Skip to main content

Modeling of Digital Mammograms Using Bicubic Spline Functions and Additive Noise

  • Chapter
Book cover Digital Mammography

Part of the book series: Computational Imaging and Vision ((CIVI,volume 13))

Abstract

In this work, we are dealing with the detection of microcalcifications. In order to do so, we propose to model the grey levels of digital mammograms by the sum of a surface trend and an additive noise or texture. The grey level intensities image is then considered as a surface which is approximated into a class of smooth functions (the trend) and the noise represents the fluctuations around the grey levels average values. Following [1], the trend estimation is done with bicubic spline functions, meaning that the considered class of smooth functions is spanned by piecewise polynomials of degree three and of class C 2 [2], [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Valatx L, Magnin IE, Bremond A (1994) Automatic microcalcifications and opacities detection in digitized mammographies using a multiscale approach. In digital mammography. AG Gale et al., editors, pp 51–57.

    Google Scholar 

  2. Craven P, Wahba G (1979) Smothing noisy data with spline functions. Numerische mathematik 31, pp 377–403.

    Article  Google Scholar 

  3. Prenter PM Splines and variationnal methods. J Wiley. 1975.

    Google Scholar 

  4. Elderton WP, Johnson NL. Systems of frequency curves. Cambridge at the university press. 1969.

    Google Scholar 

  5. Marzouki A, Pieczynski W, Delignon Y (1997). Estimation of generalized mixture and its application in image segmentation. Ieee transactions on image processing 6(10), pp 1364–1375.

    Article  PubMed  Google Scholar 

  6. Rao CR Linear statistical inference and its applications. J Wiley & Sons. 1965.

    Google Scholar 

  7. Chalmond B, Coldefy F, Lavayssiere B (1994) 3D curve reconstruction from degraded projections, Wavelets, images and curves fitting, in Laurent PJ, Le Méhauté A, Schumaker (eds.), AKPeters, pp 113–119.

    Google Scholar 

  8. Baum TP Aide à la détection des foyers de microcalcifications dans le cadre des campagnes de dépistage du cancer du sein. Doctorat Paris 6. 1997.

    Google Scholar 

  9. Cerneaz N Model-based analysis of mammograms. PHD thesis. Department of Engineering science. Oxford University. 1994.

    Google Scholar 

  10. Karssemeijer N, Van Erning LJ (1991) Iso-precision scaling of digitized mammograms to facilitate image analysis. Med Im, Proc SPIE 1444, pp 166–177.

    Article  Google Scholar 

  11. Karssemeijer N (1992). Stochastic model for automated detection of calcifications in digital mammograms. Image and vision computing 10(6), pp 369–375.

    Article  Google Scholar 

  12. Karssemeijer N (1993) Adaptive noise equalization and recognition of microcalcifications clusters in mammograms. Int journal of pattern recognition and artificial intelligence 7(6), pp 148–165.

    Article  Google Scholar 

  13. Guillemet H. Reconnaissance de microcalcifications en mammographie numérique. Approche hiérarchique. Thése de doctorat. Ecole nationale supérieure des télécommunications 1996.

    Google Scholar 

  14. Johnson N.L, Kotz S. Continuous univariate distributions-1. A wiley-interscience publication. 1939.

    Google Scholar 

  15. Guyon X. Random fields on a network: modeling, statistics, and applications. Springer-Verlag. 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Maitournam, A., Graffigne, C., Strauss, A. (1998). Modeling of Digital Mammograms Using Bicubic Spline Functions and Additive Noise. In: Karssemeijer, N., Thijssen, M., Hendriks, J., van Erning, L. (eds) Digital Mammography. Computational Imaging and Vision, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5318-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5318-8_28

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6234-3

  • Online ISBN: 978-94-011-5318-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics