equations. (russian). Z. Vycsil. Mat. i Mat-fiz. 17 (1977), 1053–1058.

    Google Scholar 

  • Vasiliev M.G.; Juferev V.S.: 2. Bicubiceskaia splain — interpoljaţia v poliarnîh coordinat. Z. Vycisl. Mat. i Mat-Fiz., 18 (1978), 1600–1602.

    Google Scholar 

  • Vasiliev Yu.S.: 1. Approximation by splines on an infinite interval. (russian). Trudy Mat. Inst. Steklov, 198 (1992), 89–110.

    MathSciNet  Google Scholar 

  • Vasiliev Yu.S.: 2. Approximation by splines with nonfixed knots on a half — axis depending on the location of knots. (russian). Proccedings of the Inst. Maths. and Mechs., 2 (1992), 57–69.

    Google Scholar 

  • Vasilenko V.A.: 1. On the convergence of splines in a Hilbert space. Sb. Isiel. Metody Meh. Sploshn. Sredy (Novosibirsk), 3 (1972), 18–23.

    MathSciNet  Google Scholar 

  • Vasilenko V.A.: 2. Sglajivanie operatornîmi splainami. In “Variaţonno — raznosti metodî v mat. — fizike”. Novosbirsk, (1973), 101–106.

    Google Scholar 

  • Vasilenko V.A.: 3. Obrabotka soderjaşcei oşibki informaţii metodom splain — sglajivanii. In Maşin. grafika i ego primenenia. Novosibirsk, (1973), 104–110.

    Google Scholar 

  • Vasilenko V.A.: 4. Shodimosti slainov v Hilbertom prostranstve. ”Cislenie metodî meh. Sploş. spedy”. Novosibirsk, 3 (1973), 18–23.

    MathSciNet  Google Scholar 

  • Vasilenko V.A.: 5. Shodimosty operatovnîh interpoliruiuscih splainov. In ”Variaţionno — raznosti. met. v mat. fizike”. Novosibirsk, (1973), 95–100.

    Google Scholar 

  • Vasilenko V.A.: 6. Sglajivainşcie splainî na podprostranstvîh i teoremî kompaknosti. In ”Cislenie metodî meh. sploş. spedy”. Novosibirsk, 5 (1974), 37–42.

    MathSciNet  Google Scholar 

  • Vasilenko V.A.: 7. Approksimaţia splain — funkţiami v vesovom prostranstve Soboleva. In. Diferent. i integraddiferenţ. uravnenia. Novosibirsk, (1977), Tom.I, 120–126.

    Google Scholar 

  • Vasilenko V.A.: 8. Methods for obtaining estimates and convergence in problems of generalized spline-interpolation. (russian). Variational methods in problems of numer. Anal. Collect. Sci. Works, Novosibirsk, (1986), 17–27.

    Google Scholar 

  • Vasilenko V.A.: 9. Estimation of the form of a curve modelled by a parametric splines. (russian). Vychisl. Sist., 121 (1987), 75–85.

    Google Scholar 

  • Vasilenko V.A.: 10. Lokalizaţia razrivov i splain approksimaţia funk, mnogie peremenov. Proekt. cetoci met. v zadaci cisl. An. Novosibirsk, (1989), 52–67.

    Google Scholar 

  • Vasilenko V.A.: 11. On optimality of spline interpolation for recovery of differentialble functions. Anal. Math., 15 (1989), No.3, 227–243.

    MathSciNet  MATH  Google Scholar 

  • Vasilenko V.A.: 12. Short rewie on variational approch in abstract splines. Bull. Nov. Comp. Center, Numer. Anal., 2 (1993), 91–106.

    Google Scholar 

  • Vasilenko V.A.; Rojenko A.I.: Lokalizaţia razrîzov i splain — approximaţia razrîvnîh funkţii mnoghih perimenîh na haoticeskih setkah. Proekt-setoci. metodî i zadachah Cislen. Anal. Novosibirsk, (1989), 52–67.

    Google Scholar 

  • Vassiliev T.I.: Fair interpolation and approximation of B-splines by energy minimization and points insertion. Computer-Aided Design, 28 (1996), No.9, 753–760.

    Google Scholar 

  • Veldhuizen van M.: A rafinement process for collocation approximations. Numer. Math., 26 (1976), 397–407.

    MathSciNet  MATH  Google Scholar 

  • Velicikin V.L.: The best spline approximation in the class of continuous functions. (russian). Mat. Zamet., 8 (1970), 41–46.

    Google Scholar 

  • Velikin L.: 1. Approximation by cubic splines in the classes of continuously differentiable functions. Mat. Zamet., 11 (1972), 215–226.

    MathSciNet  MATH  Google Scholar 

  • Velikin L.: 2. Tocnîe znacenia priblijenia Hermitovîmi splainami na classah differenţirnemîh funcţii. Izv. Akad. Nauk. SSSR, Ser. Mat., 37 (1975), 165–185.

    MathSciNet  Google Scholar 

  • Velikin L.: 3. Hermitovîi splain i zviazanîe s nimi quadraturnie formulî dlia nekotorîh classov differenţirnemîh funcţii. Izv. Vycisl. Uceebn. Zaved. Mat., 5 (1976), 15–28.

    MathSciNet  Google Scholar 

  • Velikin L.: 4. Best approximation of continuous functions by spline functions. Mat. Zametki, 8 (1980), 41–46.

    MathSciNet  Google Scholar 

  • Velikin L.: 5. Limit relation for various methods of approximation of periodic functions by splines and trigonometric polynomials. (russian). Anal. Math., 13 (1987), 45–74.

    MathSciNet  MATH  Google Scholar 

  • Velikin V.L.; Korneiciuk N.P.: Tocinîe oţenki priblijenia splain — funkţiami na classah differenţirnemîi funkţii. Mat. Zamet., 9 (1971), No.5, 483–494.

    MATH  Google Scholar 

  • Velikin V.L.; Nazarenko N.A.: Studies on extremal problems of spline approximations. (russian). Ukrain. Math. Zh., 42 (1990), No.1, 34–59.

    MathSciNet  Google Scholar 

  • Velikin V.L.; Zhensykbaev A.: Some properties of fundamental spline functions. Sb. Rabot Aspirantov Dnepropetr. Univ. Meh. Mat., Dnepropetrovsk, (1970), 42–47.

    Google Scholar 

  • Venturina Ezio: 1. On the (0,2,3) lacunary interpolation problem. Ganita, 35 (1984), 47–65.

    MathSciNet  MATH  Google Scholar 

  • Venturina Ezio: 2. On the (0,4) lacunary interpolation problem and some related questions. J. Comput. Appl. Math., 76 (1996), No.1–2, 287–300.

    MathSciNet  Google Scholar 

  • Verlan I.I.: 1. Preservation of converxity in case of interpolation by discrete cubic splines. (russian). Mat. Issled., 96 (1987), 13–20.

    MathSciNet  MATH  Google Scholar 

  • Verlan I.I.: 2. Synthesis of positive curves by generalized cubic splines. Mat. Issled. No.114 Mat. Model. Ekonom. Protsesov, (1990), 27–32.

    Google Scholar 

  • Verlan I.I.: 3. About one family of generalized Hermite splines. (russian). Bull. Acad. Sci. Moldova, Matematica, 2 (1992), 51–66.

    Google Scholar 

  • Verlan I.I.: 4. On a class of nonlocal generalized spline functions. (russian). Buletinul Acad. St. Republicii Moldova, 1(7), (1992), 66–71.

    MathSciNet  Google Scholar 

  • Verlan I.I.: 5. Generalized nonlocal splines with one free generating function. Estimations of nonlocal interpolation accuracy. Izv. Akad. Nauk. Respub. Moldova Mat., (1992), No.4, 3–17.

    Google Scholar 

  • Verlan I.I.: 6. Generalized Hermitian cubic splines. Interpolation error estimate in C 1 [a, b]. (russian). Mat. Issled. No.125, Issled. Operatsii Mat. Progr., (1992), 43–50.

    Google Scholar 

  • Verlan I.I.: 7. An explicit method of C 2 — interpolation using splines. Computing, 50 (1993), No.4, 315–325.

    MathSciNet  Google Scholar 

  • Verlan I.I.: 8. The family of local C 2 splines with two free generating functions. Computer Sci. J. of Moldova, 1 (1993), No.1, 105–115.

    MathSciNet  MATH  Google Scholar 

  • Verlan I.I.: 9. Generalized local splines with two free generating functions. Rev. Roumaine de Math. Pure et Appl., 38 (1993), No.2, 185–196.

    MathSciNet  MATH  Google Scholar 

  • Verlan I.I.: 10. About a family of C 4 splines with one free generating function. Appl. Numer. Math. 13 (1993), No.5, 423–435.

    MathSciNet  MATH  Google Scholar 

  • Verlan I.I.: 11. An explicit of C 3 interpolation using splines. Rev. d’Analyse Num. et de Théorie de l’Approx., Cluj, 23 (1994), No.1, 103–115.

    MathSciNet  MATH  Google Scholar 

  • Verlan I.I.: 12. An explicit method of bidimensional C 2,2 interpolation using splines. Romanian Symp. on computers Science, (Iasi, 1993), 545–556, ”A.I. Cuza” Univ. Iasi, Iasi, 1994.

    Google Scholar 

  • Verlan I.I.: 13. On convexity preserving C 1 Hermite spline interpolation. Comput. Sci. J. Moldova, 2 (1994), No.3, 301–308.

    MathSciNet  Google Scholar 

  • Verlan A.F.; Abdusatarov B.B.; Bilenko V.I.: Application des fonctions — splines à la solution numérique d’une éguation intégrale du problème de restauration des signaux. (russian). Dokl. Akad. Nauk. Ukrain. SSR. Ser. A, 4 (1981), 72–74.

    MathSciNet  Google Scholar 

  • Vermeiden A.H.; Bartels R.H.; Heppler G.R.: Integrating products of B — splines. SIAM Sci. Stat. Comput., 13 (1992), No.4, 1025–1038.

    Google Scholar 

  • Vershinin V.V.: 1. Derivatives of smoothing splines. (russian). Vycisl. Systemy, 87 (1981), 35–42.

    MathSciNet  MATH  Google Scholar 

  • Vershinin V.V.: 2. Spline mappings. (russian). Vycisl. Systemy, 87 (1981), 43–52.

    MathSciNet  MATH  Google Scholar 

  • Vershinin V.V.; Pavlov N.N.: Splines in a convex set and the problem of numerical differentiation. USSR Comput. Maths. Math. Phys., 27 (1987), No.2, 199–202.

    MathSciNet  MATH  Google Scholar 

  • Versik A.M.; Malozemov V.N.; Pevnyi A.B.: Nailucşaia cusocinopolynomialnaia approximaţia. Sibirsk. Matem. J., 16 (1975), 925–938.

    MathSciNet  Google Scholar 

  • Vesely Vitezslav: An algorithms for the computation of polynomial splines of odd degree. Kybernetika (Prague), 13 (1977), 282–289.

    MathSciNet  MATH  Google Scholar 

  • Villadsen J.V.; Sorensen J.P.: Solution of parabolic partial differential equations by a double collocation method. Chem. Eng. Sci., 24 (1969), 1337–1349.

    Google Scholar 

  • Villadsen J.V.; Stewart W.E.: Solution of boundary value problems by orthogonal collocation. Chem. Eng. Sci., 22 (1967), 1483–1501.

    Google Scholar 

  • Villalobos M.; Wahba G.: 1. Multivariate thin plate spline estimates for the posterior probabilities in the classificaton problem. Commun. Statist. A, 12 (1983), 1449–1479.

    MathSciNet  MATH  Google Scholar 

  • Villalobos M.; Wahba G.: 2. Inequality constrained multivariate smoothing splines with application to the estimation of posterior probabilities. J. Amer. Statist. Assoc., 82 (1987), 239–248.

    MathSciNet  MATH  Google Scholar 

  • Villiers J.M. de; Rohwer C.H.: Optimal local spline interpolants. J. Comput. Appl. Math., 18 (1987), 107–119.

    MathSciNet  MATH  Google Scholar 

  • Vladislav T.; Bârsan M.: Asupra unei probleme de interpolare spline generalizate. Studii şi Cere. Mat., 26 (1984), No.5, 453–467.

    Google Scholar 

  • Vladov N.V.: 1. Relations between multivariate rational and spline approximations. Math. Balkanica, 3 (1989), No.2, 201–214.

    MathSciNet  MATH  Google Scholar 

  • Vladov N.V.: 2. Spline approximation on ℝ 2. C.R. Acad. Bulgare Sci., 43 (1990), No.11, 9–11.

    MathSciNet  MATH  Google Scholar 

  • Vlaic I.; Vasiu Angela: On the approximation of a cubic spline curve by circular arcs. Studia Univ. Babeş — Bolyai, Mathematica, 33 (1988), No.3, 11–18.

    MathSciNet  MATH  Google Scholar 

  • Voevudskii V.P.: 1. Regularizovannîe splainî v singuljarnovozmuschennoi kraevoi zadaci. Metodi i algorithmî cysl. anal. M.G.U. N.i. M, (1990), 36–45.

    Google Scholar 

  • Voevudskii V.P.: 2. Convergence of regularized spline approximants to solutions of initial and boundary value problems for ODE. J. Comput. Appl. Math., 58 (1995), No.1, 55–66.

    MathSciNet  Google Scholar 

  • Volk W.: 1. The numerical solution of linear integro — differential equations by projection methods. J. Integral Egs., 9 (1985), 171–190.

    MathSciNet  Google Scholar 

  • Volk W.: 2. Making the difference interpolation method for splines more stabil. J. Comput. and Appl. Math., 33 (1990), No.1, 53–59.

    MathSciNet  MATH  Google Scholar 

  • Volkmer H.; Walter G.G.: Wavelets based on orthogonal basic splines. Appl. Anal. 47 (1992), No.2–3, 71–85.

    MathSciNet  MATH  Google Scholar 

  • Volkov Ju.S.: 1. Interpolation by polynomial splines of the class C 2. (russian). Vychisl. Sist., 98 (1983), 42–50.

    MATH  Google Scholar 

  • Volkov Ju.S.: 2. Oscillation matrices in spline — interpolation problems. (russian). Sib. Mat. Zh., 28 (1987), No.3 (163), 51–53.

    Google Scholar 

  • Volkov Ju.S.: 3. Nonregular interpolation by cubic splines. (russian). Vychisl. Sistemy, 121 (1987), 3–10.

    MATH  Google Scholar 

  • Volkov Ju.S.: 4. Convergence of interpolational splines in terms of a local grid characteristic. (russian). Vychisl. Sist., 128 (1988), 32–38.

    MATH  Google Scholar 

  • Volkov Ju.S.: 5. Estimates of the condition number of a B-spline collocation matrix. Vychisl Sist., 147 (1992), 3–10.

    MATH  Google Scholar 

  • Vorobol R.A.; Kuzhii L.L.; Popov B.A.: Nonlinear uniform splines. (russian). Otbor i Peredacha Inform., 66 (1982), 33–40.

    Google Scholar 

  • Voskoboinikov Yu.E.: Descriptive smoothing splines and algorithms for their construction. (russian). Model Mekh., 5 (1991), No.5, 30–37.

    MathSciNet  Google Scholar 

  • Vrba Radimir: Reconstruction and generation of coherent signals by means of splines. (czech). Kniznice Obd. Ved. Spisu Vys. Tech. Brno, 25 (1981), 119–124.

    Google Scholar 

  • Wade T.D.; Anderson S.J.; Bondy J.; Ramadevi V.A.; Jones R.H.; Swanson G.W.: Using smoothing splines to make inferences about the shape of gas — exchange curves. Comput. Bromed. Res., 21 (1988), 16–26.

    Google Scholar 

  • Wagner M.G.: Planar rationl B — splines motions. Comput — Aided Des. 27 (1995), No.2, 129–137.

    MATH  Google Scholar 

  • Wagner P.H.; Luo X.; Stelson K.A.: Smoothing curvature and torsion with spring splines. Comput-Aided Des., 27 (1995), No.8, 615–626.

    MATH  Google Scholar 

  • Wahba G.: 1. A polynomial algorithm for density estimation. Ann. Math. Statist., 42 (1971), 1870–1886.

    MathSciNet  MATH  Google Scholar 

  • Wahba G.: 2. Smoothing noisy data with spline functions. Numer. Math., 24 (1975), 383–393.

    MathSciNet  MATH  Google Scholar 

  • Wahba G.: 3. Interpolating spline methods for density estimation. Equi — spaced knots. Ann. Statist., 3 (1975), 30–48.

    MathSciNet  MATH  Google Scholar 

  • Wahba G.: 4. Impropers priors, spline smoothing and the problem of guarding against model errors in regressions. J. Roy. Statist. Soc. Ser B, 40 (1978), 364–372.

    MathSciNet  MATH  Google Scholar 

  • Wahba G.: 5. How to smooth curves and surfaces with splines and cross — validation. In Proc. 24 th Design of Experimental Conf. Academic Press, New York, (1979), 167–192.

    MathSciNet  Google Scholar 

  • Wahba G.: 6. Convergence rates of ”thin plate” smoothing splines when the data are noisy. In ”Lect. Notes in Math.” Vol.757, Springer Verlag, (1979), 232232–245.

    Google Scholar 

  • Wahba G.: 7. Spline interpolation and smoothing on the sphere. SIAM J.Sci. Statist. Comput., 2 (1981), 5–16.

    MathSciNet  MATH  Google Scholar 

  • Wahba G.: 8. Numerical experiments with thin plate histospline. Com. Stat. Theor. Math. A, 10 (1981), 2475–2514.

    MathSciNet  Google Scholar 

  • Wahba G.: 9. Erratum: ”Spline interpolation and smoothing on the sphere”. SIAM J. Sci. Statist. Comput., 2 (1981), 5–16.

    MathSciNet  MATH  Google Scholar 

  • Wahba G.: 10. Bayesian ”confidence intervals” for the cross — validated smoothing spline. J.R. Stat. Soc. Ser. B, 45 (1983), 133–150.

    MathSciNet  MATH  Google Scholar 

  • Wahba G.: 11. Surface fitting with scattered noisy data on Euclidean d — spaces and on the sphere. Rocky Mt. J. Math., 14 (1984), 281–299.

    MathSciNet  MATH  Google Scholar 

  • Wahba G.: 12. Cross validated spline methods for direct and indirect sensing experiments. In Statistical Signal Processing, E. Wegman and J. Schmith eds. Marcel Dekker, New York, (1984), 179–197.

    Google Scholar 

  • Wahba G.: 13. Partial spline models for the semiparametric estimation of functions of several variables. In Statistical Analysis of Time Series, Proceed. of the Japan U.S. Joint Seminar, Tokyo, (1984), 319–329.

    Google Scholar 

  • Wahba G.: 14. Cross validated spline methods for the estimation of multivariate functions from data on functions; Statistic: An Appraisal. In Proc. 50-th Anivers. Conf. Iowa State, Statist.Lab., Iowa State Univ.Press., Ames, (1984), 205–235.

    Google Scholar 

  • Wahba G.: 15. A comparison of G.C.V. and G.M.L. for smoothing parameter in the generalized spline smoothing problem. Ann. Statist., 13 (1985), 1378–1402.

    MathSciNet  MATH  Google Scholar 

  • Wahba G.: 16. Partial spline modelling of tropopause and other discontinuities. In Function Estimates, S. Marrou ed; AMS, Providence R.I.,(1985), 125–135.

    Google Scholar 

  • Wahba G.: 17. Multivariate thin plate spline smoothing and positivity and other linear inequality constraints. In Statist. Im. Process. and Graphics, E. Wegman and D. de Priest eds. M. Dekker, New York, (1985), 275–290.

    Google Scholar 

  • Wahba G.: 18. Partial and interacting spline models. Bayesin Statistics, 3 (1987), 479–491. Oxford Sci. Publ., Oxford Univ. Press., New York., 1988.

    Google Scholar 

  • Wahba G.: 19. Multivariate function and operator estimation based on smoothing splines and reproducing kernels. In Nonlimear Modeling and Forecasting, Procedings (M. Casdayli and S. Eubank eds.), 12 (1992), 95–112, Addison-Wesley, Reading, MA.

    Google Scholar 

  • Wahba G.; Luo Zhu: Smoothing spline ANOVA fits for very large nearly regular data sets, with application to historical global climate data. Ann. Numer. Math., 4 (1997), No.1–4, 579–597.

    MathSciNet  MATH  Google Scholar 

  • Wahba G.; Villalobos M.A.: Multivariate thin plate spline estimates for the posterior probabilities in the classification problem. Comra. Statist. Theor. Meth., 12 (1983), 1449–1479.

    MathSciNet  MATH  Google Scholar 

  • Wahba G.; Gu C; Wang Y.; Chappell R.: Soft classification a.k.a. risk estimation, via penalized log likelihood and smoothing spline analysis of variance. In the Mathematics of Generalization, Proceedings (D. Wolpert, ed), 20 (1995), 329–360, Addison-Wesley, Reading MA.

    Google Scholar 

  • Wahba G.; Wang Y.; Gu Chong; Klein R.; Klein B.: Smoothing spline anova for exponential families with application to the Wisconsin Epidemiological Study of Diabetic Retinopathy. Ann. Statist., 23 (1995), No.6, 1865–1890.

    MathSciNet  MATH  Google Scholar 

  • Wahba G.; Wendelberger J.: Some new mathematical methods for variational objectiv analysis using splines and cross-validation. Mon. Weather Rev., 108 (1980), 1122–1145.

    Google Scholar 

  • Wahba G.; Wold S.: 1. A complitely automatic French curve fitting spline function by cross validation. Comm. Statist., 4 (1975), 1–17.

    MathSciNet  MATH  Google Scholar 

  • Wahba G.; Wold S.: 2. Periodic splines for spectral density estimation. The use of cross validation for determining the degree of smoothing. Comm. Statist., 4 (1975), 125–141.

    MathSciNet  MATH  Google Scholar 

  • Wahba G.; Wold S.: 3. Histosplines with knots which are order statistics. J. Roy. Statist. Soc. Ser. B., 38 (1976), 140–150.

    MathSciNet  MATH  Google Scholar 

  • Walker M.: Hybrid B-spline interpolants. The mathematics of surfaces. VI (Uxbridge, 1944), 453–461, IMA Conf. Ser. New Ser., 58, Oxford Univ. Press, 1996.

    Google Scholar 

  • Waltbin B. Lars: A quasioptimal estimate in piecewise polynomial Galerkin approximation of parabolic problems. Lect.Notes in Math., 912, Springer Verlag, (1982), 230–245.

    Google Scholar 

  • Walsh J.L.; Ahberg J.H.; Nilson E.N.: Best approximation properties of the spline fit. J.Math. Mech., 11 (1962), 225–234.

    MathSciNet  MATH  Google Scholar 

  • Walter G.G.: Negative spline wavelets. J. Math. Anal. Appl., 177 (1993), No.1, 239–253.

    MathSciNet  MATH  Google Scholar 

  • Walton D.J.: Bounds on the curvatures of some parametric spline curve segment. Proc. 16-th Conf. Winnipeg/Manit. Congr. Numerantium, 56 (1987), 277–286.

    MathSciNet  Google Scholar 

  • Walton D.J.; Meek D.S.: 1. Curvature bounds for planes B-spline curve segments. Comput-Aided Des., 20 (1988), 146–150.

    MATH  Google Scholar 

  • Walton D.J.; Meek D.S.: 2. Approximation of quadratic Bézier curves by arc splines. J. Comput. Appl. Math. 54 (1994), 107–120.

    MathSciNet  MATH  Google Scholar 

  • Walton D.J.; Meek D.S.: 3. Approximation of a planar cubic Bezier spiral by circular arcs. J.Comput. Appl. Math., 75 (1996), 47–56.

    MathSciNet  MATH  Google Scholar 

  • Walz G.: 1. On interpolation by generalized planar splines I. The polynomial case. Computing, 42 (1989), No. 2/3, 187–194.

    MathSciNet  MATH  Google Scholar 

  • Walz G.: 2. Remarks on exponential splines, in particular a contour integral representation of exponential B-splines. Math. Methods Appl. Sci., 11 (1989), 821–827.

    MathSciNet  MATH  Google Scholar 

  • Walz G.: 3. On the solution of Beltrami’s equation by complex planar splines. Complex Variables Theory Appl., 15 (1990), No.1, 65–74.

    MathSciNet  MATH  Google Scholar 

  • Walz G.: 4. B-splines im komplexen. Complex Variables Theory Appl., 15 (1990), No.2, 95–105.

    MathSciNet  MATH  Google Scholar 

  • Walz G.: 5. Generalized divided differences with applications to generalized B-splines. Calcolo, 29 (1992), No.1–2, 11–123.

    MathSciNet  Google Scholar 

  • Walz G.: 6. An iterative algorithm for spline interpolation. Computing, 50 (1993), No.4, 315–325.

    MathSciNet  MATH  Google Scholar 

  • Walz G.: 7. A unified approach to B-spline recursion and knot insertion, with application to new recursion formulas. Adv. Comput. Math., 3 (1995), No.1–2, 89–100.

    MathSciNet  MATH  Google Scholar 

  • Walz G.: 8. Identities for trigonometric B-splines with an application to curve design. BIT, 37 (1997), No.1, 189–201.

    MathSciNet  MATH  Google Scholar 

  • Wang C.Y.: Shape classification of the parametric B-spline curves. CAD, 13 (1981), 199–206.

    Google Scholar 

  • Wang H.P.; Hewgill D.E.; Vickers G.W.: An efficient algorithm for generating B-spline interpolation curves and surfaces from B-spline approximation. Comm. Appl. Numer. Methods, 6 (1990), No.5, 395–400.

    MATH  Google Scholar 

  • Wang F.C.; Yang D.C.H.: Nearly Arc — lenght parameterized quintic — spline interpolation for precision machining. Comput — Aided Des., 25 (1993), No.5, 281–288.

    MATH  Google Scholar 

  • Wang Guojin: 1. Rational cubic Bernstein basis representation of circular arcs. (chinese). Appl. Math.,J. Chin. Univ., 3 (1988), No.2, 237–248.

    MATH  Google Scholar 

  • Wang Guojin: 2. A conversion formula for the cubic NURB curve, (chinese). J. Zhejiang Univ. Nat. Sci. Ed. 26 (1992), No. 6, 627–636.

    MATH  Google Scholar 

  • Wang J.: A spline interpolation with convexity. (chinese). Math. Numer. Sinica, 1 (1979), 233–243.

    MathSciNet  MATH  Google Scholar 

  • Wang J.Y.: On the numerical computation of compact integral operators using spline functions. J. Inst. Math. Appl., 18 (1976), 177–188.

    MathSciNet  MATH  Google Scholar 

  • Wang Jian Zhong: 1. Quartic lacunary polynomial spline interpolation. (chinese). Zhejiang Daxue Xuebao, (1981), No.1, 122–127.

    Google Scholar 

  • Wang Jian Zhong: 2. On optimal error bounds for interpolating splines. Sci. Sinica, Ser.A, 25 (1982), No.10, 1056–1065.

    MathSciNet  Google Scholar 

  • Wang Jian Zhong: 3. Optimal error bounds for hyperbolic spline interpolation of order 4, (chinese). J. Math. (Wuhan), 2 (1982), No.4, 371–378.

    Google Scholar 

  • Wang Jian Zhong: 4. Lacunary polynomial spline interpolation with midpoint conditions. (chinese). Chinese Ann. Math. Ser. A, 4 (1983), No.4, 405–412.

    MathSciNet  Google Scholar 

  • Wang Jian Zhong: 5. Representation of box spline by truncated powers. Math. Numer. Sinica, 7 (1985), 78–89.

    MathSciNet  Google Scholar 

  • Wang Jian Zhong: 6. Biorthogonal Junctionals of box splines. (chinese). Math. Numer. Sinica, 8 (1986), No.1, 75–81.

    MathSciNet  Google Scholar 

  • Wang Jian Zhong: 7. On the expansion coefficients in bivariate box-splines. (chinese). Chinese Ann. Math. Ser. A, 7 (1986), No.6, 655–665.

    MathSciNet  Google Scholar 

  • Wang Jian Zhong: 8. On dual basis of bivariate box-splines. Approx. Theory and its Appl., 3 (1987), No.4, 153–163.

    Google Scholar 

  • Wang Jian Zhong: 9. The null splines of the quadratic box spline spaces. (chinese). Appl. Math., J. Chin. Univ., 3 (1988), No.1, 79–90.

    Google Scholar 

  • Wang Jian Zhong: 10. Approximation of singular integrals by interpolating splines. Acta Math. Sci. (english ed.), 11 (1991), No.1, 20–31.

    MathSciNet  Google Scholar 

  • Wang Jian Zhong: 11. Cubic spline wavelet bases of Sobolev spaces and multilevel interpolation. Appl. Comput. Harmon. Anal., 3 (1996), No.2, 154–163.

    MathSciNet  Google Scholar 

  • Wang Jian Zhong; Chen Yuan: A remark on minimal support for bivariate splines. J. Comput. Math., 7 (1989), No.4, 343–360.

    MathSciNet  Google Scholar 

  • Wang Jian Zhong; Huang Da Ren: 1. On quartic and quintic interpolation splines and their optimal error bounds. Sci.Sinica, Ser.A, 25 (1982), 1130–1141.

    MathSciNet  Google Scholar 

  • Wang Jian Zhong; Huang Da Ren: 2. The asymptotic expansions of quintic lacunary interpolation splines. (chinese). Math. Numer.,Sinica, 6 (1984), No.2, 148–158.

    MathSciNet  Google Scholar 

  • Wang Jian Zhong; Huang Da Ren: 3. On the expansion coefficients in bivariate box splines. (chinese). Chinese Ann. Math. Ser.A, 7 (1986), No.6, 655–665.

    MathSciNet  Google Scholar 

  • Wang Jiaye; Wang Guozhao; Peng Qunsheng: The geometric properties and approximation order of parametric B-spline. (chinese). Chin. Ann. Math. Ser. A, 5 (1984), 625–632.

    MATH  Google Scholar 

  • Wang Keng; Zhong Hua Zhen: A new interpolating construction method for B-spline complex surfaces. (chinese). J. Huazhong Univ. Sci. Techn., (1992), No.3, 19–24.

    Google Scholar 

  • Wang P.; Kahawita R.: Numerical integration of Partial Differential Equations using cubic splines. Int. J. Computer. Math., 13 (1983).

    Google Scholar 

  • Wang Ren Hong: 1. Structure of multivariate splines and interpolation. Acta Math. Sinica, 18 (1975), 95–106.

    Google Scholar 

  • Wang Ren Hong: 2. The structural characterization and interpolation for multivariate splines. Acta Math. Sinica, 18 (1975), 91–106.

    MathSciNet  MATH  Google Scholar 

  • Wang Ren Hong: 3. On the numerical computation of eigen values and eigenfunctions of compact integral operators using spline functions. J. Inst. Math. Appl. London, 18 (1976), 177–178.

    Google Scholar 

  • Wang Ren Hong: 4. On the analysis of multivariate splines in the case of arbitrary partition I-II. (chinese). I. Sci. Sinica Math., 1 (1979), 215–226. II. The space form. Numer. Math. J. Chinese Univ., 2 (1980), 78–81.

    Google Scholar 

  • Wang Ren Hong: 5. The dimension and basis of spaces of multivariate splines. J. Comput. and Appl. Math. 12–13 (1985), 163–177.

    Google Scholar 

  • Wang Ren Hong: 6. On the dimension of space of multivariate splines. Kexue Tanbao, 6 (1988), 473–474.

    Google Scholar 

  • Wang Ren Hong: 7. Some problems on multivariate approximation. Proc. Fifth Conf. Approx. Theory of China (J.Henan Univ.), (1988), 31–38.

    Google Scholar 

  • Wang Ren Hong: 8. Multivariate spline and its applications in science and technology. Rendiconti Sem. Mat. e fis. di Milanio, 63 (1993), 213–229.

    MATH  Google Scholar 

  • Wang Ren Hong; Chou Y.S.; Cheng S.C.: A method for smoothing interpolation and the applications. Acta S.N.U.J., (1978), No.3, 68–72.

    Google Scholar 

  • Wang Ren Hong; Chui C.K.; L.L. Schumaker: On space of piecewise polynomials with boundary conditions II,III. Proc. Edmonton Conf. Amer. Math. Soc, 3 (1983), 51–66, 67–80.

    Google Scholar 

  • Wang Ren Hong; He Tian Xiao: 1. The spline spaces with boundary conditions on nonuniform type 2-triangulation. (chinese). Kexue Tongbao, 30 (1985), No.7, 858–861.

    Google Scholar 

  • Wang Ren Hong; He Tian Xiao: 2. A basis of the space of bivariate splines with quasi crosscut partition. Scientia Sinica, 29 (1986), 673–680.

    Google Scholar 

  • Wang Ren Hong; He T.X.; Liu X.Y.; Wang S.C.: An integral method for constructing bivariate spline functions. J. Comp. Math., 6 (1989), 244–261.

    Google Scholar 

  • Wang Ren Hong; Lu Xugnang: On dimensions of spaces of bivariate splines with triangulations. Sci.Sinica, Ser. A, 32 (1989), No.6, 674–694; 6 (1988), 585–594.

    Google Scholar 

  • Wang Ren Hong; Shi X.Q.: 1. The conditions of existence of the spline space S 2 1(Δ n). Kexue Tonghao, 22 (1988), 17–53.

    Google Scholar 

  • Wang Ren Hong; Shi X.Q.: 2. A kind of cubic C 1 -interpolations in n-dimensional finite element method. J.Henan Univ., (1988), 144–145; J. Math. Research and Exposition, 9 (1989), 173–189.

    Google Scholar 

  • Wang Ren Hong; Tan Jie Qing: On interpolating multivariate rational splines. Appl. Numer. Math.,12 (1993), No.4, 357–372.

    Google Scholar 

  • Wang Ren Hong; Wang Wubao; Wang Shaoming; Shi Xiquan: The C 1 -quadratic spline space on triangulations. Math. Appl., 1 (1988), No.1, 123–131.

    MathSciNet  Google Scholar 

  • Wang Ren Hong; Wu Shuntang: 1. On the rational splines. Acta SNUJ., 1 (1978), 58–70.

    Google Scholar 

  • Wang Ren Hong; Wu Shuntang: 2. On a problem of rational spline interpolation. Numerical Math. J. of Chinese Universities, 2 (1981), 165–175.

    Google Scholar 

  • Wang Ren Hong; Wu Shuntang: 3. On the relational spline functions. J. Math. Res. Expo. 4, No.2, (1984), 31–36.

    Google Scholar 

  • Wang Ri Shuang: 1. A series of convex conditions of cubic splines and some notes. (chinese). Math. Numer. Sinica, 1 (1970), 326–241.

    Google Scholar 

  • Wang Ri Shuang: 2. The structural characterization and interpolation for multivariate splines. (chinese). Acta Math. Sinica, 18 (1975), 91–106.

    MathSciNet  Google Scholar 

  • Wang Ri Shuang: 3. On the existence and uniqueness for splines of 2N—1-th with equidistant nodes. (chinese). Math. Numer. Sinica, 6 (1983), 17–24.

    Google Scholar 

  • Wang Shao Ming: 1. Spline interpolations over type-2 triangulation. Applied Math. and Comput., 49 (1992), No.2–3, 299–313.

    MATH  Google Scholar 

  • Wang Shao Ming: 2. A quadratic spline structure over triangulations. Appl. Math. Comput., 68 (1995), No.2–3, 143–152.

    MathSciNet  MATH  Google Scholar 

  • Wang Shao Ming; Wang C.L.: On smooth B-spline over nonuniform triangulation. Congressus Numerantium, 80 (1991), 139–152.

    MathSciNet  Google Scholar 

  • Wang Shou Gen; Wang Guo Rong: On cubic spline interpolation for derivative values. (chinese). J. Shanghai Norm. Univ. Nat. Sci. Ed., 2 (1980), 7–15.

    Google Scholar 

  • Wang Tianjun: 1. Spline transfinite interpolation surface with control-points. Northeastern Mat. J., 8 (1990), No.4, 402–416.

    Google Scholar 

  • Wang Tianjun: 2. A C 2 — quintic spline interpolation scheme on triangulation. Comput. Aided Geom.Design, 9 (1992), No.5, 378–386.

    Google Scholar 

  • Wang Wenping; Joe B.: Interpolation on quardic surfaces with rational quadratic spline curves. CAGD, 14 (1997), No.3, 207–230.

    MATH  Google Scholar 

  • Wang Xiang: A note of the convergence of odd degree spline interpolation. (chinese). J. Math. Expo, 7 (1987), No.3, 467–470.

    MATH  Google Scholar 

  • Wang Xiang; Sha Zhen: The bivariate spline approximate solution to the hyperbolic equations with variable coefficients. J. Comput. Math., 10 (1992), No.2, 112–128.

    MathSciNet  MATH  Google Scholar 

  • Wang Xiao Lin: 1. Cubic spline function and the numerical evaluation of Cauchy — type singular integrals. (chinese). Uhan Dasina Sinbao. J. Wuhan Univ., 4 (1987), 10–18.

    Google Scholar 

  • Wang Xiao Lin: 2. Complex spline functions on a curve. (chinese). Chinese Anals. of Math. Ser A, 11 (1990), No.4, 387–398.

    Google Scholar 

  • Wang Xiao Lin: 3. Interpolating complex cubic splines of two variable. (chinese). J. Wuhan Univ. Natur. Sci. Ed. (1993), No.4, 1–8.

    Google Scholar 

  • Wang Xiao Shen: Unequally bivariate spline spaces. Dougbei Shaxue, 2 (1986), No.1, 66–71.

    Google Scholar 

  • Wang Xing Hua: 1. Some notes on ”polynomial spline smoothing formulae”, (chinese). Math. Numer. Sinica, (1983), 217–219.

    Google Scholar 

  • Wang Xing Hua: 2. Exact estimation of approximation by Hermite splines for the classes of differentiable functions. (chinese). Adv. in Math. (Beijing), (1983), No.3, 228–236.

    Google Scholar 

  • Wang Yan Chun; Xu You Xin: A shape preserving rational cubic interpolation splines. (chinese), Math. Numer., Sinical 16 (1994), No.2, 131–143.

    Google Scholar 

  • Wang Yuanming: A class of bivariate spline spaces with boundary conditions. (chinese), J. Shanghai Univ. Nat. Sci., 1 (1995), No.2, 138–143.

    MathSciNet  MATH  Google Scholar 

  • Wang Yuanming; Cheng Zhengxing: Super spline spaces with homogeneous boundary conditions. (chinese). Numer. Math. Nanjing 16 (1994), No.1, 77–86.

    MATH  Google Scholar 

  • Wang Y.; Wahba G.: Bootstrap confidence intervals for smoothing splines and their comparison to Bayesian ”confidence intervals’. J.Statist. Comput. Simulation, 51 (1995), 263–280.

    MATH  Google Scholar 

  • Wang Zhen Ming; Yi Dong Yun: Spline fitting of measured data. (chinese), Hunau Ann. Math., 15 (1995), No.2, 69–72.

    Google Scholar 

  • Wassum P.: Approximative Basistransformation von Splineflächen. ZAMM, 70 (1980), No.6, 570–572.

    MathSciNet  Google Scholar 

  • Watson G.S.: Smoothing and interpolation by kriging and with splines. Math. Geol., 16 (1984), 601–615.

    Google Scholar 

  • Watson L.T.; Scott Melvin R.: Solving spline — collocation approximation to nonlinear two — point boundary value problems by a homotopy method. Appl. Math. and Comput., 24 (1984), No.4, 333–357.

    Google Scholar 

  • Weba Michael: 1. Interpolation of random function. Numer. Math., 59 (1991), No.7, 739–746.

    MathSciNet  MATH  Google Scholar 

  • Weba Michael: 2. Simulation and approximation of stochastic processes by spline functions. SIAM J. Sci. Stat. Comput., 13 (1992), No.5, 1085–1096.

    MATH  Google Scholar 

  • Wecker W.; Ansley C.F.: The signal extraction approach to nonlinear regression and spline smoothing. J. Amer. Statist. Assoc, 78 (1983), 81–89.

    MathSciNet  MATH  Google Scholar 

  • Wegman E.J.: 1. Two approaches to nonparametric regression: spline and isotonic inference. Recent Developments in Statistical Inference and Data Analysis. (ed. K. Matusita), North — Holland, (1980), 323–334.

    Google Scholar 

  • Wegman E.J.: 2. Vector splines and the estimation of filter functions. Technometrics, 23 (1981), 83–89.

    MathSciNet  MATH  Google Scholar 

  • Wegman E.J.; Wright I.W.: Spline in statistic. J. Amer. Statist. Assoc, 78 (1983), 351–365.

    MathSciNet  MATH  Google Scholar 

  • Wehnes Harold: Verallgemeinerte Hermiteverfahren zur numerischen Lösung von Anfangswertaufgaben bei gewöhnlichem Differentialgleichungen. Mitteilungen aus das Math. Seminar, Giesen, Heft, 133 (1978), 106.

    Google Scholar 

  • Weigend P.: 1. Splineapproximationen vom Defekt 2 und lineare Mehrschrittformeln zur numerischen Lösung gewöhnlicher Differentialgleichungen. Beitr. Numer. Math., 6 (1977), 185–195.

    Google Scholar 

  • Weigend P.: 2. Verallgemeinerte Splines und lineare Mehrschrittformeln zur numerischen Lösung gewöhn licher Differentialgleichungen. Wiss. Z. Techn. Hochsch. Karl — Marx — Stadt, 20 (1978), 727–733.

    Google Scholar 

  • Weinert H.; Byrd R.H.; Sidhu G.S.: A stochastic framework for recursive computation of spline functions II. Smoothing splines. J. Optim. Theory Appl. 30 (1980), 255–268.

    MathSciNet  MATH  Google Scholar 

  • Weinert H.; Dessi U.B.; Sidhu G.S.: ARMA splines system inverses and least — squares estimates. SIAM J. Control. Optim., 17 (1979), 525–536.

    MathSciNet  MATH  Google Scholar 

  • Weinert H.; Kailath J.: 1. A spline — theoretic approach to minimum energy control. I.E.E.E. Trans. Automatic Control AC — 21, (1970), 391–393.

    Google Scholar 

  • Weinert H.; Kailath J.: 2. Stochastic interpolations and recursive algorithms for spline functions. Ann. Math. Statist. 2 (1974), 787–794.

    MathSciNet  MATH  Google Scholar 

  • Weinert H.; Sidhu G.S.: A stochastic framework for recursive computation of spline functions. I. Interpolation splines, I.E.E.E. Trans. Inform. Theory, 24 (1978), 45–50.

    MathSciNet  MATH  Google Scholar 

  • Weinstein S.E.; Xu Yuesheng: Degree reduction of Bézier curves by approximation and interpolation. In ”Approximation Theory” ed. by G.A. Anastassiou Lect. Notes in Pure and Appl. Math. Series / 138, (1992) M. Dekker Inc, New York.

    Google Scholar 

  • Weiser A. Eisenstat S.C.; Schultz M.H.: On solving elliptic equations to moderate accuracy. SIAM J. Numer. Anal., 17 (1980), 908–929.

    MathSciNet  MATH  Google Scholar 

  • Weiser A.; Zarantonello S.E.: A note on piecewise liniar and multilinear table interpolation in many dimensions. Math. Comput., 50 (1988), No.181, 189–196.

    MathSciNet  MATH  Google Scholar 

  • Weiss R.: The application of implicit Runge — Kutta and collocation methods to boundary value problems. Math. Comput., 28 (1974), 449–464.

    MATH  Google Scholar 

  • Wells J.C.; Oberacker V.E.; Strayer M.R.; Uman A.S.: Spectral properties of derivative operators in the basis-spline collocation method. Internat. J. Modern Phys., C6 (1995), No.1, 143–167.

    Google Scholar 

  • Wen Tao: Error bounds for cubic spline interpolation. (chinese). Math. Numer. Sin., 4 (1985), 9–15.

    MATH  Google Scholar 

  • Weng Xing Hua; Hu Guan Chu; Feng Gong Ji: Error bounds for cubic Hermite splines. (chinese). Math. Numer. Sinica, 4 (1982), 218–219.

    MathSciNet  Google Scholar 

  • Weng Zumeng: Construction of multivariate B — splines with multiple nodes. (chinese). J. Math. Res. Expo, 7 (1987), No.4, 635–639.

    MATH  Google Scholar 

  • Weng Zu Yin: 1. On the existence and uniqueness of quadratic and cubic interpolating splines. (chinese). Zhejiang Univ., 4 (1982), 87–97.

    Google Scholar 

  • Weng Zu Yin: 2. Trigonometric splines of order 1. (chinese). Chinese Ann.Math. Ser. A, 4 (1983), 185–190.

    MathSciNet  Google Scholar 

  • Weng Zu Yin: 3. Norms of projection operators of interpolation by trigonometric splines of order one. (chinese). Math. Numer. Sin., 6 (1984), 396–406.

    Google Scholar 

  • Weng Zu Yin: 4. On recurrence relations of generalizeded B — splines. (chinese). Math. Numer. Sinica, 7 (1985), No.2, 221–224.

    MathSciNet  Google Scholar 

  • Wenz H.J.: 1. On the control net of certain multivariate spline functions. Acta Math. Inform. univ. Ostravieusis, 2 (1994), No.1, 113–125.

    MathSciNet  MATH  Google Scholar 

  • Wenz H.J.: 2. Interpolation of curve data by blended generalized circles. CAGD, 13 (1996), No.8, 673–680.

    Google Scholar 

  • Wenz H.J.: 3. On local approximation methods for multivariate polynomial spline surfaces. Result. Math., 31 (1997), No.1/2, 170–179.

    MathSciNet  MATH  Google Scholar 

  • Werner H.: 1. Tchebyscheff — Approximation mit einer Klasse rationaler Spline Funktionen. J. Approx. Theory, 10 (1974), 74–92.

    MATH  Google Scholar 

  • Werner H.: 2. Interpolation and integration of initial value problems of ordinary differential equations by regular splines. SIAM J. Numer. Anal., 12 (1975), 255–271.

    MathSciNet  MATH  Google Scholar 

  • Werner H.: 3. Numerische Behandlung gewöhnlicher Differentialgleichungen mit Hilfe von Spline Funktionen. Ser. Internat Anal. Numer. Suisse, 32 (1976), 167–175.

    Google Scholar 

  • Werner H.: 4. Approximation by regular splines with free knots. Austin Symposium on Approximation Theory, (1976), 567–575.

    Google Scholar 

  • Werner H.: 5. Neuere Entwiklungen auf dem Gebiete nichtlinearen Splines. ZAMM, 58 (1978), 86–95.

    Google Scholar 

  • Werner H.: 6. An introduction to non — linear splines. Polynomial and Spline Interpolation. (ed. B.N. Sahney). Reidel, Dordrecht — Boston — London, (1979), 247–306.

    Google Scholar 

  • Werner H.: 7. Spline functions and the numerical solution of differential equations. Special Topics in Appl. Math. (eds J. Freshe, D. Palasche, U. Trottenberg), North — Holland, (1980), 173–194.

    Google Scholar 

  • Werner H.: 8. The development of nonlinear splines and their applcations. Approximation Theory III. (Ed. E. Cheney), Acad. Press, (1980), 125–150.

    Google Scholar 

  • Werner H.; Loeb H.: Tchebyscheff — Approximation by regular splines with free knots. Lect. Notes. Math., 556 (1976), 439–452.

    MathSciNet  Google Scholar 

  • Werner H.; Zwick D.: Algorithms for numerical integration with regular splines. Rechenzentrum der Univ. Münster Schrifenreihe No.27, (1977).

    Google Scholar 

  • Werner H.; Hilgers H.: Lösung von Differentialgleichungen mit Splinefunktionen. Eine Störungstheorie. Numer. Math., 48 (1986), 323–336.

    MathSciNet  MATH  Google Scholar 

  • Wesselink W.; Veltkamp R.C.: Interactiv design of constrained variational curves. CAGD, 12 (1995), 533–546.

    MathSciNet  MATH  Google Scholar 

  • Weston W.M.; Donald H.T.: Variations on a theme by Schoenberg. J. Approx. Theory, 18 (1976), 39–49.

    MATH  Google Scholar 

  • Wever U.: 1. Non — negative exponential splines. Comput. Aided Des., 20 (1988), No.1, 11–16.

    MATH  Google Scholar 

  • Wever U.: 2. Global and local data reduction strategies for cubic splines. Comput. Aided Des., 23 (1991), No.2, 127–132.

    MATH  Google Scholar 

  • Wever U.: 3. Optimal parametrization for cubic splines. Comput. Aided Des., 23 (1991), No.9, 641–644.

    MATH  Google Scholar 

  • Wheeler M.F.: 1. An optimal L error estimate for Galerkin approximations to solutions of two — point boundary value problems. SLAM J. Numer. Anal., 10 (1973), 914–917.

    MATH  Google Scholar 

  • Wheeler M.F.: 2. A C 0 -collocation — finite element method for two — point boundary value problems and one space dimensional parabolic problems. SIAM J. Numer. Anal., 14 (1977), 71–90.

    MathSciNet  MATH  Google Scholar 

  • Wheeler M.F.: 3. An elliptic collocation — finite element method with interior penalties. SIAM J. Numer. Anal., 15 (1978), 152–161.

    MathSciNet  MATH  Google Scholar 

  • Whiteley W.: 1. The combinatorics of bivariate splines. Applied Geom. and Discrete Math., DIMACS Ser. 4 Amer. Math. Soc, Providence, RI (1991), 587–608.

    Google Scholar 

  • Whiteley W.: 2. A matrix for splines. Progress in approx. theory, 821–828, Academic. Press, Boston MA, 1991.

    Google Scholar 

  • Whiten W.J.: 1. The use of multidimensional cubic spline functions for regression and smoothing. Austral. Comput. J., 3 (1971), 81–88.

    MathSciNet  MATH  Google Scholar 

  • Whiten W.J.: 2. The use of periodic spline functions for regression and smoothing. Austral. Comput. J., 4 (1972), 31–34.

    MATH  Google Scholar 

  • Whitten E.H.T.; Koelling M.E.V.: 1. Geological use of multidimensional spline functions. Math. Geol., 5 (1973).

    Google Scholar 

  • Whitten E.H.T.; Koelling M.E.V.: 2. Spline surface interpolation, spatial filtering and trend surfaces for geologically mapped variables. Math. Geol., 5 (1973), 111–126.

    Google Scholar 

  • Widlund O.B.: 1. Some results on best possible error bounds for finite element method and approximation with piecewise polynomial functions. Lect. Notes. Math., 228 (1971), 253–263.

    MathSciNet  Google Scholar 

  • Widlund O.B.: 2. On best error bounds for approximation by piecewise polynomial functions. Numer. Math., 27 (1977), 327–338.

    MathSciNet  MATH  Google Scholar 

  • Willemans Karin; Dierckx P.: 1. Surface fitting using convex Powell — Sabin splines. J. Comput. Appl. Math. 56 (1994), 263–282.

    MathSciNet  MATH  Google Scholar 

  • Willemans Karin; Dierckx P.: 2. Nonnegative surface fitting with Powell-Sabin splines. Numer. Algorithms 9, (1995), No.3–4, 263–276.

    MathSciNet  MATH  Google Scholar 

  • Willemans Karin; Dierckx P.: 3. Smoothing scattered data with a monotone Powell-Sabin spline surface. Numerical Algorithms, 12 (1996), 215–232.

    MathSciNet  MATH  Google Scholar 

  • Wind H.: The rounded cubic spline. J. Inst. Math. Appl., 19 (1977), 441–445.

    MathSciNet  MATH  Google Scholar 

  • Wittenbrink K.A.: High order projection methods of moment and collocation — type for nonlinear boundary value problems. Computing, 11 (1973), 255–274.

    MathSciNet  MATH  Google Scholar 

  • Wold S.: 1. Analysis of kinetic data by means of spline functions. Chemica Scripta, 1 (1971), 97–98.

    Google Scholar 

  • ]Wold S.: 2. Spline functions in data analysis. Technometrics, 16 (1974), 1–11.

    MathSciNet  MATH  Google Scholar 

  • Woltring H.: A Fortran package for generalized cross — validatory spline smoothing and differentiation. Adv. in Engrg. Software, 8 (1985), 104–113.

    Google Scholar 

  • Wong Jianzhong: Cubic spline wavelet bases of Sobolev spaces and multilevel interpolation. Appl. Comput. Harmonic Analysis, 3 (1996), No.2, 154–163.

    MATH  Google Scholar 

  • Wong P.J.Y.: On Lidstone splines and some of their applications. Neural Parallel and Sec. Comput., Vol.1, (Atlanta GA 1995), 472–475, Dynamic, Atlanta GA 1995.

    Google Scholar 

  • Wong P.J.Y.; Agarwal R.P.: 1. Explicit error estimates for quintic and biquintic spline interpolation. Comput. Math. Appl., 18 (1989), No.8, 701–722.

    MathSciNet  MATH  Google Scholar 

  • Wong P.J.Y.; Agarwal R.P.: 2. Explicit error estimates for quintic and biquintic spline interpolation II. Comput. Math. Appl. 28 (1994), No.7, 51–69.

    MathSciNet  MATH  Google Scholar 

  • Wong P.J.Y.; Agarwal R.P.: 3. Sharp error bounds for derivates of Lidstone-spline interpolation I. Comput. Math. Appl., 28 (1994), No.9, 23–53.

    MathSciNet  MATH  Google Scholar 

  • Wong P.J.Y.; Agarwal R.P.: 4. Sharp error bounds for derivatives of Lidstone — spline interpolation II. Comput. Math. Appl., 31 (1996), No.3, 61–90.

    MathSciNet  MATH  Google Scholar 

  • Wong Wing Hung: On constrained multivariate splines and their approximation. Numer. Math., 43 (1984), 141–152.

    MathSciNet  MATH  Google Scholar 

  • Wood Bruce: Some properties of a spline projection. Bull. Inst. Math. Acad. Sin., 19 (1991), No.1, 21–31.

    MATH  Google Scholar 

  • Wood S.N.: Monotonic smoothing splines fitted by cross validation. SIAM J.Sci. Comput., 15 (1994), No.5, 1126–1133.

    MathSciNet  MATH  Google Scholar 

  • Woodford C.H.: 1. Smooth curve interpolation. BIT, 9 (1969), 69–77.

    MATH  Google Scholar 

  • Woodford C.H.: 2. An algorithm for data smoothing using spline functions. BIT, 10 (1970), 501–510.

    MATH  Google Scholar 

  • Woodward Ch. D.: 1. B 2 — splines: a local representation for cubic spline interpolation. Visual Comput., 3 (1987), No.3, 152–161.

    MATH  Google Scholar 

  • Woodward Ch. D.: 2. Cross — sectional design of B — spline surfaces. Comput. Graph. 11 (1987), 193–201.

    Google Scholar 

  • Woodward Ch. D.: 3. Skinning techniques interactive B — splines surface interpolation. Comput. Aided Des., 20 (1988), No.8, 441–451.

    MATH  Google Scholar 

  • Wright Ian W.; Wegman E.J.: Izotonic, convex and related splines. Ann. Statist., 8 (1980), 1023–1035.

    MathSciNet  MATH  Google Scholar 

  • Wright U.K.: Spline fitting discontinnous functions given just a few Fourier coefficients. Numer. Algorithms, 9 (1995), No.1–2, 157–169.

    MathSciNet  MATH  Google Scholar 

  • Wronicz Z.: 1. On the approximation and interpolation by multiple splines. Prace Mat. Zeszyt., 17 (1975), 147–157.

    MathSciNet  Google Scholar 

  • Wronicz Z.: 2. Approximation by complex splines. Zeszyty Nauk Univ. Jagiellóu. Prace Mat., 20 (1979), 67–88.

    MathSciNet  Google Scholar 

  • Wronicz Z.: 3. The Bernstein type inequality for splines. Bull. Acad. Pol. Sci. Ser. Sci. Math., 30 (1982), 225–237.

    MathSciNet  Google Scholar 

  • Wronicz Z.: 4. On some propertis of LE — splines. Annales Polonici Math., 46 (1985), 379–388.

    MathSciNet  MATH  Google Scholar 

  • Wronicz Z.: 5. Systems conjugate to biorthogonal spline systems. Bull. Polish. Acad. Sci. Math., 36 (1988), 279–288.

    MathSciNet  MATH  Google Scholar 

  • Wronicz Z.: 6. On equivalence of spline bases in L p spaces. Bull. Polish. Acad. Sci. Math., 36 (1988), 273–278.

    MathSciNet  MATH  Google Scholar 

  • Wronicz Z.: 7. Chebyshevian splines. Dissertationes. Math., 305 (1990), 100 pp.

    Google Scholar 

  • Wulbert D.: A note on polynomial splines with free knots. Numer. Math., 21 (1973), 181–184.

    MathSciNet  MATH  Google Scholar 

  • Wu C.W.; Chen W.H.: Extension of spline wavelets element method to membrane vibration analysis. Comput. Mechanics, 18 (1996), No.1, 46–54.

    MATH  Google Scholar 

  • Wu Duan Gong; Huang Da Ren: Superconvergence of quadratic interpolation splines and quadratic spline finite element solution. (chinese). Numer. Math. J. Chinese Univ., 10 (1988), No.3, 224–229.

    MathSciNet  Google Scholar 

  • Wu Hong Yi; Soug Shu Hui: Approximation and shape modification of a class of rational alternate spline curves. (chinese), Acta Math. Appl. Sinica, 18 (1995), No.2, 302–308.

    MathSciNet  Google Scholar 

  • Wu Jin: Dimension and base of bivariate quadratic spline spaces, (chinese). J. Math. Res. Expo., 7 (1987), No.3, 463–466.

    Google Scholar 

  • Wu Shung Tang: Some properties of the rational splines R 11. Numer. Math. Nanking, 4 (1982), 350–359.

    Google Scholar 

  • Wu Shung Tang; Wu Ji Er: The symetrie interpolation problem for the rational spline function ℝ 11 1. (chinese), Qufu Shifan Daxue Xuebao Ziran Kexue Ban, 20 (1994), No.3, 38–44.

    MathSciNet  Google Scholar 

  • Wu Zheng Chang; Sha Zen: 1. On interpolation by splines in imaginary tension. (chinese). Numer. Math. J. Chinese Univ., 3 (1981), 373–378.

    MathSciNet  Google Scholar 

  • Wu Zheng Chang; Sha Zen: 2. Basic splines of interpolating A — splines and their applications. (chinese). J. Shejiang Univ., 1 (1983), 103–109.

    Google Scholar 

  • Wu Zheng Chang; Sha Zen: 3. Hermite A — interpolating splines. (chinese). J. Math. Res. Expo, 4 (1984), No.1, 61–64.

    Google Scholar 

  • Wu Zhong Qi; Liu Bao Yong: Using the optimization convex hull method to find intersections of B — spline curves. (chinese). Zhejiang Daxue Xuebao Ziron Kexue Ban, 26 (1992), No.2, 211–217.

    Google Scholar 

  • Wu Zong Min: Spline interpolation of functional information data. (chinese). Chinese Ann. Math. Ser. A, 13 (1992), No.4, 493–497.

    MathSciNet  Google Scholar 

  • Xiang Chaojin: 1. The cubic interpolation spline and the collocation method for integral equations. (chinese). J. Sichnan Univ. Nat. Sci. Ed., 26 (1989), No.1, 14–20.

    MATH  Google Scholar 

  • Xiang Chaojin: 2. The cubic smoothing spline collocation method for solving integral equations of the first kind. (chinese). Sichuan Daxue Xuebao, 27 (1990), No.3, 288–292.

    MathSciNet  MATH  Google Scholar 

  • Xiang Chaojin: 3. Superconvergence of the spline — Bownds method for solving Volterra integral equations. (chinese). Numer. Math. J. Chinesse Univ., 13 (1991), No.2, 191–196.

    MATH  Google Scholar 

  • Xiang Liqun: The convergence of interpolation splines with boundary conditions. (chinese). J. Fudau Univ. Nat. Sci. 32 (1993), No.3, 342–348.

    MATH  Google Scholar 

  • Xiao Shao Liang: The space of bivariate double periodic spline functions on a tridirectional mesh. (chinese). Math. Appl., (1988), No.4, 63–72.

    Google Scholar 

  • Xie Jian Chi; Fu Kai Xin: Asymptotic expansions for semi-cardinal spline interpolation with arbitrary boundary conditions. (chinese), Hunou Ann. Math., 15 (1995), No.2, 16–20.

    Google Scholar 

  • Xie Shen Quan: 1. Cubic spline interpolation with general conditions I. (chinese). Nat. Sci. J. Xiangtan Univ., (1980), No.1, 32–39.

    Google Scholar 

  • Xie Shen Quan: 2. Quadratic spline interpolation. J. Approx. Theory, 40 (1984), 66–80.

    MathSciNet  Google Scholar 

  • Xie Shen Quan: 3. Quadratic and cubic spline interpolation. J. Approx. Theory, 41 (1984), 21–28.

    MathSciNet  Google Scholar 

  • Xie Ting Fan: On a problem of (0,2), interpolation. Approx. Theory Appl., 1 (1985), No.4, 57–63.

    MathSciNet  Google Scholar 

  • Xie Zhi Yun: 1. The Hamiltonian system and the spline function. Computer Methods in Appl. Mech. and Eng., 78 (1990), 125–139.

    Google Scholar 

  • Xie Zhi Yun: 2. Nonlinear programming algorithms for the best interpolation knots of a spline. (chinese). Math. Numer. Sinica, 12 (1990), No.2, 136–140.

    Google Scholar 

  • Xin Yuanlong: Bicubic spline functions and their applications in surface fairing. (chinese). Fudan Journal, (1977), No.1, 63–68.

    Google Scholar 

  • Xion Zhen Xiang: 1. Splines of (2n + 1)-th degree with coefficients expressed by even — order derivatives. (chinese). Math. Numer. Sinica, 2 (1980), 69–76.

    MathSciNet  MATH  Google Scholar 

  • Xion Zhen Xiang: 2. A construction of convexity preserving cubic splines. (chinese). Math. Numer. Sinica, 5 (1983), 1–16.

    MathSciNet  MATH  Google Scholar 

  • Xion Zhen Xiang: 3. Error analysis of interpolating splines of degree 2n — 1. (chinese). Comm. Appl. Math. Comput., 2 (1988), No.2, 53–62.

    MathSciNet  Google Scholar 

  • Xion Zhen Xiang: 4. Bivariate interpolating polynomials and splines I. Approx. Theory Appl., 8 (1992), No.2, 49–66.

    MathSciNet  Google Scholar 

  • Xiong Hua Xin; Hu Xin Ru: 1. Cubic cardinal splines and smoothing of curves. (chinese). Math. Pract. Theory, (1980), No.4, 14–20.

    Google Scholar 

  • Xiong Hua Xin; Hu Xin Ru: 2. On the solution of even order vector derivative expressions for spline functions of degree 2n — 1. (chinese). Sichuan Daxue Xuebao, (1983), No.4, 20–31.

    Google Scholar 

  • Xu Li Zhi; Yang Jia Xin: A class of multivariate rational splines interpolation formulas. J. Compuit. Math., 2 (1984), No.2, 164–169.

    Google Scholar 

  • Xuhui Tang: Approximation of some classes of differentiable functions with cardinal L — splines on ℝ. Approx. Theory and its Appl., 3 (1987), No.2–3, 1–17.

    MATH  Google Scholar 

  • Xu Shi Ying: 1. The convergence of cubic spline interpolation. (chinese). Acta Math. Appl. Sinica, 2 (1979), 231–235.

    MathSciNet  Google Scholar 

  • Xu Shi Ying: 2. Operator norm estimates for interpolating splines. (chinese). Yingyong Shuxue yu Jisuan Shuxue, 6 (1981), 1–6.

    Google Scholar 

  • Xu Shi Ying: 3. Convergence of periodic quadratic spline interpolants. (chinese). Numer. Math. J. Chinese Univ., 3 (1981), 188–191.

    MathSciNet  MATH  Google Scholar 

  • Xu Shi Ying: 4. Degree of approximation by cubic interpolating splines. Numer. Math. Sinica, 5 (1983), 225–229.

    MATH  Google Scholar 

  • Xu Shi Ying: 5. On the degree of approximation by cubic interpolating splines. Numer. Math. J. Chin. Univ., 7 (1985), No.4, 360–363.

    Google Scholar 

  • Xu Shi Ying: 6. Error estimations of generalized cubic spline interpolation. (chinese). Numer. Math. J. Chin. Univ., 8 (1986), No.1, 44–56.

    Google Scholar 

  • Xu Shi Ying: 7. A kind of generalized spline interpolation. (chinese). Chinese Ann. Math. Ser. A, 7 (1986), 621–628.

    MathSciNet  Google Scholar 

  • Xu Shu Xian: 1. Operator norm estimates for interpolating splines. (chinese). Yiugong Shuxue you Jisuan Shuxue, 6 (1981), 1–6.

    Google Scholar 

  • Xu Shu Xian: 2. On interpolation on quartic splines of deficiency 2. I — II. (chinese). I. Math. Numer. Sinica, 3 (1983), 25–35. II. Math. Numer. Sinica, 3 (1983), 136–141.

    Google Scholar 

  • Xu Shu Xian: 3. Remarks on periodic spline interpolation. (chinese). Acta Math. Appl. Sin., 6 (1983), 324–331.

    MATH  Google Scholar 

  • Xu Yuoxin: 1. A clase of error estimates for natural bicubic spline function. (chinese). Numer. Math. Nanking, 7 (1975), 141–150.

    Google Scholar 

  • Xu Yuoxin: 2. A class of optimal estimation of error of the two — dimensional spline interpolating function. (chinese). J. Nonjing Aeronant. Inst., 4 (1986), 57–66.

    Google Scholar 

  • Xu Yonxin; Li Jingyi; Ding Qiulin: The application of parametric cubic H — spline to curve design and approximation. (chinese). J. Nanjing. Aeronant. Inst., 4 (1986), 50–56.

    Google Scholar 

  • Xu Youxin; You Yin: Influence of boundary condition upon bicubic interpolation spline. (chinese). J. Nanjing Aeronaut. Inst., 21 (1989), No.3, 114–122.

    MATH  Google Scholar 

  • Xu Yuan: 1. Lacunary spline interpolation. J.Comput. Math., 2 (1984), 41–49.

    MATH  Google Scholar 

  • Xu Yuan: 2. Splines of 2n — th degree with coefficients expressed by odd order derivatives. (chinese). Math. Numer. Sin., 6 (1984), 434–438.

    MATH  Google Scholar 

  • Xu Yuan: 3. Existence and uniqueness of polynomial interpolation splines. (chinese). Numer. Math. J. Chin. Univ., 7 (1985), No.3, 271–274.

    MATH  Google Scholar 

  • Xu Yuesheng: 1. Recurrence formula for B — splines with respect to a class of differential operators. Appl. Math. Mech. Engl. Ed., 6 (1985), 277–281.

    MATH  Google Scholar 

  • Xu Yuesheng: 2. Recursions for Tchebycheff B-splines and their jumps. Approx. Theory, Wavelets and Applications, (Maratea 1994), 543–555. NATO Adv. Sci. Inst. Ser. C. Math. Phys. Sci. 454, Kluwer Acad. Publ. 1995

    Google Scholar 

  • Xuan Peicai: 1. Bivariate quartic periodic spline interpolation on a four direction mesh. Numer. Math., Nanjing, 17 (1995), No.3, 278–290.

    MATH  Google Scholar 

  • Xuan Peicai: 2. On the transfinite interpolation and approximation by bivariate cubic splines on type-II triangular. (chinese). Math. Numer. Sin., 18 (1996), No.4, 387–396.

    MATH  Google Scholar 

  • Yan Yi: The collocation method for first — kind boundary integral equations on polygonal regions. Math. of Comput., 54 (1990), No.189, 139–154.

    MATH  Google Scholar 

  • Yan Yi; Fairweather Graeme: Orthogonal spline collocation methods for some partial integrodifferential equations. SIAM J. Numer. Anal., 29 (1992), No.3, 755–768.

    MathSciNet  MATH  Google Scholar 

  • Yan Z.: Piecewise cubic curve fitting algorithm. Math. Comput., 49 (1987), 203–213.

    MATH  Google Scholar 

  • Yanenko N.N.; Kvasov B.I.: 1. Iteration methods of constructing polycubic spline functions. (russian). Chysl. Met. Meh. Splosh. Spedy, (Novisibirsk), 1 (1970), No.3, 84–89.

    Google Scholar 

  • Yanenko N.N.; Kvasov B.I.: 2. An iteration method of constructing polycubic spline functions. Dokl. A.N. SSSR, 195 (1990), No.5, 1055–1057.

    Google Scholar 

  • Yang M.H.; Song G.J.; Chou C.Y.; Mao G.J.: Rational beta-spline surfaces and implementation. (chinese). J. Dalian Univ. Technol., 36 (1996), No.3, 264–269.

    MathSciNet  MATH  Google Scholar 

  • Yang M.C.K.; Cheng K.Y.; Yang C.C.; Kim C.K.; Liu S.S.: Automatic curves fitting with quadratic B — spline functions and its application to computer — assisted animation. Comput. Vision Graphics Image Process, 33 (1986), 346–363.

    MATH  Google Scholar 

  • Yang Changgui: On speeding up ray tracing of B-spline surfaces. Comput.Aided Des., 19 (1987), No. 3, 122–130.

    MATH  Google Scholar 

  • Yang Sang Kyu; Cooke C.H.: Multi-resolution analysis on the interval with natural spline projection and uniform two-scale relation. J.Sci. Comput., 10 (1995), No.4, 391–407.

    MathSciNet  MATH  Google Scholar 

  • Yang Songlin; Zhang Yongshu: On binary splines with local interpolation property. (chinese). Appl. Math. J. Chin. Univ., 4 (1989), No.1, 6–23.

    MATH  Google Scholar 

  • Yang Wen Mao: The use of splines to construct least squares solutions of ordinary differential equations, partial differential equations and integral equations. (chinese). Acta Math. Sci., 10 (1990), No.4, 424–431.

    MathSciNet  Google Scholar 

  • Yang Yong; Luo En: A spline synthetic discret method for the analysis of plane problems. (chinese). J. Numer. Methods Comput.Appl., 12 (1991), No.4, 237–244.

    MathSciNet  Google Scholar 

  • Yang Zongyan: B — spline interpolation in Euler — Lagragian method for convectiondispersion equation. (chinese). 15 Ocean Univ. Qingdao 24 (1994), No.2, 143–151.

    MATH  Google Scholar 

  • Yang Yi Qun: 1. Exact constants on estimating spline functions by ended values. Math. Numer. J. Chinese Univ., 3 (1981), 279–282.

    Google Scholar 

  • Yang Yi Qun: 2. The characterisation of a class of quadratic interpolating splines with attein the optimal degree of approximation. (chinese). J. Math. Res. Exposition, 2 (1982), 57–64.

    MathSciNet  Google Scholar 

  • Yang Yi Qun: 3. Some charp estimates for approximation by circular splines. (chinese). Numer. Math. J. Chinese Univ., 4 (1982), 167–174.

    MathSciNet  Google Scholar 

  • Yang Yi Qun: 4. On two kinds of circular interpolation splines. (chinese). Math. Numer. Sinica, 6 (1984), 246–249.

    MathSciNet  Google Scholar 

  • Yanik E.G.: A Schwarz alternating procedure using spline collocation methods. Int. J. Numer. Meth. Eng., 28 (1989), No.3, 621–627.

    MathSciNet  MATH  Google Scholar 

  • Yanik E.G.; Fairweather G.: 1. Analysis of spline collocation methods for parabolic and hyperbolic problems in two space variables. SIAM J. Numer. Anal., 23 (1986), No.2, 282–296.

    MathSciNet  MATH  Google Scholar 

  • Yanik E.G.; Fairweather G.: 2. Finite element methods for parabolic and hyperbolic integro-differential equations. Nonlinear Anal., 12 (1988), 785–809.

    MathSciNet  MATH  Google Scholar 

  • Yao Ping; Liu Fu Jun; Yuan Zhe Jun: A new kind of spline curve and surface. J. Harbin Inst. Tech., (1989), No.1, 109–111.

    Google Scholar 

  • Yartsev Yu. P.: 1. Convergence of the collocation method on lines. Differential Equations, 3 (1967), 838–842.

    Google Scholar 

  • Yartsev Yu. P.: 2. The method of line collocation. Differential Equations, 4 (1968), 481–485.

    Google Scholar 

  • Yatsenko S.A.: Rational B-splines. (russian). Model. Mekh., 3 (1989), No.6, 91–101.

    MathSciNet  Google Scholar 

  • Yatsenko S.A.; Kvasov B.I.: On the choice of parametrization for cubic splines. (russian). Model Mekh., 5 (1991), No.5, 118–135.

    MathSciNet  Google Scholar 

  • Ye Mao Dong: 1. A fairing method for interpolating splines. (chinese). Math. Practice Theory, 2 (1982), 39–47.

    Google Scholar 

  • Ye Mao Dong: 2. Optimal error bounds for interpolating quadratic splines. (chinese). Numer. Math. J. Chinese Univ., 5 (1983), No.1, 54–58.

    MathSciNet  Google Scholar 

  • Ye Mao Dong: 3. The norm of cubic spline projections. (chinese). Acta Math. Sinica, 26 (1983), 228–233.

    MathSciNet  Google Scholar 

  • Ye Mao Dong: 4. Optimal error bounds for derivatives of cubic interpolating splines with equidistant nodes. (chinese). Chinese Ann. Math. Ser. A., 4 (1983), 79–90.

    MathSciNet  Google Scholar 

  • Ye Mao Dong: 5. On optimal error bounds for the cubic interpolation splines. (chinese). Acta Math. Sin., 26 (1983), 707–714.

    Google Scholar 

  • Ye Mao Dong: 6. On the splines with the property of local interpolation. Math. Numer. Sinica, 6 (1984), No.2, 137–147.

    Google Scholar 

  • Ye Mao Dong: 7. Bivariate spline interpolation and cardinal null splines. (chinese). J. Zhejiang Univ., 6 (1985), No.19, 165–173.

    Google Scholar 

  • Ye Mao Dong: 8. Interpolation to integral knots by bivariate splines of S 2 1(Δ m,n (2)). Math. Numer. Sinica, 8 (1986), No.4, 364–376.

    MathSciNet  Google Scholar 

  • Ye Mao Dong: 9. Some problems for the bivariate C 1 — cubic splines. Approx. Theory and its Appl., 4 (1988), No.4, 1–11.

    Google Scholar 

  • Ye Mao Dong: 10. Interpolation to half — integral nodes by splines in the class S 2 1(Δ m,n (2)). (chinese). Zheijiang Daxue Xuebao, 22 (1988), No.4, 112–125.

    Google Scholar 

  • Ye Mao Dong: 11. Optimal error bounds for the cubic spline interpolation of lower smooth functions. I. Approx. Theory Appl. 9 (1993), No.4, 46–54.

    Google Scholar 

  • Ye Mao Dong; Huang De Ren: 1. On the optimal error bounds of a class of interpolation splines. (chinese). J. Zhejiang Univ., 1 (1983), 110–119.

    Google Scholar 

  • Ye Mao Dong; Huang De Ren: 2. The accurate derivative error bound of quadratic interpolation splines. (chinese). Math. Numer. Sinica, 7 (1985), No.1, 47–102.

    Google Scholar 

  • Ye Mao Dong; Huang De Ren: 3. The interpolation to half — integral knots by bivariate splines of S 2 1(Δ m,n (2)). (chinese). J. Zheijiang Univ., 22 (1988), No.4, 112–125.

    Google Scholar 

  • Ye Zaifel: On interpolation splines of odd degree. Approx. Theory and its Applications, 3 (1987), No.1, 1–23.

    MathSciNet  Google Scholar 

  • Ye Zaifei; Hung Daren: Upper bounds of zeros numbers of H.B. — splines. (chinese). Adv. Math. Beijing, 17 (1988), No.4, 379–384.

    MATH  Google Scholar 

  • Ye Zhenglin: 1. A class of B — spline curves approximating fo its control polygon. (chinese). J. Northwest. Univ. Nat. Sci., 18 (1988), No.4, 13–14.

    Google Scholar 

  • Ye Zhenglin: 2. Monotone approximation and analysis of inflexion and singular points of 4nB — spline curves. (chinese). Acta Math. Appl. Sinica, 13 (1990), No.1, 56–63.

    MathSciNet  MATH  Google Scholar 

  • Ye Zhenglin; Cao Jianrong: Complex quadratic B-spline curves. (chinese), Pure Appl. Math., 10 (1994), No.2, 19–22.

    MathSciNet  MATH  Google Scholar 

  • Ye Zheng Lin; Wang Jia Ye: The location of singular and inflection points for planar cubic B — spline curve. J. Comput. Sci. Tech., 7 (1992), No.1, 6–11.

    MathSciNet  Google Scholar 

  • Yen J.; Spach S.; Smith M.; Pulleyblank R.: Paralel boxing in B-spline intersection. IEEE Computer Graphics and Apples., Jan. 1991, 72–79.

    Google Scholar 

  • Yeung M.; Walton D.J.: Curve fitting with arc splines for NC toolpath generation. Computer Aided Des., 26 (1994), 845–849.

    MATH  Google Scholar 

  • Yin Bao Cai: Dimension series and basis functions of spline function spaces. (chinese), J.Math. Res. Exposition, 16 (1996), No.1, 150–152.

    MathSciNet  Google Scholar 

  • Yin Bao Cai; Gao Wen: Dimension series for space of rational spline functions with rational weights. (chinese). J. Harbin Inst. Tech., 27 (1995), No.1, 50–54.

    MathSciNet  Google Scholar 

  • Yin Song Zhu: A smooth interpolating method for a class of spline functions and its applications. (chinese). Dongbei Shiba Xuebao, 3 (1983), 23–27.

    Google Scholar 

  • Yokota Toshiaki; Yano Tadashi; Otsuka Massahi; Matsushima Shigeo: A high-speed method for solving eigenvalue problems: use of the spline function in Milne’s method. Comput. Phys. Commun., 61 (1990), No.3, 384–387.

    Google Scholar 

  • Youcheng W.; Longzhi J.; Zouhui W.: Spline boundary element for Reissner’s plate and its application to foundation plates. BEM IX (Ed. C.A. Brebia et al.), Comput. Mech. Publications, Southampton and Springer V. Berlin, 1987.

    Google Scholar 

  • Young J.D.: 1. Numerical applications of cubic spline functions. The logistics Review, 3 (1967), 9–14.

    Google Scholar 

  • Young J.D.: 2. Numerical applications of hiperbolic spline functions. The Logistics Review, 4 (1968), 17–22.

    Google Scholar 

  • Young J.D.: 3. Numerical applications of damped cubic spline functions. The Logistics Review, 4 (1968), 33–37.

    Google Scholar 

  • Young J.D.: 4. Generalization of segmented spline fitting of third order. The Logistics Review, 5 (1969), 33–40.

    Google Scholar 

  • Young J.D.: 5. Functional and first derivative fitting by modified quintic spline. The Logistics Review, 6 (1970), 33–39.

    Google Scholar 

  • Young J.D.: 6. An optimal cubic spline. The Logistics Review, 6 (1970), 33–37.

    Google Scholar 

  • Young J.D.: 7. Smoothing data with tolerances by use of linear programming. J. Inst. Math. Appl., 8 (1971), 69–79.

    MathSciNet  Google Scholar 

  • Young J.D.: 8. The space of cubic splines with specified knots. The Logistcs Review, 7 (1971), 3–8.

    Google Scholar 

  • Young J.D.: 9. Numerical solution of nonlinear second order ordinary differential equations by use of cubic splines. The Logistics Review, 7 (1971), 5–18.

    Google Scholar 

  • Young J.D.: 10. An optimal bicubic spline on a rectilinear mesh over a rectangle. The Logistics and Transportation Review, 8 (1972), 33–40.

    Google Scholar 

  • Yu T.Y.; Soni B.K.: Application of NURBS in numerical grid generation. Computer Aided Design, 27 (1995), No.2, 147–157.

    MATH  Google Scholar 

  • Yu X.M.; Zhou S.P.: On monotone spline approximation. SIAM J. Math. Anal., 25 (1994), No.4, 1227–1239.

    MathSciNet  MATH  Google Scholar 

  • Yuan Si: 1. Finite element analysis of shells of revoltion using cubic splines. Proceed. Internat. Conf. on Finite El. Methods, ed. by He Guang — qian and Y.K. Cheng, Shanghai, China, (1982), 837–840.

    Google Scholar 

  • Yuan Si: 2. Spline rectangular elements. (chinese). Comput. Struct. Mech. Appl., 1 (1984), No.2.

    Google Scholar 

  • Yuan Si: 3. Spline sectorial elements. Appl. Math. Mechs., 5 (1984), No.6, 1859–1866.

    MATH  Google Scholar 

  • Yugai S.A.: Guaranted two — sided appoximation of real functions by linear splines on a computer. (russian). Vychisl. Systemy, 115 (1986), 105–115.

    MathSciNet  Google Scholar 

  • Yuibin Kha: Explicit approximation by fifth — degree splines with interpolation near the boundary. U.S.S.R. Comput. Maths. and Math. Physics, 29 (1989), No.4, 188–191.

    Google Scholar 

  • Yuzvinsky S.: Modules of splines on polyhedral complexes. Math. Z., 210 (1992), 245–254.

    MathSciNet  MATH  Google Scholar 

  • Zafarullah A.: 1. A method of numerical solution of functional equations. J. Optimization Theory Appl., 5 (1970), 283–288.

    MathSciNet  MATH  Google Scholar 

  • Zafarullah A.: 2. Spline functions as approximate solutions of boundary value problems. J. optimization Theory Appl., 7 (1971), 178–188.

    MathSciNet  MATH  Google Scholar 

  • Zajnullahu Ramadan: On the interpolating spline — function in Banach spaces. Punirne Math., 4 (1989), 13–15.

    MATH  Google Scholar 

  • Zakharov Yu V.: Interpolation of differentiable random functions by polynomial splines. (russian), Zh. Vychisl. Mat. i Mat. Fiz., 35 (1995), No.4, 595–602.

    MathSciNet  Google Scholar 

  • Zakharov Yu V.; Sidorov E.A.: Approximation spline limite des fonctions aleatoires. (russian). Avtometrija (Novosib)., 5 (1982), 22–26.

    Google Scholar 

  • Zaleskii B.A.: 1. Algorithm postroenia dvumernîh splainov. Sglajivanie poverhnosti. Akad. Nauk. B.S.S.R. Inst. Mat., 18 (1990), 1–13.

    Google Scholar 

  • Zaleskii B.A.: 2. Splines of several variables. (russian). Dokl. Akad. Nauk. B.S.S.R., 35 (1991), No.4, 293–295.

    Google Scholar 

  • Zaleskii B.A.: 3. A description of splines of several variables. Smoothing of surface. (russian). Vestsi. Akad. Nauk. B.S.S.R., Ser. Fiz. — Mat. Nauk., (1991), No.5, 5–11.

    Google Scholar 

  • Zamani N.G.: A least squares finite element method applied to B — splines. J. Franklin Inst., 311 (1981), 195–208.

    MathSciNet  MATH  Google Scholar 

  • Zamani N.G.; Sun W.: Collocation finite element solution of a compressible flow. Math. Comput. Simulation, 30 (1988), 243–251.

    MATH  Google Scholar 

  • Zavjalov Yu S.: 1. Interpolation with piecewise polynomial functions in one and two variables. Math. Probl. Geofiz. (Novosibirsk), 1 (1969), 125–141.

    MathSciNet  Google Scholar 

  • Zavjalov Yu S.: 2. On the use of numerical methods for the solution of complex construction problems in mechanical engineering. Vyčisl. Sistemy, 38 (1970), 3–22.

    Google Scholar 

  • Zavjalov Yu S.: 3. Interpolation with cubic splines. Vyčisl. Sistemy, 38 (1970), 23–73.

    MathSciNet  Google Scholar 

  • Zavjalov Yu S.: 4. Interpolation with bicubic splines. Vyčisl. Sistemy, 38 (1970), 74–101.

    MathSciNet  Google Scholar 

  • Zavjalov Yu S.: 5. An optimal property of cubic spline functions and the problem of smoothing. Vyčisl. Systemy, 42 (1970), 89–108.

    MathSciNet  Google Scholar 

  • Zavjalov Yu S.: 6. On optimal property of bicubic spline functions and the problem of smoothing. Vyčisl. Sistemy, 42 (1970), 109–158.

    Google Scholar 

  • Zavjalov Yu S.: 7. Interpolation by L — spline of many variables. Matem. Zametki, 14 (1973), 11–20.

    MathSciNet  Google Scholar 

  • Zavjalov Yu S.: 8. Glättung durch L — Splinefunktionen von mehreren Veränderlichen. Matem. Zametki, 15 (1974), 371–379.

    MathSciNet  Google Scholar 

  • Zavjalov Yu S.: 9. L — spline functions of several variables. Dokl. Akad. Nauk. SSSR., 214 (1974), 1247–1249.

    MathSciNet  Google Scholar 

  • Zavjalov Yu S.: 10. Local approximation by cubic splines with interpolation elements. (russian). Vychisl. Sistemy, No.121, Aproks. Splainami (1987), 46–54.

    Google Scholar 

  • Zavjalov Yu S.: 11. Monotone interpolation by generalized cubic splines of the class C 2. (russian). Vychisl. Sist. 147 (1992), 44–67.

    Google Scholar 

  • Zavjalov Ju. S.; Bogdanov V.V.: Monotone and convex Hermite interpolation by generalized cubic splines. Sib. J. Comput. Math., 2 (1995), No.1, 15–32.

    Google Scholar 

  • Zavjalov Yu S.; Mirošnicenko V.L.: Metody splain-kolocaţii. Aktual. Probl. Vyfčisl. i Prikladn. Mat., Novosibirsk, (1983), 82–86.

    Google Scholar 

  • Zavjalov Yu S.; Mirošnicenko V.L.; Romenskii V.P.: O shodimosti metoda splainkolocaţii dita uravnenia ellipticeskovo typa v priamougolnoi oblasti. Metody splain-funcţii. Vyčisl. Sistemy, 87 (1981), 62–76.

    Google Scholar 

  • Zejnullahu Ramadan: 1. On the interpolating spline-function in Hilbert spaces. Punime Mat., (1987), No.2, 13–16.

    Google Scholar 

  • Zejnullahu Ramadan: 2. Some properties of the interpolating spline-function spaces. Mat. Vesnik, 41 (1989), No.4, 269–271.

    MathSciNet  MATH  Google Scholar 

  • Zejnullahu Ramadan: 3. On the interpolating spline-function in Banach spaces. Punirne Mat., 4 (1989), 13–15.

    MathSciNet  Google Scholar 

  • Zedek F.: Interpolation de Lagrange par des splines quadratiques sur un quadrilatère de ℝ 2. RAIRO Model. Math. Anal. Numer., 26 (1992), No.5, 575–593.

    MathSciNet  MATH  Google Scholar 

  • Zeng Guang Cun: On the uniqueness and existence of cubic splines. Math. Numer. Sinica, 3 (1981), 113–116.

    MathSciNet  MATH  Google Scholar 

  • Zenišek A.: 1. Interpolation polynomials on the triangle. Numer. Math., 15 (1970), 283–296.

    MathSciNet  MATH  Google Scholar 

  • Zenišek A.: 2. Polynomial element method. J. Approx. Theory, 7 (1973), 119–127.

    Google Scholar 

  • Zenišek A.: 3. A general theory on triangular C m elements. RAIRO Numer. Anal., 22 (1974), 119–127.

    Google Scholar 

  • Zennaro M.: One-step collocation: uniform supperconvergence predictor-corector method local error estimate. SIAM J. Numer. Anal., 22 (1985), 1135–1152.

    MathSciNet  MATH  Google Scholar 

  • Zensykbaev A.A.: 1. On the approximation of periodic functions using parabolic splines. Sb. Sovr. Probl. Sumir. Pribl. Funk. i ih Prilozh., Dnepropetrovsk, (1972), 32–33.

    Google Scholar 

  • Zensykbaev A.A.: 2. Sharp estimates for the uniform approximation of continuous periodic functions by r-th order splines. Matem. Zamet., 13 (1973), 807–817.

    MathSciNet  MATH  Google Scholar 

  • Zensykbaev A.A.: 3. Approximation of certain classes of differentiable periodic functions by interpolational splines in a uniform decomposition. Matem. Zametki, 15 (1974), 955–966.

    MathSciNet  MATH  Google Scholar 

  • Zensykbaev A.A.: 4. Monosplines and best quadrature formulas for some classes of nonperiodic functions. (russian). Anal. Math., 5 (1979), 301–331.

    MathSciNet  Google Scholar 

  • Zensykbaev A.A.: 5. Monosplines deviating least from zero and best quadrature formulas. Dokl. Akad. Nauk SSSR, 249 (1979), 278–281.

    MathSciNet  Google Scholar 

  • Zensykbaev A.A.: 6. Spline interpolation and the best approximation by trigonometric polynomials. Matem. Zamet., 26 (1979), 355–356.

    MathSciNet  Google Scholar 

  • Zensykbaev A.A.: 7. Monosplainî minimalnoi normî i nailučişee cvadraturnîe formulî. Uspehi Mat. Nauk., 36 (1981), Vîp.4, 107–159.

    MathSciNet  Google Scholar 

  • Zensykbaev A.A.: 8. Monosplaine of a minimal L 1 — norm. (russian). Mat. Zametki, 33 (1983), 863–879.

    MathSciNet  Google Scholar 

  • Zensykbaev A.A.: 9. Extremality of monosplines of minimal deficiency. (russian). Izv. Akad. Nauk SSSR, Ser. Mat., 46 (1982), No.6, 1175–1198.

    MathSciNet  Google Scholar 

  • Zensykbaev A.A.: 10. On monosplines and perfect splines of minimal norm. Proc. Int. Conf. Budapest, 1980, Vol.II, Colloqv. Math. Soc. J. Bolyai, 35 (1983), 1291–1299.

    Google Scholar 

  • Zensykbaev A.A.: 11. Theorems on zeros for a monospline with multiple knots. (russian). Vestnik Akad. Nauk Kazakh.SSr., (1986), No.10, 62–64.

    Google Scholar 

  • Zensykbaev A.A.: 12. Chebyshev monosplines and best quadrature formulas. (russian). Vestnik Akad. Nauk Kazakh.SSR., No.4, 73–76.

    Google Scholar 

  • Zensykbaev A.A.: 13. On monosplines with nonnegative coefficients. J. Approx. Theory, 55 (1988), 172–182.

    MathSciNet  Google Scholar 

  • Zensykbaev A.A.: 14. Splain approksimaţia i optimalnîe vostanovlenie operatorov. Matem. Sbornic, 184 (1993), No.12, 3–20.

    Google Scholar 

  • Zhan Yin Wei: 1. A C n -spline blending interpolation scheme. in T. Chan and Z. Shi., Eds., Proc. Internat. Conf. on Scientific Computation, (World Scientific), Singapore, 1992), 251–258.

    Google Scholar 

  • Zhan Yin Wei: 2. On discrete triangulations under bivariate spline spaces. Math. Appl., 7 (1994), No.1, 112–118.

    MathSciNet  MATH  Google Scholar 

  • Zhan Yin Wei: 3. A kind of S 2 1 — interpolation scheme. (chinese). Numer. Math. J. Chinese Univ., 16 (1994), No.1, 35–41.

    MathSciNet  MATH  Google Scholar 

  • Zhan Yin Wei: 4. A bivariate C 3 -interpolation scheme. J. Comput. Appl. Maths., 61 (1995), No.2, 179–188.

    MATH  Google Scholar 

  • Zhang Baolin: 1. Monotone and convex quadratic spline interpolation. (chinese). Math. Numer. Sinica, 5 (1983), No.4, 367–371.

    MathSciNet  Google Scholar 

  • Zhang Baolin: 2. A theorem on cubic spline interpolation. (chinese). Math. Numer. Sin., 6 (1984), 317–318.

    MATH  Google Scholar 

  • Zhang Ji Wen: 1. C-curves: An extension of cubic curves. CAGD, 13 (1996), No.3, 199–217.

    Google Scholar 

  • Zhang Ji Wen: 2. Two different forms of C-B-splines. CAGD, 14 (1997), No.1, 31–41.

    Google Scholar 

  • Zhang Jia Ju: 1. A note on the bounds of second derivates of cubic splines. (chinese). Math. Numer. Sinica, 2 (1980), 195–196.

    MathSciNet  MATH  Google Scholar 

  • Zhang Jia Ju: 2. On some classes of interpolating splines. J. Math. Res. Expo., 1 (1983), 135–136.

    Google Scholar 

  • Zhang Liging: 1. Asymptotic expansion and geometric properties of a spline collocation periodic solution of an ODE system. Appl. Math. and Comput., 42 (1991), 209–222.

    MathSciNet  Google Scholar 

  • Zhang Liging: 2. A spline collocation method for periodic solution of nonautonomous ordinary differential equations. (chinese). Numer. Math. J. Chinese Univ., 13 (1991), No.3, 215–220.

    MathSciNet  Google Scholar 

  • Zhang Liging: 3. Spline collocation approximation to periodic solution of ordinary differential equations. J. Comput. Math., 10 (1992), No.2, 147–154.

    MathSciNet  Google Scholar 

  • Zhang Qing: Using the cardinal splines for the construction of multiresolution approximation and wavelets. J. Math. (Wuhan), 15 (1995), 43–50.

    MathSciNet  MATH  Google Scholar 

  • Zhang Shu Ling: The relationship between box splines and multivariate truncated power functions. (chinese). J. Northwest. Univ., 18 (1988), No.1, 55–57.

    MathSciNet  Google Scholar 

  • Zhang Xiaopeng; Kang Boosheng; Ru Shaofeng: Directional derivatives of B-spline surfaces and their efficient evaluation. (chinese). Numer. Math., Nanjing, 18 (1996), No.3, 195–202.

    MATH  Google Scholar 

  • Zhang Youxun; Wang Hui: The bivariate quadratic piecewise polynomial spline interpolation functions. (chinese). Chin. Ann. Math. Ser. A, 8 (1987), 257–261.

    MATH  Google Scholar 

  • Zhang Zuo Shun: A further discussion on bases of bivariate box splines. (chinese). Math. Numer. Sinica, 11 (1989), No.3, 274–282.

    Google Scholar 

  • Zhanlav T.: 1. Representation of interpolation cubic splines by B — splines. (russian). Vyčisl. Systemîj, 87 (1981), 3–10.

    MathSciNet  MATH  Google Scholar 

  • Zhanlav T.: 2. On the three-point spline scheme of improved accuracy. J. Mat. Mat.-Fiz., 31 (1991), 40–51.

    MathSciNet  MATH  Google Scholar 

  • Zhanlav T.; Miroshnichenko V.L.: The spline collocation method for parabolic equations with continuous and discontinuous coefficients. (russian). Vychisl. Sist., 87 (1981), 77–98.

    MathSciNet  MATH  Google Scholar 

  • Zhanlav T.; Puzinin E.V.: Numerical solution of one-dimensional nonlinear evolution problems by the spline collocation method. (russian). Joint Inst. Nuclear Res. Dubna, (1989), 11 pp.

    Google Scholar 

  • Zhanlav T.; Zhidkov E.P.: Applications of Richardson extrapolation to cubic splines. (russian). Joint Inst. Nuclear Res. Dubna, (1986), 9 pp.

    Google Scholar 

  • Zhao Gao Quing: The second degree exponential splines. (chinese). Math. Practice Theory, 2 (1982), 33–36.

    Google Scholar 

  • Zhao Gen Rong: Splines simply explained I,II. (chinese). Qufu Shiyuan Xuebao, I. (1984), No.1, 30–34, II. (1984), No.2, 39–44.

    MathSciNet  Google Scholar 

  • Zhao Ji Ping: 1. The multibody spline function I. (chinese). Acta Math. Appl. Sinica, 5 (1982), 225–233.

    MathSciNet  MATH  Google Scholar 

  • Zhao Ji Ping: 2. On two important integral rotations for a spline of tension. (chinese). Math. Practice Theory, (1982), No.2, 36–39.

    Google Scholar 

  • Zhao Pei; Teh H.C.: Rational bicubic simple quadrilateral mesh surfaces. Visual Computer, 11 (1995), No.8, 401–418.

    Google Scholar 

  • Zheludev V.A.: 1. Numerical solution of a class of convolution equations using spline functions. (russian). J. Vychisl. Mat. i Mat. — Fiz., 15 (1975), No.3, 573–591.

    Google Scholar 

  • Zheludev V.A.: 2. Asimptoticeskie formul dlja localnîi splain — approksimatii na ravnomernoi setke. Dokl. Acad. Nauk. SSSR., 269 (1983), 797–802.

    MathSciNet  Google Scholar 

  • Zheludev V.A.: 3. Lokalnîe kvaziinterpoljaţionîe splainî u preobrazovanie Fourier. Dokl. Akad. Nauk, 282 (1985), No.6, 1293–1298.

    MathSciNet  Google Scholar 

  • Zheludev V.A.: 4. Vostanovlenie funkţii i ih proizvodnîh po setocinîh dannîm s pogreşnostiu pri pomosciu lokalmh splainov. J. Vyčsl. Mat. i Mat. — Fiz., 27 (1987), No.1, 22–34.

    MathSciNet  MATH  Google Scholar 

  • Zheludev V.A.: 5. O localnoi splain — approximaţii na proizvolinîh setkah. Izv. vuzov Mat., (1987), No.8, 14–18.

    Google Scholar 

  • Zheludev V.A.: 6. Localnaia splain — approximaţia ne ravnomernoi setke. Jurn. Vycisl. Mat. — Fiz., 27 (1987), 1296–1310.

    MathSciNet  Google Scholar 

  • Zheludev V.A.: 7. Local approximation by cubic and bicubic splines. (russian). Approx. of functions by special classes of operators. 61–70, Vologod. Gos. Ped. Inst. Vologod, (1987).

    Google Scholar 

  • Zheludev V.A.: 8. Approximation remainder terms for local spline of second and fourth degree. (russian). Izv. Vyussh. Ucebn. Zav. Mat., 6 (1988), 37–46.

    MathSciNet  Google Scholar 

  • Zheludev V.A.: 9. Ob ostatocinîh chlenah approximaţii djla lokalnîh splainov vtaroi i cetvjörtoi stepenei. Izv. vyzov. Matematik, 6 (1988), 6–15.

    Google Scholar 

  • Zheludev V.A.: 10. Estimates of the remainder terms of approximation for cubic quasi — interpolational splines. (russian). Vychisl. Sist., 128 (1988), 60–74.

    MathSciNet  MATH  Google Scholar 

  • Zheludev V.A.: 11. Letter to the editor: ”Local spline — approximation on arbitrary grids”. (russian). Izv. Vyssh. Uchebn. Zaved. Mat., 8 (1987), 14–18, and 12 (1990).

    MathSciNet  Google Scholar 

  • Zheludev V.A.: 12. Spline — operational calculus and invers problem for heat equations. Approx. Theory (Kecskemet), (1990), 763–783. Colloq. Math. Soc. J. Bolyai, 58, North — Holland, Amsterdam, (1990).

    Google Scholar 

  • Zheludev V.A.: 13. Predstavlenie ostatocinovo chlena approximaţii i tocinoe oţenki dlja nekatorîh lokalnîh splainov. Matem. Zamet., 48 (1990), No.3, 54–65.

    MathSciNet  Google Scholar 

  • Zheludev V.A.: 14. Spline — operational calculus and invers problem for heat equation. Approx. Theory (Kecskemét, 1990), 763–783. Colloq. Math. Soc. Janos Bolya, 58, North — Holland, Amsterdam, 1991.

    Google Scholar 

  • Zheludev V.A.: 15. An operational calculus connected with periodic splines. Sovret. Math. Dokl., 42 (1991), No.1, 162–167.

    MathSciNet  Google Scholar 

  • Zheludev V.A.: 16. Local smoothing splines with a control parameter. (russian). Journal Vyčisl. Mat. i Mat. — Fiz., 31 (1991), No.2, 193–211.

    MathSciNet  Google Scholar 

  • Zheludev V.A.: 17. Spline — operaţionnoe iscislenie i cislennoe reşenie integralnîh uravnenii v svertkah pervovo roda. Different. Uravnenija, 28 (1992), No¿2, 316–329.

    MathSciNet  MATH  Google Scholar 

  • Zheludev V.A.: 18. Periodic splines and the fast Fourier transform. (russian). Zh. Vychisl. Mat., Mat. Fiz., 32 (1992), No.2, 179–198.

    MathSciNet  Google Scholar 

  • Zheludev V.A.: 19. Spline — operational calculus and numerical solution of convolution — type integral equations of the first kind. Differ. Equations 28 (1992), No.2, 269–280.

    MathSciNet  MATH  Google Scholar 

  • Zheludev V.A.: 20. Spline — operational calculus and its application for numerical solving the ill — posed Cauchy problem for Laplace equation. Jyräskylä — St. Petersburg Seminar on Partial Differential Equations and Numer. Methods, 56 (1993), 133–154.

    MathSciNet  Google Scholar 

  • Zheludev V.A.: 21. Wavelet based on periodic splines. Doklody Russian Acad. Sci. Math. 49 (1994), No.2, 216–222.

    MathSciNet  Google Scholar 

  • Zheludev V.A.: 22. Spline harmonic analysis and wavelet basis. In: Gautschi W. (ed.) Math. of Comput. 50 th Anniversary Symp. Vancover, Canada, Proc. Symp. Appl. Math. 48 (1994), 415–419.

    Google Scholar 

  • Zheludev V.A.: 23. Periodic splines and wavelets. Contemp Math. 190, AMS Providence, RI 1995, 339–354.

    Google Scholar 

  • Zhen Shanwo: An allocation solution by tensor splines for second order linear ordinary differential equations. (chinese). Math. Pract. Theory, 4 (1986), 49–59.

    Google Scholar 

  • Zheng Dechnana: 1. A class of unites splines. (chinese). J. Nanjing Univ., Math. Biq., 6 (1989), No.1, 118–123.

    Google Scholar 

  • Zheng Dechnana: 2. Combined splines of exponential functions and trigonometric functions. (chinese). Nanjing Daxue Xuebao Shuxue Bannian Kan, 6 (1989), 114–123.

    MathSciNet  Google Scholar 

  • Zheng Yan: Piecewise cubic curve fitting algorithm. Math. Comput., 49 (1987), 203–213.

    MATH  Google Scholar 

  • Zhidkov E.P.; Andreev A.S.; Popov V.A.: Effect Gibssa dlja splain — interpolaţii i dlja cislenovo reşenia integralnîh uravnenii metodom splain kollocaţii. Serdica Bulg. Math. Publ., 12 (1986), 315–320.

    MathSciNet  MATH  Google Scholar 

  • Zhidkov E.P.; Madatov N.P.; Shchedrin B.M.: Multidimensional smoothing splines. Math. Questions of structura analysis. (russian). Theory and practice of a computational experiment. Collect. Arctic. Moskva, (1981), 3–9.

    Google Scholar 

  • Zhou Ding Xuan: Box spline with rational directions and linear diophantine equations. J. Math. Anal. Appl., 203 (1996), No.1, 270–277.

    MathSciNet  MATH  Google Scholar 

  • Zhou Ding Xuan; Jetter K.: Characterization of correctness of cardinal interpolation with shifted three-dimensional box splines. Proc. Royal Soc. Edinburg Sect. A, 125 (1995), No.5, 931–937.

    MATH  Google Scholar 

  • Zhou Linchong; Zhu Li: Fast direct solvers for bicubic orthogonal spline collocation applied to the Poisson equation. (chinese). Natur. Sci. J. Xiangtan Univ., 18 (1996), No.2, 16–19.

    MathSciNet  MATH  Google Scholar 

  • Zhou Shu Zi: Spline finite element methods for free boundary problems. (chinese). Math. Numer. Sinica, 11 (1989), No.2, 132–139.

    Google Scholar 

  • Zhou Xiaolin: Representing and modeling of cyclide patches using NURBS. In: Computer Graphics in Math. (ed. B. Falcidieno et al.), Springer V. 1992, 45–60.

    Google Scholar 

  • Zhou Xiaolin; Strasser W.: A NURBS representation for cycloide. In: Modeling in Computer Graphics (ed. Tosiyasu L. Kunu), Springer V., 1991.

    Google Scholar 

  • Zhu An Min: Bounds on the dimension of multivariate spline function spaces. (chinese). Tongji Daxue Xuebao, 18 (1990), No.1, 69–73.

    MathSciNet  Google Scholar 

  • Zhu Fang Sheng: A spline method for solving two point boundary value problems. (chinese). J. Math. (Wuhan), 3 (1983), No.4, 361–366.

    MathSciNet  Google Scholar 

  • Zhu Gongqin; He Tianxiao: Notes on rational spline functions. (chinese). Math. Numer. J. Chinese Univ., 3 (1981), 276–278.

    MATH  Google Scholar 

  • Zhu Jian Min: Shape-preserving continuous interpolation spline function of order 2k + 1. (chinese), Hunan Ann. Math., 15 (1995), No.2, 43–47.

    MathSciNet  Google Scholar 

  • Zhuk V.V.; Natanson H.I.: 1. The inverse theorems of the constructive theory of functions for periodic equidistant splines. (russian). Vestnik Leningradsk. Univ., 7 (1983), 11–16.

    MathSciNet  Google Scholar 

  • Zhuk V.V.; Natanson H.I.: 2. To the theory of cubic periodic splines with equidistant knots. (russian). Vestnik Leningrad. Univ., 1 (1984), 5–10.

    MathSciNet  Google Scholar 

  • Zhuk V.V.; Natanson H.I.: 3. Some remarks on periodic equidistant splines. (russian). Vestnik Leningrad. Univ. Math. Mekh. Astron Vyp., 2 (1985), 12–17.

    MathSciNet  Google Scholar 

  • Ziykov V. Ja.; Kovalski M.P.: Priminenie lineinoi quadraturî splain — funkţii dlja raşciota periodiceskih proţesov v nelneinîh ţepjah. Avtomatiz. proiektiv. v elektron. (Kiev), 32 (1985), 42–50.

    Google Scholar 

  • Zlamal M.: 1. On the finite element method. Numer. Math., 12 (1968), 394–400.

    MathSciNet  MATH  Google Scholar 

  • Zlamal M.: 2. Curved elements in the finite element methods. I — II. SIAM J. Numer. Anal. I. 10 (1973), 229–240; II. 11 (1974), 347–362.

    MathSciNet  MATH  Google Scholar 

  • Zmatrakov N.L.: 1. Shodimosti interpolationovo processa dlja paraboliceskih i kubiceskih splainov. Trudy Matem. Instituta Akad. Nauk. SSSR, 138 (1975), 71–93.

    MathSciNet  MATH  Google Scholar 

  • Zmatrakov N.L.: 2. Neobhodimoe uslovîe shodimosti interpolaţomi paraboliceskih i kubiceskih splainov. Matem. Zametki, 19 (1976), 165–178.

    MathSciNet  MATH  Google Scholar 

  • Zmatrakov N.L.: 3. Uniform convergence of the third derivatives of interpolating cubic splines. (russian). Vyč;sl. Sistemy, 72 (1977), 10–29.

    MathSciNet  MATH  Google Scholar 

  • Zmatrakov N.L.: 4. Postroennîe programîh dvijenii v upriavliaemîh sistemah s pomoşciu splainov. Upr. Hagiojnosty i navigatia., 4 (1978), No.4, 91–96.

    Google Scholar 

  • Zmatrakov N.L.: 5. Shodimosti tretîh proizvodnîh interpolaţo nîh cubiceskih splainov v metrikah L p (1 ≤<∞). Matem. Zametki, 30 (1981), 83–99.

    MathSciNet  MATH  Google Scholar 

  • Zmatrakov N.L.: 6. Divergence of the third derivaives in interolating cubic in l p — metrics. Matem. Zametki, 31 (1982), 707–722.

    MathSciNet  Google Scholar 

  • Zmatrakov N.L.: 7. Convergence of multiple interpolational splines and their derivatives. (russian). Trudy Mat. Inst. Steklov, 189 (1989), 78–79.

    MathSciNet  Google Scholar 

  • Zmatrakov N.L.: 8. Convergence of multiple interpolation splines and their derivatives. Proc. Steklov Inst. Math., 189 (1990), No.4, 87–110.

    MATH  Google Scholar 

  • Zmatrakov N.L.: 9. Approximation properties of two — dimensional splines of third and fourth degree. (russian). Zh. Vychisl. Mat. i Mat. Fiz., 33 (1993), No.1, 12–21.

    MathSciNet  MATH  Google Scholar 

  • Zmatrakov N.L.: 10. Approximation by local two-dimensional splines of smoothness C. (russian). Zh. Vychisl. Mat. i. Mat. Fiz., 36 (1996), No.11, 35–43.

    MathSciNet  Google Scholar 

  • Zmatrakov N.L.; Subbotin Ju.N.: Kratnîe interpoljaţionîe. Splainî stepeni 2k+l defekta k. Trudy Mat. Inst. Akad. Nauk. SSSR, 164 (1983), 75–99.

    MathSciNet  MATH  Google Scholar 

  • Zubov N.V.: 1. Numerical solution of boundary value problems using spline functions. (russian). Metodî i modeli upr. i kontrolia (Riga), 11 (1978), 71–75.

    Google Scholar 

  • Zubov N.V.: 2. Reşenie kraevîh zadači s pomošciu splainov. Differenţialnîe i Integralnie Uravnenii (Gorki), 3 (1979), 178–182.

    Google Scholar 

  • Zwart P.: Multivariate spline with non — degenerate partitions. SLAM J. Numer. Anal., 10 (1973), 665–673.

    MathSciNet  MATH  Google Scholar 

  • Zwick D.: 1. The generalized convexity cone of splines with multiple knots. Numer. Funct. Anal. and Optimiz., 8 (1985/1986), 245–260.

    MathSciNet  Google Scholar 

  • Zwick D.: 2. Strong uniqueness of best spline appoximation for a class of piecewise n — convex functions. Numer. Funct. Anal. Optim., 9 (1987), No.3–4, 371–379.

    MathSciNet  MATH  Google Scholar 

  • Zwick D.: 3. Structur of weak Descartes systems. J. Approx. Theory, 55 (1988), 241–247.

    MathSciNet  MATH  Google Scholar 

  • Zwick D.: 4. Characterising shape preserving L 1 — approximation. Proc. Amer. Mat. Soc., 103 (1988), 1139–1146.

    MathSciNet  MATH  Google Scholar 

  • Zwick D.: 5. A special one — sided approximation problem. J. Approx. Theory, 62 (1990), 70–93.

    MathSciNet  MATH  Google Scholar 

  • Zygourakis K.; Aris R.: Monotone iteration with adaptive collocation for solving coupled systems of nonlinear boundary value problems. Computers Chem. Eng., 7 (1983), 183–193.

    Google Scholar 

Doctoral Dissertations

  1. Adam M.H.: Bivariate spline-interpolation auf Crosscut-Partitionen. (Doctoral Thesis), Mannheim, 1996.

    Google Scholar 

  2. Ahmed A.H.: Collocation algorithms and error analysis for approximate solutions of ordinary differential equations. (Ph. D. Thesis), Univ. of Newcastle upon Tyne, 1981.

    Google Scholar 

  3. Amunrud L.R.: Tchebycheff approximations by general spline functions. (Doctoral dissertation). Montana State Univ., Montana, 1968.

    Google Scholar 

  4. Anderson J.S.: Smoothing polynomial splines with applications to modeling univariate, bivariate and growth curve data. (Ph. D. Thesis). Univ. of Colorado Health Sciences Center, Denver, Colorado, USA, 1967.

    Google Scholar 

  5. Antes H.: Die Splineinterpolation zur Lösung von Integralgleichungen und ihre Anwendung bei der Berechnung von Spannungen in Krummliniy berandeten Scheiben. (Dissertation), Technische Hochschule, Aachen, 1970.

    Google Scholar 

  6. Archer D.: Some collocation methods for differential equations. (Ph. D. Thesis). Rice Univ. Houston, Texas, 1973.

    Google Scholar 

  7. Arndt H.: Interpolation mit regulären Spline — Funktionen. (Dissertation). Univ. Münster, 1974.

    Google Scholar 

  8. Arnold R.: Quadratische und Kubische offset — Bézierkurven. (Dissertation), Dortmund, 1986.

    Google Scholar 

  9. Atteia M.: Etude de certains noyaux et théorie des fonctions ”spline” en analyse numérique. (Thèse). Univ. de Grenoble, Grenoble, 1966.

    Google Scholar 

  10. Aubin J.P.: Approximation des espace de distributions et des opérateurs differentials. (Thèse Doct. Sci. Math.). Université de Paris, 1966.

    Google Scholar 

  11. Auscher P.: Ondelettes Fractales et Applications. Ph. D. Thesis, Univ. Paris-Dauphine, 1989.

    Google Scholar 

  12. Bakiev R.: Approximation by L — splines and numerical solution to integral and differential equations. Doctoral Thesis. (russian). Tashkent, 1988.

    Google Scholar 

  13. Bamberger L.: Zweidimensionale Spline auf regularen Triangulation. (Doctoral dissertation), München, 1985.

    Google Scholar 

  14. Barry P.J.: Urn models, recursive curve schemes, and computeraided geometric design. (Ph. D. Thesis), Dept of Mathematics, University of Utah, 1987.

    Google Scholar 

  15. Barsky B.A.: The Beta — Spline. A local representation based on shape Parameters and Fundamental Geometric Measures. (Ph. D. Thesis)., Dept. Comput. Science, Univ. of Utah, Salt Lake City, 1981.

    Google Scholar 

  16. Baumeister J.: Extremaleigenschaften nichtlinearer spline. (Dissertation), München, 1974.

    Google Scholar 

  17. Behforooz G.H.: Piecewise cubic and quintic polynomial interpolation. (Ph. D. Thesis), Brunei University, Uxbridge, 1980.

    Google Scholar 

  18. Benbourhin M.M.: Fonctions spline d’approximation. (Thése de 3 ème Cycle). Toulouse, 1982.

    Google Scholar 

  19. Bennet J.O.: Estimation of multivariate probability density functions using B — splines. (Ph. D. Dissertation). Rice University, Houston, Texas, 1974.

    Google Scholar 

  20. Bennett R. Karin: Parallel collocation methods for boundary value problems. (Ph. D. Dissertation), Univ. of Kentucky, Lexington, 1991.

    Google Scholar 

  21. Bezier P.E.: Essai de definition numérique de courbes et des surfaces expérimentales. (Ph. D. Thesis), l’Univ. Marie et Pierre Curie, Paris, 1977.

    Google Scholar 

  22. Blaga P.: Aplicaţii ale funcţiilor spline la aproximarea funcţionalelor liniare în cazul multidimensional. (Teza de doctorat), Univ. Cluj — Napoca, Romania, 1982.

    Google Scholar 

  23. Blanc Carole: Techniques de modelisation et de deformation de surfaces pour synthese d’images. Ph. D. Thesis, Univ. Bordeaux, 1994.

    Google Scholar 

  24. Blank Luise: Stabilitatsanalyse der Kollocationsmethode für Volterra-Integral-Gleichungen mit schwach singulärem Kern. Dissertation, Bonner Math. Schriften, No.227, 1991.

    Google Scholar 

  25. Boor Carl de: The method of projections as aplied to the numerical solution of two point boundary value problems using cubic splines. (Doctoral Dissertation). Univ. of Michigan, Ann Arbor, 1966.

    Google Scholar 

  26. Böther H.H.: Verallgemeinerte Monotonie und Fehlerabschätzungen aus den bei parabolischen Randwertaufgaben. (Dissertation), Univ. Hamburg, 1977.

    Google Scholar 

  27. Bouhamidi A.: Interpolation et approximation par des fonctions splines radiales à plusieurs variables. (Thèse), Nantes, 1992.

    Google Scholar 

  28. Bourlin Mohamed — Najib: Fonctions ”spline” d’approximation. (Thèse 3 e cycle), Math. Appl. Univ. Toulouse, 1982.

    Google Scholar 

  29. Bowgen G.S.J.: Approximate solutions of integral equations using spline functions. (Ph. D. Thesis), Univ. of Kent, 1980.

    Google Scholar 

  30. Breden D.: Die Verwendung von bicubischen Splineftäch zur Darstellung von Tragflügehr und Propellen. (Dissertation), Braunschweig, 1982.

    Google Scholar 

  31. Bruvold N.T.: Optimal and admisible design for polynomial monospline regression. (Ph. D. Thesis). Purdue Univ. Lafayette, 1971.

    Google Scholar 

  32. Buhl H.J.: Piecewise quadratic C 1 — interpolation and its application to the Galerkin discretization in the space H 2. (Dissertation). Fachbereich Math. Gesamthochschule Wuppertal, 1987.

    Google Scholar 

  33. Carasso C.: Méthodes numerique pour l’obtention des fonctions spline. (Thèse). Univ. de Grenoble, Grenoble, 1966.

    Google Scholar 

  34. Carmody T.J.: Diagnostics for multivariate smoothing splines. (Doctoral dissertation), Dept. of Statist., Southern Methodist Univ., 1985.

    Google Scholar 

  35. Case J.R.: Extensions and generalizations of Jackson’s theorem. (Ph. D. Thesis), Syracuse Univ., Syracuse, 1970.

    Google Scholar 

  36. Cavaretta Jr. A.S.: On cardinal perfect splines of least sup. Norm on the real axis. (Ph. D. Thesis). Unv. of Wisconsin, Madison, 1970.

    Google Scholar 

  37. Cavendish J.C.: A cololocation method for elliptic and parabolic boundary value problems using cubic splines. (Doctoral dissertation), Univ. of Pittsburg, Pittsburg, 1972.

    Google Scholar 

  38. Chan P.P.-Y.: Approximation theory with emphasis on spline functions and applications to differential and integral equations. (Doctoral dissertation). Case Western Reserve Univ., Cleveland, 1970.

    Google Scholar 

  39. Chen Debao: Cardinal spline wavelets. (Ph. D. Thesis) Univ. of Texas, Austin, 1995.

    Google Scholar 

  40. Chen Z.: Interaction spline models. (Ph. D. Thesis). Dept. of Statistic, Univ. of Wisconsin, Madison, 1989.

    Google Scholar 

  41. Chernyh N.I.: Polynomial spline approximations. (russian). (Dissertation), Moskva, 1980.

    Google Scholar 

  42. Cherrnault Y.: Approximation d’opérateurs linéaires et applications. (Thèse). (Monographies d’Informatique, Vol.4), Dunod, Paris, 1968.

    Google Scholar 

  43. Chi D.N.-H.: Linear multistep methods based on g-splines. (Doctoral dissertation ), Univ. of Pittsburg, Pittsburg, 1970.

    Google Scholar 

  44. Chien D.: Piecewise polynomial collocation for integral equations on surfaces in three dimension. (Ph. D. Thesis), Univ. of Iowa, Iowa City, 1991.

    Google Scholar 

  45. Christara C.C.: Spline collocation methods, software and arhitectures for linear elliptic boundary value problems. Ph. D. Thesis, Purdue Univ. IN, USA, 1988.

    Google Scholar 

  46. Ciarlet P.C.: Variational methods for nonlinear boundary value problems. (Doctoral dissertation), Case Institute of Technology, Cleveland, 1966.

    Google Scholar 

  47. Clark J.H.: 3-D Design of free-form B-spline surfaces. (Ph. D. Thesis), Univ. of Utah, Salt Lake City, Utah, 1974.

    Google Scholar 

  48. Coatmélee C.: Approximation et interpolation des fonctions différentiables de plusieurs variables. ( Thèse Doct. Sci. Math.), Université de Rennes, Rennes, 1966.

    Google Scholar 

  49. Cobb E.S.: Design of Sculptered Surfaces using the B-spline representation. (Ph. D. Thesis), Univ. of Utah, 1984.

    Google Scholar 

  50. Cohen S.: Ein Beitrag zur steuerbaren Interpolation von Kurven und Flächen. (Dissertation)., Univ. Dresden, 1982.

    Google Scholar 

  51. Copley P.A.: Structure and characterization of p L g-spline. (Dissertation), Univ. of Texas at Austin, 1974.

    Google Scholar 

  52. Correc Y.: Interpolation par des Lg-splines. (Thèse 3-e cycle), Rennes, 1980.

    Google Scholar 

  53. Coulter L.S.: Piecewise smooth spline interpolation and the numerical solution of the Riemann problem for materials undergoing a phase transition. (Ph. D. Thesis), Univ. of New York, Courant Institute, 1991.

    Google Scholar 

  54. Covaci-Munteanu M.J.: Contributions à la théorie des fonctions splines à une et à plusieurs variables. (Thèse), Université Catholique de Louvain, Louvain, 1970.

    Google Scholar 

  55. Cox M.G.: Numerical methods for the interpolation and approximation of data by spline functions. Ph. D. Thesis, City University, London, 1975.

    Google Scholar 

  56. Creutz G.: Kurven und Flächenentwurf aus Formparametern mit Hiffe von B-Splines. (Dissertation), T.U.Berlin, 1977.

    Google Scholar 

  57. Dahmen W.: Multivariate B-splines-ein neuer Ansatz im Rahmen der konstruktiven Approximationstheorie. (Habilitationsschrift), Bonn, 1980/81.

    Google Scholar 

  58. Dailey J.W.: Approximation by spline — type functions and related problems. (Doctoral dissertation), Case Western Reserve Univ., Cleveland, 1969.

    Google Scholar 

  59. Danciu I.: Rezolvarea numerică a ecuaţiilor integrale de tip Volterra cu ajutorul funcţiilor spline. (Teză de doctorat), Univ. din Cluj-Napoca, 1997.

    Google Scholar 

  60. Dauner Herbert: Analysen und Algorithmen zur form — erhaltenden Interpolation mit Polynomsplines. (Dissertation), TU München Fakultät für Math. and Informatik, 1991.

    Google Scholar 

  61. Delvos P.J.: Über die Konstruktion von Spline Systemen. (Dissertation), Ruhr-Universität, Bochum, 1972.

    Google Scholar 

  62. Delvos F.J.: Pseudoinversen und Splines in Hilberträumen. (Habilitaionsschrift), Universität Siegen, 1979.

    Google Scholar 

  63. Dernko S.C.: Ip error bands for spline interpolation and lacunary spline interpolation. (Doctoral Dissertation), Kent State Univ., Ohio, 1973.

    Google Scholar 

  64. Dias Ronaldo: Density estimation via H-splines. Ph.D.Thesis, Univ. of Wisconsin, Madison, 1995.

    Google Scholar 

  65. Diaz J.C.: A hybrid collocation — Galerkin method for the two point boundary value problems using continnous piecewise polynomial spaces. (Ph. D. Thesis), Rice Univ. Houston, Texas, 1974.

    Google Scholar 

  66. Diener Dwight Allen: On the stability of the dimension of space of bivariate splines. (Ph. D. Thesis), Texas A&M. University, Texas, USA, 1989.

    Google Scholar 

  67. Dierckx P.: Het annpassen van krommen en appervlakken aan meetputen met behulp van spline funkties. Ph.D.Thesis, Kath., Univ. Lieuven, 1979.

    Google Scholar 

  68. Disch B.: Approximation durch Räume periodischer splinefunktionen gerader dimension. Dissertation, Mannheim, 1991.

    Google Scholar 

  69. Dnisekov A.K.: Some problem of spline approximation in functional spaces. (russian). (Dissertation), Dnepropetrovsk, 1973.

    Google Scholar 

  70. Dodson D.S.: Optimal order approximation by polynomial spline functions. (Doctoral dissertation), Purdue Univ., Lafayete, 1972.

    Google Scholar 

  71. Doty D.R.: Blending function techniques with applications to discrete least squares. (Dissertation), Mich. St. Univ., 1975.

    Google Scholar 

  72. Ducateau Ch.F.: Etude de quelques problèmes d’interpolation. (Thèse). Univ. Grenoble, 1971.

    Google Scholar 

  73. Duchon J.: Fonctions spline homogènes à plusieurs variable. (Thèse). Univ. Grenoble, 1980.

    Google Scholar 

  74. Duisekov A.K.: Spline interpolation of fifth degree and application to collocation method. (Dissertation), Alma-Ata, 1976.

    Google Scholar 

  75. Dyksen W.R.: Tensor product generalized alternating direction implicit methods for solving separable second order linear elliptic partial differential equations. (Ph. D. Thesis), Purdue University, West Lafayette, Indiana, 1982.

    Google Scholar 

  76. Einarsson B.: On the numerical treatment of some integro-differential equations, Fourier integrals and integral equations. (Doctoral dissertation), Technol. Univ. Stockholm, 1971.

    Google Scholar 

  77. El Tom M.E.A.: Numerical approximation of functions of one or more variables. (Doctoral dissertation), Oxford Univ., 1968.

    Google Scholar 

  78. Eng Holger: Optimal Interpolation für Klassen differenzierbarer Funktionen. (Dissertation), TU. Braunschweig, Germany, 1990.

    Google Scholar 

  79. Fage Simpson Chaterina: Fonctions spline complexe d’interpolation d’order n dans le champ complexe. (Th. 3 e cycle), Math. Appl. Toulouse, 1981.

    Google Scholar 

  80. Farin G.: Subsplines über Dreiecken. (Dissertation), Braunschweig, 1979.

    Google Scholar 

  81. Fawzy Tharwat: Spline functions and Cauchy Problems. (Ph. D. Thesis). The Hungarian Acad. of Science, Inst. of Math. Researches, Budapest, 1976.

    Google Scholar 

  82. Ferguson J.: Shape preserving parametric cubic interpolation. (Ph. D. Thesis), Univ. of New Mexico, 1984.

    Google Scholar 

  83. Fitzgerald J.M.: Numerical methods using integrals over subregions. (Doctoral dissertation), The Pennsylvania State Univ., University Park, 1970.

    Google Scholar 

  84. Fix G.: Bounds an approximation for eigenvalues of selfadjoint boundary value problems. (Doctoral dissertation), Harward Univ., Cambridge (Mass.), 1968.

    Google Scholar 

  85. Foley T.A.: Smooth multivariate interpolation to scattered data. (Dissertation), Arizona State Univ., 1979.

    Google Scholar 

  86. Ford W.H.: Numerical solution of pseudo-parabolic partial differential equations. (Doctoral dissertation), Univ. of Illinois, Urbana — Champaign, 1972.

    Google Scholar 

  87. Forrest A.R.: Curves and surf aces for computer aided design. (Dissertation), Harward Univ., 1968.

    Google Scholar 

  88. Förster H.: Über optimal Quadraturformeln and Monosplines. (Dissertation), Univ. of Bonn, 1977.

    Google Scholar 

  89. Forrest A.R.: Curves and surfaces for computer aided design. (Doctoral dissertation), Cambridge Univ., Cambridge, 1968.

    Google Scholar 

  90. Fuchs P.: Konvergenz und Stabilität bei Kollokations — verfahren von verallgemeinerten Runge — Kutta type. (Dissertation) Fachbereich Math. Univ. Mainz, 1984.

    Google Scholar 

  91. Gânscă I.: Integrarea numerica a funcţiilor. (Teză de doctorat), Universitatea din Cluj — Napoca, 1975.

    Google Scholar 

  92. Glaerum S.: Condition numbers for the B-spline basis. Cond. Scient. Thesis, Univ. of Oslo, Oslo, Norway, 1989.

    Google Scholar 

  93. Glass J.M.: A criterion for the quantizaton of line — drawing data. ( Doctoral dissertation), New York Univ. Broux, 1965.

    Google Scholar 

  94. Goëj J.J.: Utilization numérique de la méthods de Ritz, application au calcul de plaque. (Thèse), Ecole polytechnique de l’Université de Lausanne, 1968.

    Google Scholar 

  95. Gold S.C.: Data smoothing using least — square spline functions. (Doctoral dissertation), Univ. of Utah, Salt Lake City, 1970.

    Google Scholar 

  96. Gregory J.A.: Piecewise interpolation theory for functions of two variables. (Ph. D. Thesis), Brunei Univ. Uxbridge, Middlesex, 1975.

    Google Scholar 

  97. Gresbrand A.: Rationale B-Splines mit vorgegebene Polstellen. Thesis, Universität Hannover, 1995.

    Google Scholar 

  98. Grozev G.: L — monosplines of minimal norm.(Dissertation), Sofia, Univ. Sofia, 1986.

    Google Scholar 

  99. Guglielmo F.di: Sur quelques problèmes de l’approximation des espaces de Sobolev avec applications à la résolution approchée des problèmes aux limites. (Thèse Doct. Sci. Math.), Université d’aix — Marseille, Aix — en — Provence, 1972.

    Google Scholar 

  100. Györvàry J.: Hermite — Birkhoff tipusü spline interpolácio és alkalmazésai. Ph. D. (Dissertation). Budapest — Veszprém, 1984.

    Google Scholar 

  101. Haas R.: Dimension and bases for certain classes of splines. A Combinatorial and Homological Approach. (Ph. D. Thesis). Cornell University, 1987.

    Google Scholar 

  102. Hack F.: Eidentigkeitsaussagen und konstruktive Methoden bei mehrdimensionalen Interpolationsaufgaben. (Dissertation), Univ. Duisburg, 1983.

    Google Scholar 

  103. Halang W.A.: Über interpolierende C 00 — Spline — Funktionen. (Diss. Doktor) Naturwiss. Abt. Math., Ruhr — Univ. Bochum, 1976.

    Google Scholar 

  104. Haussman W.: Zur theorie der Spline-Systeme. (Habilitationsschrift), Ruhr-Universität, Bochum, 1970.

    Google Scholar 

  105. Heindl G.: Über verallgemeinerte Stammfunktionen und LC— Funktionen in ℝ n. (Dissertation), Technical Universität, München.

    Google Scholar 

  106. Herbold R.J.: Consistent quadrature schemes for the numerical solution of boundary value problems by variational techniques. (Doctoral dissertation), Case Western Reserve, Univ. Cleveland, 1968.

    Google Scholar 

  107. Hilbert S.R.: Numerical methods for elliptic boundary problems. (Doctoral dissertation), Univ. of Maryland, College Park, 1969.

    Google Scholar 

  108. Hill D.W.: Estimation of probability functions using splines. (Ph. D. Thesis), Univ. of New Mexico, Albuquerque, NM, 1973.

    Google Scholar 

  109. Homescu R.: Prelucrarea optica a informatici cu ajutorul holografiei. (Teză de doctorat), Univ. Bucureşţi, Facultatea de Fizică, 1982.

    Google Scholar 

  110. Hong Dong: Construction of stable local spline bases over arbitrary triangulations for optimal order approximation. (Ph. D. Thesis), Texas AM Univ. College Station, Texas, 1993.

    Google Scholar 

  111. Hoppe Wolfram: Stabilität von spline approximations verfahren für singuläre Integralgleichungen auf Kompakten, glatten Mannigfaltigkeiten ohne Rand. Dissertation, Chemnitz-Zwickan, TV, Fak. f. Math., 107 p., 1993.

    Google Scholar 

  112. Hulme B.L.: Piecewise bicubic methods for plate bending problems. (Doctoral dissertation), Harward Univ. Cambrige (Mass.), 1969.

    Google Scholar 

  113. Hung H.S.: The numerical solution of differential and integral equations by spline functions. (Doctoral dissertation), Univ. of Wisconsin, Madison, 1970.

    Google Scholar 

  114. Iancu C.: Analiza şi prelucrarea datelor cu ajutorul funcţiilor spline. (Teză de doctorat), Univ. Cluj-Napoca, 1983.

    Google Scholar 

  115. Hin V.P.: The application of cubic spline functions for solwing the boundary value problems for parabolic equations. (russian). (Dissertation), Novosibirsk, 1978.

    Google Scholar 

  116. Imamov A.: On the spline problems in Hilbert spaces. (russian). (Dissertation), Novosibirsk, 1977.

    Google Scholar 

  117. Indoleanu I.: Probleme la limită ce intervin în studiul încovoierii grinzilor şi plăcilor. (Teză de doctorat), Universitatea din Cluj — Napoca, 1974.

    Google Scholar 

  118. Irodotou — Ellina M.: Spline collocation methods for high order elliptic boundary value problems. (Ph. D. Thesis), Univ. of Thessaloniki Greece, 1987.

    Google Scholar 

  119. Irodova I.P.: Multidimensional spline approximation m L p — spaces, 0 ≤ p < ∞. (Dissertation), Yaroslav, 1982.

    Google Scholar 

  120. Ito T.: A collocation method for boundary value problems using spline functions. (Doctoral dissertation), Brown Univ. Providence, 1972.

    Google Scholar 

  121. Jan Y. — G.J.: The spline approximation in optimal nonlinear filtering. (Doctoral dissertation), Rice Univ., Houston, 1972.

    Google Scholar 

  122. Jetter K.: Spline und Optimal — Quadraturformeln. (Dissertation), Tübingen, 1973.

    Google Scholar 

  123. Jetter K.: Approximation mit Splinefunktionen und ihre Anwendung auf Quadraturformeln. (Habilitaionsschrift), Hagen, 1978.

    Google Scholar 

  124. Johnson O.G.: Convergence, error bounds, sensitivity and numerical comparisons of certain absolutely continuous. Rayleigh — Ritz methods for Sturm — Liouville eigenvalue problems. (Doctoral dissertation), Univ. of California, Berkeley, 1968.

    Google Scholar 

  125. Johnson Diane L.: Fixed point Gaussian Quadrature and generalized monosplines of minimal norm. (Ph. D. Dissertation) University of Oregon, Eugene, Oregon, USA, 1983.

    Google Scholar 

  126. Kahmann J.: Krümmungsübergänge zusammengesetzer Kurven und Flächen. (Dissertation), Braunschweig, 1982.

    Google Scholar 

  127. Kaiser Ulrich: Das Schoenberg’sche Approximationsproblem. (Dissertation), Univ. Mannheim, 1987.

    Google Scholar 

  128. Kao Ch.T.-T.: The spline approximation in system simulation by digital computer. (Doctoral dissertation), Rice Univ. Houston, 1972.

    Google Scholar 

  129. Karon J.M.: The sign-regularity properties of a class of Green’s functions for ordinary differential equations and some related results. (Doctoral dissertation), Stanford Univ., Stanford, 1968.

    Google Scholar 

  130. Kennedy J.W.: Numerical solution of elliptic partial differential equations using Hermite spaces. (Doctoral dissertation), Univ. of Pittsburg, Pittsburg, 1972.

    Google Scholar 

  131. Kergin P.: Interpolation of C k functions. Ph. D. Thesis, Univ. of Toronto, 1978.

    Google Scholar 

  132. Khalifa A.K.A.: Theory and application of collocation method via splines for ordinary and partial differential equations. (Ph. D. Thesis), Heriot-Watt University, 1979.

    Google Scholar 

  133. Kim H.Y.: Approximation by spline functions of hyperbolic differential equations in two independent variables. (Doctoral dissertation), Univ. of Maryland, College Park, 1972.

    Google Scholar 

  134. King J.T.: Least squares methods for parabolic initial boundary value problems. (Doctoral dissertation), Cornell Univ. Ithaca, 1971.

    Google Scholar 

  135. Klemm Michael: Markov — Type — Ungleichungen für univariate und bivariate Polynomsplines und diskrete Approximation. (Dissertation), Univ. Würzburg, Fak. f. Mathematik, 1990.

    Google Scholar 

  136. Knap L.C.: A design scheme using coons surfaces with nonuniform B-splines curves. (Ph. D. Thesis), Syracuse Univ., Syracuse, N.Y., 1979.

    Google Scholar 

  137. Knoop H.B.: Zur mehrdimensionalen Hermite — Interpolation. (Dissertation), Bochum, 1972.

    Google Scholar 

  138. Kobkov V.V.: Kubiceskie i quadraticeskie splainî i dopolnitelnîmi uzlami i ih priminenie k interpoljaţii funkţii. (Dissertation), Novosibirsk, 1983.

    Google Scholar 

  139. Koch P.E.: Collocation by L-splines et Gaussian Points. (Ph. D. Thesis). Univ. Oslo, 1982.

    Google Scholar 

  140. Kochevar P.D.: A multidimensional analogue of Schoenberg’s spline approximation method. (Ph. D. Thesis), Univ. Utan, 1982.

    Google Scholar 

  141. Koo J.Y.: Tensor product splines in the estimation of regression. (Ph. D. Dissertation), Dept. Statistics, Univ. California, Berkely, 1990.

    Google Scholar 

  142. Kooperberg Charles: Smoothing images, splines and densities. (Ph. D. Thesis), Dept. of Statistics, Univ. of California at Berkely, 1990.

    Google Scholar 

  143. Krasov B.I.: Some problems of theory and applications of spline functions. (Dissertation), Novosibirsk, 1973.

    Google Scholar 

  144. Krebs F.: Periodische Splines auf dem Regelmässigen secheckgitter. (Thesis), Dortmund, 1988.

    Google Scholar 

  145. Krinzesza F.: Zur periodischen Spline — Interpolation. (Dissertation), Ruhr— Universität, Bochum, 1969.

    Google Scholar 

  146. Kulkarni L.: Fonctions — Spline Cardinales Trouquees. (Thèse), IMAC, Université de Grenoble, 1985.

    Google Scholar 

  147. Kvasov B.I.: Some proble;me in the theory and applications on spline functions. (Russian), (Doctoral dissertation), Univ. of Novosibirsk, Novosibirsk, 1972.

    Google Scholar 

  148. LaFata P.S.: An interactive graphical system for generalized a approximation. (Doctoral dissertation), Univ. of Wisconsin, Madison, 1972.

    Google Scholar 

  149. Laghchim — Lahlou M.: Eléments finits composites de classe C k dans H 2. (Thèse de Doctorat). INSA de Rennes, 1991.

    Google Scholar 

  150. Lai M.J.: Construction of bivariate and trivariate vertex splines on arbitrary mixed grid partition. (Ph. D. Thesis), Texas A & M Univ., 1989.

    Google Scholar 

  151. Lamour R.: Numerische Berechnung von periodischen Lösungen von Differentialgleichungen mittels Spline Funktionen. (Dissertation), Berlin, 1977.

    Google Scholar 

  152. Lasser D.: Bernstein — Bézier — Darstellung trivariater Splines. (Dissertation), T.H. Darmstadt, 1987.

    Google Scholar 

  153. Lathrop J.F.: Application of spline functions to the numerical solution of ordinary and partial differential equations. (Doctoral dissertation), Univ. of Colorado, Boulder, 1969.

    Google Scholar 

  154. Lee Daniel: Some problems in cardinal spline interpolation and approximation. (Ph. D. Thesis), Univ. of Wisconsin — Madison, 1984.

    Google Scholar 

  155. Lee J.W.: The study of a class of boundary value problems with cyclic totally positive Green’s functions with aplications to spline approximation and eigenvalue problems. (Doctoral dissertation), Stanford Univ., Stanford, 1969.

    Google Scholar 

  156. Lénard Margit: Spline approximation in two variables. (Hungarian), (Doctoral dissertation), Debrecen, 1979.

    Google Scholar 

  157. Ligun A.A.: Exact constant in the inequalities of Jackson and Kolmogorov type. (Dissertation), State Univ. Dnepropetrovsk, 1974.

    Google Scholar 

  158. Linde van der Angelika: Statistical Methods for Smoothing with Splines. (Doctoral dissertation), Universität, Bremen, Germany, 1992.

    Google Scholar 

  159. Lipow P.R.: Cardinal Hermite spline interpolation. (Doctoral dissertation), Univ. of Wisconsin, Madison, 1970.

    Google Scholar 

  160. Loscalzo F.R.: On the use of spline functions for the numerical solution of ordinary differential equations. (Doctoral dissertation), Univ. of Wisconsin, Madison, 1968.

    Google Scholar 

  161. Loop C.: Generalized B — spline surfaces of arbitrary topological type. Ph. D. Thesis, Univ. of Washington, 1992.

    Google Scholar 

  162. Lucas T.R.: A theory of generalized splines with applications to nonlinear boundary value problems. (Doctoral dissertation), Georgia Institute of Technology, Atlanta, 1970.

    Google Scholar 

  163. Luo Zhong Xnan: Reserch in nonlinear spline functions. (chinese). (Ph. D. Dissertation), Dalian Univ. of Technology, 1992, Dalian, China.

    Google Scholar 

  164. Lyche T.: Discrete polynomial spline approximation methods. (Thesis), Univ. Texas, 1975.

    Google Scholar 

  165. Lynch R.W.: A method for choosing a tension factor for spline under tension interpolation. M.S.(Thesis) Univ. of Texas at Austin, 1982.

    Google Scholar 

  166. Mack Thomas: Zur numerischen Losung von Randwertproblemen für Funktionaldifferentialgleichungen durch Kollokation mit Splines. Univ. Ulm., (Dissertation), 1986.

    Google Scholar 

  167. Mansfield L.E.: Optimal approximation and error bounds in space of multivariate functions. (Doctoral dissertation), Univ. of Utah, Salt Lake City, 1969.

    Google Scholar 

  168. Marsden J.H.: An identity for spline functions with applications to variationdiminishing spline approximation. (Doctoral dissertation), Univ. of Wisconsin, Madison, 1968.

    Google Scholar 

  169. Mason J.H.: Collocation methods for the solution of the static neutron diffusion equation. (Doctoral thesis), MIT, 1975.

    Google Scholar 

  170. McClure D.E.: Feature selection for the analysis of line patterns. (Doctoral dissertation), Brown Univ., Providence, 1970.

    Google Scholar 

  171. Meade D.: Collocation methods for space-time nuclear reactor dynamics. (Ph. D. Thesis), Univ. of California, Berkeley, 1982.

    Google Scholar 

  172. Medvedev N.V.: Some problem of spline theory and applications. (russian). Moskow State Univ., (Dissertation), Moskow, 1973.

    Google Scholar 

  173. Mehlum E.: Curve and surface fitting based on variational criteria for smoothness. (Doctoral dissertation), Central Inst. for Industrial Research, Oslo, 1969.

    Google Scholar 

  174. Le Méhauté A.: Interpolation et approximation par des fonctions polynomiales par marceaux dans ℝ n. (Dissertation), Univ. Rennes, 1984.

    Google Scholar 

  175. Mekhilef M.: Optimal de l’identification de formes par des B — splines rationalles non uniformes. Thesis, Ecole Central Pris, May 1991.

    Google Scholar 

  176. Meyling Gmelig R.S.H.: Polynomial spline approximation in two variable. (Ph. D. Thesis), Univ. of Amsterdam, 1986.

    Google Scholar 

  177. Micula G.: Integrarea numerica a ecuaţiilor diferenţiale cu ajutorul funcţiilor spline. (Teză de doctorat), Univ. Cluj, 1971.

    Google Scholar 

  178. Micula Sanda: Numerical methods for the radiosity equation and related problems. (Ph. D. Thesis), University of Iowa, 1997.

    Google Scholar 

  179. Miroshnicenko V.L.: The cubic spline functions approximating the solution of the delay differential equations. (russian). (Dissertation), Alma-Ata, 1975.

    Google Scholar 

  180. Mögerle H.: G — Splines höherer Ordnung. Thesis. Universität Stuttgart, 1992.

    Google Scholar 

  181. Morel J.E.: A collocation method for the solution of the neutron transport equation with both symmetric and asymmetric scattering. (Ph. Thesis), Univ. of New Mexico, Albuquerque, N.M., 1979.

    Google Scholar 

  182. Morin M.: Méthodes de calcul des fonctions ”spline” dans un convex. (Thèse), Université de Grenoble, Grenoble, 1969.

    Google Scholar 

  183. Morken K.: On two topice in spline theory: discret splines and equioscillating spline. (Ph. D. Thesis), Institut für Informatik, Univ. of Oslo, 1984.

    Google Scholar 

  184. Morsche Ter H.G.: Interpolational and extremal properties of L-spline functions. (Dissertation), Tech. Hochschule, Eindhoven, 1982.

    MATH  Google Scholar 

  185. Murty V.N.: Optimal designe of individual regression coeficients with a Tchebycheffian spline regression function. (Doctoral dissertation), Purdue Univ., Lafayette, 1969.

    Google Scholar 

  186. Mueller T.I.: Geometric modelling with multivariate B-splines. (Dissertation), Dept. Comput. Sci. Univ. of Utah, 1986.

    Google Scholar 

  187. Mulansky B.: Characterisierungsausgaben für nichtlineare Approximationsaufgaben. (Dissertation), T.U. Dresden, 1987.

    Google Scholar 

  188. Mullenheim Gregor: Numerische Losung von Zwei-Punkt Randwert-problemen durch Kollokation mit Spline-Funktionen. (Dissertation), Eichstät, West-Germany, 1986.

    Google Scholar 

  189. Munteanu M.J.: Contribution à la Théorie des Fonctions Splines à une et à Plusieurs Variables. (Dissertation), Louvain, 1970.

    Google Scholar 

  190. Nazarenko N.A.: Parametric interpolation and application of splines by function classes. (russian), (Dissertation), Univ. Kiev, 1979.

    Google Scholar 

  191. Neamtu Marian: A contribution to the theory and practice of multivariate splines. (Dissertation), Univ. of Twente, Holland, 1991.

    Google Scholar 

  192. Netravali A.N.: Signal processing techniques based on spline functions. (Doctoral dissertation), Rice Univ., Houston, 1971.

    Google Scholar 

  193. Nielson G.M.: Surface approximation and data smoothing using generalized spline functions. (Doctoral dissertation), Univ. of Utah, Salt Lake City, 1970.

    Google Scholar 

  194. Pahnutov J.A.: Spline functions with additional knots and Cauchy problems. (russian). (Dissertation), Sverdlovsk, 1978.

    Google Scholar 

  195. Paihua Montes L.: Quelques méthodes numérique pour le calcul de fonctions spline à une et plusieurs variables. (Thèse de 3e cycle), Univ. Grenoble, 1978.

    Google Scholar 

  196. Park Hyungjun: Surface modeling for 3D shape reconstruction from measurement data. Ph. D. Dissertation, POSTECH, Korea, 1996.

    Google Scholar 

  197. Patent P.D.: Least square polynomial spline approximation. (Doctoral dissertation), California Institute of Technology, Pasadena, 1972.

    Google Scholar 

  198. Pavlov N.N.: Spline method of smoothing experimental data. (russian). (Dissertation). Novosibirsk, Comp. Centre S.O. Akad. Nauk SSSR, 1984.

    Google Scholar 

  199. Pereverzev S.V.: Application of two variables spline functions and optimal methods for solving the integral equations. (russian). (Dissertation), Kiev, 1980.

    Google Scholar 

  200. Perrin F.M.: An application of monotone operators to differential and partial differential equations on infinite domains. (Doctoral dissertation), Case Institute of Technology, Cleveland, 1967.

    Google Scholar 

  201. Petersdorff von T.: Randwertprobleme der Elastizitätstheorie für Polyeder — Singularitäten und Approximation mit Randelementmethoden. (Thesis), Technische Hochschule, Darmstadt, 1989.

    MATH  Google Scholar 

  202. Philips J.L.: Collocation as a projection method for solving integral and other operator equations. (Doctoral dissertation), Purdue Univ. Lafayette, 1969.

    Google Scholar 

  203. Pierce J.G.: Higher order convergence results for the Rayleigh — Ritz method applied to a special class of eigenvalue problems. (Doctoral dissertation), Case Western Reserve Univ. Cleveland, 1969.

    Google Scholar 

  204. Pilcher D.T.: Smooth approximation of parametric curves and surfaces. (Ph. D. Thesis), Univ. of Utah., Salt Lake City, Utah, 1973.

    Google Scholar 

  205. Poirier D.J.: Applications of spline functions in economics. (Ph. D. Dissertation), Univ. of Wisconsin, Madison, 1973.

    Google Scholar 

  206. Potra T.: Aplicarea metodei elementului finit la rezolvarea unor probleme din mecanica corpurilor deformabile. (Teză de doctorat). Univ. din Cluj-Napoca, 1985.

    Google Scholar 

  207. Potter E.H.: Multivariate polynomial spline interpolation. (Ph. D. Thesis), Iowa State Univ., 1981.

    Google Scholar 

  208. Prautzsch H.: Untereilungsalgorithmen für multivariate Splines. (Dissertation), Braunschweig, 1983.

    Google Scholar 

  209. Priver A.S.: Data smoothing in interactive computer graphics. (Doctoral dissertation), Harward Univ., Cambridge (Mass), 1970.

    Google Scholar 

  210. Rababah A.: Approximation von Kurven mit Polynomen und Splines. Ph. D. Thesis, Universität Stuttgart, 1992.

    Google Scholar 

  211. Rabut Ch.: B-splines polyharmoniques cardinales: interpolation, quasiinterpolation, filtrage. (Thése), Université Paul Sabatier, Toulouse, 1990.

    Google Scholar 

  212. Rademacher Christine: Glättung mit parametrischen Spline-Kurven. (Dissertation), Rheinische, Friedrich-Wilhelms — Universität Bonn, 1989.

    Google Scholar 

  213. Ramadan Z.: Numerical solution of Cauchy system of differential equations with spline functions. (Ph. D. Thesis), Suez Canal University, Ismailia, Egypt, 1988.

    Google Scholar 

  214. Reber D.: Approximation and optimal control of linear hereditary systeme. (Ph. D. Thesis), Brown University, Providence, R.I., 1977.

    Google Scholar 

  215. Renka R.J.: Triangulation and bivariate interpolation for irregularly distributed data points. (Ph. D. Thesis), Univ. of Texas, Austin, 1981.

    Google Scholar 

  216. Rescorla K.L.: Multivariate interpolation. (Dissertation), Univ. Utah, 1985.

    Google Scholar 

  217. Reuter R.: Über Integralformeln der Einheitssphäre und harmonische Splinefunktionen. (Dissertation). Technische Hochschule Aachen, 1982.

    Google Scholar 

  218. Revnic A.: Metode spline de ordin malt pentru rezolvarea numerică a ecuaţiilor diferenţiale. (Teză de doctorat), Univ. Babeş-Bolyai, Cluj-Napoca, 1998.

    Google Scholar 

  219. Richards F.B.: A generalized minimum norm property for spline functions with applications. (Doctoral dissertation), Univ. of Wisconsin, Madison, 1970.

    Google Scholar 

  220. Riesenfeld R.F.: Applications of B-splines approximation to geometric problems of computer-aided design. (Ph. D. Thesis), Syracuse Univ., Syracuse, N.Y., 1973.

    Google Scholar 

  221. Rohwer C.H.: Nodal subspaces of quadratic spline spaces. (Thesis), Univ. of Potchefstroom, 1985.

    Google Scholar 

  222. Ron Amos: On exponential box splines and other types of nonpolynomial B-splines. (Thesis), Tel-Aviv Univ., 1987.

    Google Scholar 

  223. Rose L.: The structure of models of splines over polynomial rings. (Ph. D. Thesis), Cornell University, 1988.

    Google Scholar 

  224. Rozhenko A.Iu: Tensor and discontinnous approximations on the base of variational spline theory. Dr. Thesis, NCC, AN SSSR, Novosibirsk, (russian), 1990.

    Google Scholar 

  225. Runge R.: Lösung von Anfangswertproblemen mit Hilfe nichtlinearer Klassen von Spline-Funktionen. (Dissertation), Münster, 1972.

    Google Scholar 

  226. Russel R.D.: I. Existence of eigenvalues for integral equation. II. A collocation method for boundary value problems. (Doctoral dissertation), New Mexico State Univ., Las Cruces, 1970

    Google Scholar 

  227. Sabin M.A.: The use of piecewise forms for the numerical representation of shape. (Ph. D. Dissertation), Hungar Acad. of Science, Budapest, 1977.

    Google Scholar 

  228. Sablonniere P.: Bases de Bernstein et approximants spline. (Thèse), Lille, 1982.

    Google Scholar 

  229. Safraz M.: The representation of curves and surfaces using rational splines. Doctoral Thesis, Brinel Univ. Uxbridge, U.K. 1992.

    Google Scholar 

  230. Samia Soliman: Application of nonpolynomial splines in solving differential equations. (Ph. D. Thesis), Suez Canal University, Ismailia, Egypt, 1989.

    Google Scholar 

  231. Schaback R.: Spezielle rationale Splinefunktion. (Dissertation), Universität Münster, Münster, 1969.

    Google Scholar 

  232. Schaback R.: Nichtlineare Diskkretisierungstheorie. (Habilitationsschrift), Universität Münster, Münster, 1971.

    Google Scholar 

  233. Schäfer W.: Splineapproximation in intermediären Räumen. (Dissertation), Ruhr. Univ. Bochum, 1975.

    Google Scholar 

  234. Schek H.J.: Optimierungsberechnungen und Sensitivitäts — analyse als Hilfsmittel bei der Entwurzbearbeitung von Strasser. (Dissertation), Universität Stuttgart, Stuttgart, 1972.

    Google Scholar 

  235. Schelske H.J.: Glätten von segmentieren Bézier — Kurven und Bézier — Flächen. (Dissertation), Univ. Darmstadt, 1984.

    Google Scholar 

  236. Schempp W.: Über Spline — Grundräume. (Habilitationsschrift), Ruhr-Universität, Bochum, 1970.

    Google Scholar 

  237. Scherer K.: Spline-Approximation und verallgemeinerte Lipschitzräume. (Habilitationsschrift), T.H. Aachen, 1973.

    Google Scholar 

  238. Schlosser K.H.: Zur mehrdimensionalen Spline-Interpolation. (Dissertation), Ruhr Universität, Bochum, 1974.

    Google Scholar 

  239. Schmeltz G.: Variationsreduzierende Kurvendarstellungen und Krümungskriterien für Bezierflächen. Thesis, Fachbereich Mathematik, T.H. Darwstadt, 1992.

    Google Scholar 

  240. Schmidt F.: Shape preserving Histoapproximation mit C 2 — splines über modifizierten Gittern. Dissertation, Univ. Wuppertal, 1996.

    Google Scholar 

  241. Schneider F.J.: Interpolation, approximation und Konvertirung mit rationalen B-splines. Dissertation T.H. Darmstadt, 1993.

    Google Scholar 

  242. Scholz R.: Approximation mit Spline-Funktionen in gewichterten Lebesque-Räumen über dem Intervall (0,∞). (Dissertation), Universität Freiburg, Freiburg, 1972.

    Google Scholar 

  243. Schoemberg H.: Tschebyscheff Approximation durch rationale Spline-Funktionen. (Dissertation), Münster, 1973.

    Google Scholar 

  244. Schonefeld S.A.: A study of products and sums of Schauder bases in Banach spaces. (Doctoral dissertation), Purdue Univ. Lafayette, 1969.

    Google Scholar 

  245. Schilze-Brunnett G.: Elastiche Wege nichtlineare Splines im CAGD. Dissertation, Univ. Kaiserslautern, Germany, 1990.

    Google Scholar 

  246. Schumaker L.L.: On some approximation problems involving Tchebycheff systems and spline functions. (Doctoral dissertation), Stanford Univ., Stanford, 1966.

    Google Scholar 

  247. Schweikert D.C.: The spline in tension (hyperbolic spline) and the reduction of extraneous inflection points. (Doctoral dissertation), Brown Univ., Providence, 1966.

    Google Scholar 

  248. Sederberg T.W.: Implicit and parametric curves and surfaces for computer aided geometric design. (Ph. D. Thesis), Purdue University, 1983.

    Google Scholar 

  249. Sidel H.P.: Polynome, Splines und symmetrische rekursive Algorithmen in Computer Aided Geometric Design. (Habilitationsschrift), Tübingen, 1989.

    Google Scholar 

  250. Selemen A.H.: An investigation of mesh selection algorithms in the numerical solution of boundary value problems by piecewise polynomial collocation. (Ph.D.Thesis), Univ. of Newcastle upon-Tyne, 1990.

    Google Scholar 

  251. Serbin S.M.: A computational investigation of least squares and other projection methods for the approximate solution of boundary value problems. (Doctoral dissertation), Cornell Univ., Ithaca, 1971.

    Google Scholar 

  252. Sewell E.G.: Automatic generation of triangulations for piecewise polynomial approximation. (Dissertation), Purdue Univ., 1973.

    Google Scholar 

  253. Shabozov M.: Extremal properties of multivariate splines and error delimitation of qubature formulas. (russian). (Dissertation), Kiev, 1980.

    Google Scholar 

  254. Shaidaeva T.A.: Most precise quadrature formulae for certain classe of functions. (russian). (Doctoral dissertation), Leningrad State Univ., Leningrad, 1954.

    Google Scholar 

  255. Shetty S.: Application of rational B-splines in computer aided geometric design. Ph. D. Thesis, Univ. of Toledo, 1991.

    Google Scholar 

  256. Shi X.: Higher — dimensional splines. (chinese). (Ph. D. Thesis), Tilin University.

    Google Scholar 

  257. Shiau I.: Smoothing spline estimation of functions with discontinuities. (Ph. D. Thesis), Dept. of Statistics, Univ. of Wisconsin, Madison, 1985.

    Google Scholar 

  258. Sipemann Dietmar: Kardinale Spline-Interpolation bezüglich äquidistant verteilter Knoten. (Dissertation), Abteilung Mathematik der Univ. Dortmund, 180 S, 1984.

    Google Scholar 

  259. Silliman S.D.: The numerical evaluation by spline of the Fourier transform and the Laplace transform. (Doctoral dissertation), Univ. of Wisconsin, Madison, 1971.

    Google Scholar 

  260. Simerská C.: Generalized L-Spline and the multi-point boundary value problem. (Thesis), Univ. of Praha, 1987.

    Google Scholar 

  261. Sima S.E.: Convergence properties of spline functions. (Doctoral dissertation), Univ. of Arizona, Tucson, 1969.

    Google Scholar 

  262. Sirvent M.: The dimension of multivariate spline spaces. Ph.D.Thesis, Univ. of Utah, Salt Lake City, Utah, 1990.

    Google Scholar 

  263. Sivakumar Natarajan: Studies in box spline. Ph.D.Thesis, Univ. of Alberta, Edmonton, 1990.

    Google Scholar 

  264. Slaqui K.H.: Application des techniques mathématiques à la gestion des mélange: Histoplines et optimisation. Thèse de docteur ingéneur, Inst. Nat. Polytechnique de Grenoble, 1986.

    Google Scholar 

  265. Smith C.L.: A direct method approximation to the linear parabolic regulator control problem using multivariate splines. Doctoral dissertation, Rice Univ., Houston, 1971.

    Google Scholar 

  266. Smith P.W.: W r,p(R) — splines. Doctoral dissertation, Purdue, Univ., Lafayette, 1972.

    Google Scholar 

  267. Sommer M.: Gleihmäsige Approximation mit zweidimensionalen Spline-funktionen. Dissertation, Erlangen, Nürnberg, 1975.

    Google Scholar 

  268. Späth H.: Die numerische Berechnung von interpolierenden Spline-Funktionen mit Blockunterrelaxation. Dissertation, Univerisität Karlsruhe, Karlsruhe, 1969.

    Google Scholar 

  269. Stärk E.: Mehrfach differenzierbare Bézier-Kurven und Bézier-Flächen. Dissertation, Braunchweig, 1978.

    Google Scholar 

  270. Stead S.E.: Smooth multistage multivariate approximation. Dissertation, Brown Univ., 1983.

    Google Scholar 

  271. Stephens A.B.: Convergence of the residual for Ritz-Galerkin approximation. Doctoral dissertation, Univ. of Maryland, College Park, 1969.

    Google Scholar 

  272. Stein G.: Verfahren zur Approximation zweidimensionaler Flachen mittels Tensorproduckt — Splines. Thesis, Univ. Hamburg, 1983.

    Google Scholar 

  273. Stern M.D.: Some problems in the optimal approximation of bounded linear junctionals. Doctoral dissertation, Oxford Univ., Oxford, 1966.

    Google Scholar 

  274. Stöckler J.: Interpolation mit mehrdimensionalen Bernoulli — Splines und Box — Splines. Thesis, Duisburg, 1988.

    Google Scholar 

  275. Storchai V.E.: Spline approximation and delimitation norm for some classes of functions. (russian). Dissertation, Dnepropetrovsk, 1974.

    Google Scholar 

  276. Storry D.J.T.: B-spline surface over an irregular topology by recursive subdivision. Ph.D.Thesis, Longhborough Univ. of Technology, 1985.

    Google Scholar 

  277. Strauss H.: Approximation mit Spline funktionen und Anwendungen auf die Approximation linearen Funktionale. Habilitationsschrift, Erlangen, 1976.

    Google Scholar 

  278. Strom K.: Splines, polynomials and forms. Ph.D. Dissertation, Univ. Oslo, 1992.

    Google Scholar 

  279. Subbotin Jn.N.: Extremal functional interpolation by spline functions. (russian). Dissertation, Novosibirsk, 1974.

    Google Scholar 

  280. Swartz B.F.: O(H k-j(D k f, h)) bounds on some spline interpolation errors. Doctoral dissertation, New York Univ., New York City, 1970.

    Google Scholar 

  281. Szyszka Uwe: Splinekollokationsmethoden für singuläre Integralgleichungen auf geschlossenen Kurven. Dissertation, Rostok Univ., 1989.

    Google Scholar 

  282. Taijeron H.J.: splines on hypersheres. Ph. D. Dissertation. University of New Mexico, Albuquerque, 1989.

    Google Scholar 

  283. Tang Chi Ming: Estimate hazard function by spline functions. Ph.D.Thesis, Univ. of New Mexico, 1977.

    Google Scholar 

  284. Tazeroualki M.: These de l’Univ. J. Fourier, Grenoble, 1993.

    Google Scholar 

  285. Thomann J.: Détermination et construction de fonctions spline à deux variables définis sur un domaine rectangulaire. (Thèse), Université de Lille, Lille, 1970.

    Google Scholar 

  286. Thomas-Agnan C.: Statistical curve fitting by Fourier techniques. Thesis, Univ. California, Los Angeles, 1987.

    Google Scholar 

  287. Thomas S.W: Modelling volumes bounded by B-spline surfaces. Doctoral Dissertation, Univ. of Utah, Salt Lake City, 1984.

    Google Scholar 

  288. Tihomirov V.M.: Some problems in approximation theory. (russian). Doctoral dissertation, Moscow State University, Moscow, 1970.

    Google Scholar 

  289. Tippenhauer U.: Mehrdimensionale Interpolation und Minimaleigenschaften in Hilberträumen. Dissertation, Bochum, 1973.

    Google Scholar 

  290. Utreras F.: Utilisation de la méthode de validation croisse pour le lissage par fonctions spline à une ou deux variables. Thèse, Univ. Grenoble, Inst. Nat. Polyteh. de Grenoble, 1979.

    Google Scholar 

  291. Utter D.F.: Variational and convergence properties of splines used for curve design. Doctoral dissertation, Arizona State University, 1973.

    Google Scholar 

  292. Van Arman D.J.: Classification of experimental designs relative to polynomial spline regression functions. Doctoral dissertation, Purdue Univ., Lafayette, 1968.

    Google Scholar 

  293. Vasilenko V.A.: Teoria splainov i zavadi obrabotkii informaţii. Dissertation, Novosibirsk, 1974.

    Google Scholar 

  294. Vavalis E.A.: High order spline collocation methods for elliptic partial differential equations. Ph.D.Thesis, Univ. of Thessaloniki, Greece, 1985.

    Google Scholar 

  295. Versprille K.J.: Computer — Aided Design Applications of the rational B-splines. Ph.D.Thesis, Syracuse Univ., Syracuse, N.Y., 1975.

    Google Scholar 

  296. Vittivow W.L.: Interpolation to arbitrarily spaced data. Thesis, Univ. Utah, 1978.

    Google Scholar 

  297. Volk Wolgang: Numerische Behandlung Fredholm 1 scher Integralgleichungen zweiter Art mittels Splinefunktionen. Dissertation, Hahn — Meiter Institute Kernforsch, Berlin, 1979.

    Google Scholar 

  298. Voss D.A.: A spline smoothing technique for two point boundary value problems. Doctoral dissertation, Iowa State Univ., Iowa City, 1971.

    Google Scholar 

  299. Walter H.: Numerische Darsteillung von Oberflächen under Verwendung eines Optimalprinzipe. Dissertation, Technisch., Universität München, München, 1971.

    Google Scholar 

  300. Wakoff G.I.: Piecewise polynomial spaces and their use with the Rayleigh-Ritz-Galerkin method. Doctoral dissertation, Harvard Univ., Cambridge (Mass), 1969.

    Google Scholar 

  301. Wang Y.: Smoothing spline analysis of variance of data from exponential families. Ph.D. Dissertation, Univ. of Wisconsin — Madison, 1994.

    Google Scholar 

  302. Weinert H.L.: A reproducing kernel Hilbert spaces approach spline problems with applications in estimation and optimization.

    Google Scholar 

  303. Wendelberger J.G.: Smoothing noisy data with multidimensional splines and generalized cross validation. Dissertation, Univ. Wisconsin, Madison, 1982.

    Google Scholar 

  304. Wenz H.-J.: Ein neuer Zugang zur polynomialen Spline — Quasiinterpolation. Ph. D. Thesis, Fern Univ. Hagen, 1993.

    Google Scholar 

  305. Werner B.: Verallgemeinerte Monotonie und Differentialgleichungen mit Anwendungen auf Spline-Funktionen. Habilitationsschrift, Universität Hamburg, 1974.

    Google Scholar 

  306. Wever Utz: Darstellung von Kurven und Flächen mittels datenreduzierender Algorithmen. Dissertation, Fak. Math. und Inf. Tech., Univ. München, 1989.

    Google Scholar 

  307. Weins Dirk: Über ein Verfahren der adaptiven Splineapproximation. Dissertation, Univ. Hamburg, F.B. Mathematik, 107 S, 1991.

    Google Scholar 

  308. Yoshimoto Fujiichi: Studies on data fitting with spline functions. Kyoto University, Japan, 1977.

    Google Scholar 

  309. Zedek F.: Splines quadratiques à deux variables. Thèse de 3e Cycle, Université de Lille 1, 1985.

    Google Scholar 

  310. Zeifang Rainer: Interpolationsmethoden mit g-Splines. Dissertation, Univ. Stuttgart, 1994.

    Google Scholar 

  311. Zeilfelder Frank: Interpolation und beste approximation mit periodischen Splinefunktionen. Dissertation, Univ. Mannheim, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Micula, G., Micula, S. (1999). References. In: Handbook of Splines. Mathematics and Its Applications, vol 462. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5338-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5338-6_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6244-2

  • Online ISBN: 978-94-011-5338-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics