Skip to main content

Changes in Cardiac Gene Expression After Ischaemia and Reperfusion

  • Chapter
Delayed Preconditioning and Adaptive Cardioprotection

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 207))

  • 45 Accesses

Abstract

Physiological stress leads to the induction of new proteins that are important in mediating damage repair, affording protection from further insults or promoting cell injury and death. Identifying these proteins is an important first step towards understanding the molecular mechanisms underlying the stress response. As new or elevated protein synthesis can result from increased gene expression, studies of gene transcription provide a key to identifying proteins with important functions. In this chapter, the published data on genes that are transcriptionally up-regulated in cardiac tissue in response to ischaemia and reperfusion will be reviewed along with the transcription factors responsible for mediating the response and the known target genes. Ultimately, our interest is to understand the response of human myocardium to ischaemia and reperfusion, resulting from pathological conditions or surgery, and to understand the adaptive processes that may protect myocardial function. Few studies of gene transcription have, however, been conducted using human tissue, due to the limitations of working with living subjects. As a result, our understanding of the transcriptional response of myocardium to stress has been gained largely from animal and in vitro models. While these models have provided detailed biochemical and molecular data, the results must be interpreted with some caution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Trautinger F, Kindas-Mugge, Knobler RM, Honigsmann HJ. Stress proteins in the cellular response to ultraviolet radiation. Photochem Photobiol B 1996; 35: 141–148.

    Article  CAS  Google Scholar 

  2. Morimoto RI, Sarge KD, Abravaya K. Transcriptional regulation of heat shock genes-a paradigm for inducible genomic responses. J Biol Chem 1992; 267: 21987–21990.

    PubMed  CAS  Google Scholar 

  3. Maxwell SR, Lip GY. Reperfusion injury: a review of the pathophysiology, clinical manifestations and therapeutic options. Int J Cardiol 1997; 58: 95–117.

    Article  PubMed  CAS  Google Scholar 

  4. Piper HM, Noll T, Siegmund B. Mitochondrial function in the oxygen depeleted and reoxygenated myocardial cell. Cardiovasc Res 1994; 28: 1–15.

    Article  PubMed  CAS  Google Scholar 

  5. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A laboratory manual, second edition, 1989. Cold Spring Harbor Laboratory Press.

    Google Scholar 

  6. Harlow E, Lane D. Antibodies: A laboratory manual, 1988 Cold Spring Harbor Laboratory Press.

    Google Scholar 

  7. Maulik N, Das DK. Molecular cloning, sequencing and expression analysis of a fatty acid transport gene in rat heart induced by ischemic preconditioning and oxidative stress. Mol Cell Biochem 1996; 160/161: 241–247.

    Article  Google Scholar 

  8. Plumier J-C L, Robertson H A, Currie RW. Differential accumulation of mRNA for immediate early genes and heat shock genes in heart after ischaemic injury. J Mol Cell Cardiol 1996; 28: 1251–1260.

    Article  PubMed  CAS  Google Scholar 

  9. Wechsler AS, Entwistle JC, Yeh T, Ding M, Jakoi ER. Early gene changes in mycardial ischemia. Ann Thorac Surg 1994; 58: 1282–1284.

    Article  PubMed  CAS  Google Scholar 

  10. Wechsler AS, Entwistle JWC, Ding M, Yeh T, Jakoi ER. Myocardial stunning: association with altered gene expression. J Card Surg 1994; 9: 537–542.

    PubMed  CAS  Google Scholar 

  11. Brand T, Sharma HS, Fleischmann KE et al. Proto-oncogene expression in porcine myocardium subjected to ischaemia and reperfusion. Circ Res 1992; 71: 1351–1360.

    Article  PubMed  CAS  Google Scholar 

  12. Das DK, Engleman RM, Kimura Y. Molecular adaption of cellular defences following preconditioning of the heart by repeated ischemia. Cardiovasc Res 1993; 27: 578–584.

    Article  PubMed  CAS  Google Scholar 

  13. Sharma HS, Wunsch M, Brand T, Verdouw PD, Schaper W. Molecularbiology of the coronary vascular and myocardial responses to ischemia. J Cardiovasc Pharmacol 1992; 20: S23–S31.

    PubMed  CAS  Google Scholar 

  14. Peng M, Huang L, Xie ZJ, Huang WH, Askari A. Oxidant-induced activations of nuclear factor-kappa B and activator protein-1 in cardiac myocytes. Cell Mol Biol Res 1995; 41: 189–197.

    PubMed  CAS  Google Scholar 

  15. Yin T, Sandhur G, Wolfgang CD et al. Tissue specific pattern of stress kinase activation in ischaemia reperfused heart and kidney. J Biol Chem 1997; 272: 19943–19950.

    Article  PubMed  CAS  Google Scholar 

  16. Chiu R, Boyle WJ, Meek J, Smeal T, Hunter T, Karin M. The c-fos protein interacts with c-Jun/AP1 to stimulate transcription of AP1 responsive genes. Cell 1988; 54: 541–552.

    Article  PubMed  CAS  Google Scholar 

  17. Karin M, Liu Zg, Zandi E. AP-1 function and regulation. Curr Opin Cell Biol 1997; 9: 240–246.

    Article  PubMed  CAS  Google Scholar 

  18. Marcu KB, Bossone SA, Patel AJ. Myc function and regulation. Ann Rev Biochem 1992; 61: 809–860.

    Article  PubMed  CAS  Google Scholar 

  19. Peukert K, Staller P, Schneider A, Carmichael G, Hanel F, Eilers M. An alternative pathway for gene regulation by Myc. EMBO J 1997; 16: 5672–5686.

    Article  PubMed  CAS  Google Scholar 

  20. Ayer DE, Eisenman RN. A switch from Myc:Max to Mad:Max heterocomplexes accompanies monocyte/macrophage differentiation. Genes Dev 1993; 7:2110–2119.

    Article  PubMed  CAS  Google Scholar 

  21. Knoll R, Arras M, Zimmermann R, Schaper J, Schaper W. Changes in gene expression following short coronary occlusions studied in porcine hearts with run-on assays. Cardiovasc Res 1994; 28: 1062–1069.

    Article  PubMed  CAS  Google Scholar 

  22. Maki A, Berezesku IK, Fargnli J, Holbrook NJ, Trump BF. Role of [Ca2+]i in induction of c-fos, c-jun and c-myc RNA in rat PTE after oxidative stress. FASEB J 1992; 6: 919–924.

    PubMed  CAS  Google Scholar 

  23. Bukh AM, Martinez-Valdez H, Freedman SJ, Freedman MH, Cohen A. The expression of c-fos, c-jun and c-myc genes is regulated by heat shock in human lymphoid cells. J Immunol 1990; 144: 4835–4840.

    PubMed  CAS  Google Scholar 

  24. Sadis S, Hickey E, Weber LA. Effect of heat shock on RNA metabolism in HeLa cells. J Cell Physiol 1988; 135: 377–386.

    Article  PubMed  CAS  Google Scholar 

  25. Nair P, Muthukkumar S, Sells SF, Han SS, Sukhatme VP, Rangnekar VM. Early growth response-1-dependent apoptosis is mediated by p53. J Biol Chem 1997; 272: 20131–20138.

    Article  PubMed  CAS  Google Scholar 

  26. Liu C, Calogero A, Adamson E, Mercola D. Egr-1, the reluctant suppression factor: Egr-1 is known to function in the regulation of growth, differentiation, and also has significant tumor suppressor activity and a mechanism involving the induction of TGF-beta 1 is postulated to account for this suppressor activity. Crit Rev Oncog 1996; 7: 101–125.

    Article  PubMed  CAS  Google Scholar 

  27. Baler R, Dahl G, Voellmy R. Activation of heat shock gene transcription by heat shock factor 1 is accompanied by oligomerisation, modification, and rapid translocation of heat shock transcription factor HSF1. Mol Cell Biol 1993; 13: 2486–2496.

    PubMed  CAS  Google Scholar 

  28. Sarge KD, Murphy SP, Morimoto RI. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerisation, acquisition of DNA-binding activity, and nuclear localisation and can occur in the absence of stress. Mol Cell Biol 1993; 1392–1407.

    Google Scholar 

  29. Holmberg CI, Leppa S, Eriksson JE, Sistonen L. The phorbol ester 12-o-tetradecanoylphorbol 13-acetate enhances the heat-induced stress response. J Biol Chem 1997; 272: 6792–6798.

    Article  PubMed  CAS  Google Scholar 

  30. Di Donato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M. A cytokine responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature 1997; 388: 548–554.

    Article  Google Scholar 

  31. Mann DL. Stress activated cytokines and the heart. Cytokine Growth Factor Rev 1996; 7: 341–354.

    Article  PubMed  CAS  Google Scholar 

  32. Chandrasekar B, Colston JT, Freeman GL. Induction of proinflammatory cytokine and antioxidant enzyme gene expression following brief myocardial ishaemia. Clin Exp Immunol 1997; 108: 346–351.

    Article  PubMed  CAS  Google Scholar 

  33. Herskowitz A, Choi S, Ansari AA, Wesselingh S. Cytokine mRNA expression in post-ischaemic reperfused myocardium. Am J Path 1995; 146: 419–428.

    PubMed  CAS  Google Scholar 

  34. Gurevitch J, Frolkis I, Yuhas Y et al. Tumour necrosis factor-alpha is released from the isolated heart undergoing ishcemia and reperfusion. J Am Coll Cardiol 1996; 28: 247–252.

    Article  PubMed  CAS  Google Scholar 

  35. Golino P, Ragni M, Cirillo P et al. Effects of tissue factor induced by oxygen free radicals on coronary flow during reperfusion. Nature Medicine 1996; 2: 35–39.

    Article  PubMed  CAS  Google Scholar 

  36. Latini R, Bianchi M, Correale E et al. Cytokines in acute myocardial infarction: selective increase in circulating tumor necrosis factor, its soluble receptor, and interleukin-1 receptor antagonist. J Cardiovasc Pharmacol 1994; 23: 1–6.

    PubMed  CAS  Google Scholar 

  37. Gurevitch J, Frolkis I, Yuhas Y et al. Anti-tumor necrosis factor-alpha improves myocaridial recovery after ischemia and reperfusion. J Am Coll Cardiol 1997; 15: 1554–1561.

    Article  Google Scholar 

  38. Feuerstein GZ, Wang X, Barone FC. Inflammatory gene expression in cerebral ischemia and trauma. Potential new therapeutic targets. Ann N Y Acad Sci 1997; 825: 179–193.

    CAS  Google Scholar 

  39. Moriguchi T, Toyoshima F, Masuyama N, Hanafusa H, Gotoh Y, Nishida E. A novel SAPK/JNK kinase, MKK7, stimulated by TNF alpha and cellular stresses. EMBO J 1997; 16: 7045–7053.

    Article  PubMed  CAS  Google Scholar 

  40. Beyaert R, Cuenda A, Vanden Berghe W et al. The p38/RK mitogen-activated protein kinase pathway regulates interleukin-6 synthesis response to tumor necrosis factor. EMBO J 1996; 15: 1914–1923.

    PubMed  CAS  Google Scholar 

  41. Brenner DA, O’Hara M, Angel P, Chojkier M, Karin M. Prolonged activation of jun and collagenase genes by tumour necrosis factor-α. Nature 1989; 337: 661–663.

    Article  PubMed  CAS  Google Scholar 

  42. Sharma HS, Maulik N, Gho BCG, Das DK, Verdouw PD. Coordinated expression of heme oxygenase-1 and ubiquitin in the porcine heart subjected to ischemia and reperfuion. Mol Cell Biochem 1996; 157: 111–116.

    Article  PubMed  CAS  Google Scholar 

  43. Watanabe N, Tsuji N, Akiyama S et al. Induction of heat shock protein 72 synthesis by endogenous tumor necrosis factor via enhancement of the heat shock element-binding activity of heat shock factor 1. Eur J Immunol 1997; 27: 2830–2834.

    Article  PubMed  CAS  Google Scholar 

  44. Isoherranen K, Peltola V, Laurikainen L et al. Regulation of copper/zinc and manganese Superoxide dismutase by UVB irradiation, oxidative stress and cytokines. J Photochem Photobiol 1997; 40: 288–293.

    Article  CAS  Google Scholar 

  45. Harris CA, Derbin KS, Hunte-McDonough B et al. Manganese Superoxide dismutase is induced by IFN-gamma in multiple cell types. Synergistic induction by IFN-gamma and tumor necrosis factor or IL-1. J Immunol 1991; 147: 149–154.

    PubMed  CAS  Google Scholar 

  46. Thiagarajan RR, Winn RK, Harlan JM. The role of leukocyte and endothelial adhesion molecules in ischemia-reperfusion injury. Thromb Haemost 1997; 78: 310–314.

    PubMed  CAS  Google Scholar 

  47. Yamauchi-Takihara K, Ihara Y, Ogata A, Yoshizaki K, Azuma J, Kishimoto T. Hypoxic stress induces cardiac myocyte-derived interleukin-6. Circulation 1995; 91: 1520–1524.

    Article  PubMed  CAS  Google Scholar 

  48. Haveman J, Geerdink AG, Rodermond HM. Cytokine production after whole body and localized hyperthermia. Int J Hyperthermia 1996; 12: 791–800.

    Article  PubMed  CAS  Google Scholar 

  49. Beetz A, Messer G, Oppel T, van Beuningen D, Peter RU, Kind P. Induction of interleukin 6 by ionizing radiation in a human epithelial cell line: control by corticosteriods. Int J Radiat Biol 1997; 72: 33–43.

    Article  PubMed  CAS  Google Scholar 

  50. Stephanou A, Isenberg DA, Akira S, Kishimoto T, Latchman DS. The nuclear factor interleukin-6 (NF-IL6) and signal transducer and activator of transciption-3 (STAT-3) signalling pathways co-operate to mediate the activation of the hsp90beta gene by interleukin-6 but have opposite effects on its inducibility by heat shock. Biochem J 1998; 15: 189–195.

    Google Scholar 

  51. Pellegrini P, Berghella AM, Di Loreto S et al. Cytokine contribution to the repair processes and homeostatis recovery following anoxic insult: a possible IFN-gamma regulatory role in IL-1 beta neurotoxic action in physiological or damaged CNS. Neuroimmunomodulation 1996; 3: 213–218.

    Article  PubMed  CAS  Google Scholar 

  52. Lu G, Beuerman RW, Zhao S et al. Tumor necrosis factor-alpha and interleukin-1 induce activation of MAP kinase and SAP kinase in human neuroma fibroblasts. Neurochem Int 1997; 4-5: 401–410.

    Article  Google Scholar 

  53. Karin M, Imbra RJ, Heguy A, Wong G. Interleukin-1 regulates human metallothionein gene expression. Mol Cell Biol 1985; 5: 2866–2869.

    PubMed  CAS  Google Scholar 

  54. Crosby AJ, Wahle KW, Duthie GG. Modulation of glutathione peroxidase activity in human vascular endothelial cells by fatty acids and the cytokine interleukin-1 beta. Biochim Biophys Acta 1996; 1303: 187–192.

    Article  PubMed  Google Scholar 

  55. Massague J, Cheeifetz S, Laiho M, Ralph DA, Weis FMB, Zentella A. Transforming growth factor-b. Cancer Surveys 1992; 12: 81–103.

    PubMed  CAS  Google Scholar 

  56. Roberts AB, Roche NS, Winokur TS, Burmester JK, Sporn MB. Role of transforming growth factor-β in maintenance of function of cultured neonatal cardiac myocytes. J Clin Invest 1992; 90: 2056–2062.

    Article  PubMed  CAS  Google Scholar 

  57. Falanga V, Qian SW, Danielpour D, Katz MH, Roberts AB, Sporn MB. Hypoxia upregulates the synthesis of TGF-β 1 by human dermal fibroblasts. J Invest Dermatol 1991; 97: 634–637.

    Article  PubMed  CAS  Google Scholar 

  58. Flanders KC, Winokur TS, Holder MG, Sporn MB. Hyperthermia induces expression of transforming growth factor-βs in rat cardiac cells in vitro and in vivo. J Clin Invest 1993; 92: 404–410.

    Article  PubMed  CAS  Google Scholar 

  59. Lefer AM, Tsao P, Aoki N, Palladino M. Mediation of cardioprotection by transforming growth factor-β. Science 1990; 249: 61–64.

    Article  PubMed  CAS  Google Scholar 

  60. Kenny D, Coughlan MG, Pagel PS, Kampine JP, Warltier DC. Transforming growth factor-βi preserves endothelial function after multiple brief coronary artery occlusions and reperfusion. American Heart J 1994; 127: 1456–1461.

    Article  CAS  Google Scholar 

  61. Roberts AB, Sporn MB, Lefer AM, Cardioprotective actions of transforming growth factor-β. Trends Cardiovasc Med 1993; 3: 77–81.

    Article  PubMed  CAS  Google Scholar 

  62. Kluge A, Zimmermann R, Mukel B, Verdouw P, Schaper J, Schaper W. Insulin-like growth factor II is an experimental stress inducible gene in a porcine model of brief coronary occlusions. Cardiovasc Res 1995; 29: 708–716.

    PubMed  CAS  Google Scholar 

  63. Lee WH, Seaman GM, Vannucci SJ. Coordinate IGF-I and IGFBP5 gene expression in perinatal rat brain after hypoxia-ischemia. J Cereb Blood Flow Metab 1996; 16: 227–236.

    Article  PubMed  CAS  Google Scholar 

  64. Vogt AM, Htun P, Kluge A, Zimmermann R, Schaper W. Insulin-like growth factor-II delays myocardial infarction in experimental coronary artery occlusion. Cardiovasc Res 1997;33:469–477.

    Article  PubMed  CAS  Google Scholar 

  65. Battler A, Hasdai D, Goldberg I et al. Exogenous insulin-like growth factor II enhances post-infarction regional myocardial function in swine. Eur Heart J 1995; 16: 1851–1859.

    PubMed  CAS  Google Scholar 

  66. Cuevas P, Carceller F, Lozano R, Crespo A, Zazo M, Gimenez-Gallego G. Protection of rat myocardium by mitogenic and non-mitogenic fibroblast growth factor during post-ischemic reperfusion. Growth Factors 1997; 15: 29–40.

    Article  PubMed  CAS  Google Scholar 

  67. Williams AJ. The functions of two species of calcium channel in cardiac muscle excitation-contraction coupling. Eur Heart J 1997; 18: A27–A35.

    Article  PubMed  CAS  Google Scholar 

  68. Kasai M, Ide T. Regulation of calcium release channel in sarcoplasmic reticulum. Ion Channels 1996; 4: 303–331.

    PubMed  CAS  Google Scholar 

  69. Kawakami M, Okabe E. Superoxide anion radical-triggered Ca2+ release from cardiac sarcoplasmic reticulum through ryanodine receptor Ca2+ channel. Mol Pharmacol 1998; 53: 497–503.

    PubMed  CAS  Google Scholar 

  70. Morris TE, Sulakhe PV. Sarcoplasmic reticulum Ca2+ pump dysfunction in rat cardiomyoctes briefly exposed to hydroxyl radicals. Free Radic Biol Med 1997; 22: 37–47.

    Article  PubMed  CAS  Google Scholar 

  71. Grover AK, Samson SE, Misquitta CM. Sarco(endo)plasmic reticulum Ca2+ pump isoform SERCA3 is more resistant than SERCA2b to peroxide. Am J Physiol 1997; 273: C420–C425.

    PubMed  CAS  Google Scholar 

  72. Meldrum DR, Cleveland JC, Mitchell MB, Rowland RT, Banerjee A, Harken AH. Constructive priming of myocardium against ischemia-reperfusion injury. Shock 1996; 6: 238–242.

    Article  PubMed  CAS  Google Scholar 

  73. Samouilidou EC, Karli JN, Levis GM, Darsinos JT. The sarcolemmal Ca2+-ATPase of the ischemic-reperfused myocardium: protective effect of hypocalcemia on calmodulin-stimulated activity. Life Sci 1998; 62: 29–36.

    Article  PubMed  CAS  Google Scholar 

  74. Frass O, Sharma HS? Knoll R et al. Enhanced gene expression of calcium regulatory proteins in stunned porcine myocardium. Cardiovasc Res 1993; 27: 2037–2043.

    Article  PubMed  CAS  Google Scholar 

  75. Linck B, Boknik P, Eschenhagen T et al. Messenger RNA expression and immunological quantification of phospholamban and SR-Ca2+-ATPase in failing and nonfailing human hearts. Cardiovascular Research 1996; 31: 625–632.

    PubMed  CAS  Google Scholar 

  76. Flesch M, Schwinger RH, Schnabel P et al. Sarcoplasmic reticulum Ca2+ ATPase and phospholamban mRNA and protein levels in end-stage heart failure due to ischemic or dilated cardiomyopathy. J Mol Med 74: 321–332.

    Google Scholar 

  77. Das DK, Maulik N, Moraru II. Gene expression in acute myocardial stress. Induction by hypoxia, ischemia, reperfusion, hyperthermia and oxidative stress. J Mol Cell Cardiol 1995; 27: 181–193.

    Article  PubMed  CAS  Google Scholar 

  78. Fornace AJ, Alamo I, Hollander MC, Lamoreaux E. Ubiquitin mRNA is a major stress-induced transcript in mammalian cells. Nucleic Acids Res 1989 17: 1215–1230.

    Article  PubMed  CAS  Google Scholar 

  79. Andres J, Sharma HS, Knoll R et al. Expression of heat shock proteins in the normal and stunned porcine myocardium. Cardiovascular Research 1993; 27: 1421–1429.

    Article  PubMed  CAS  Google Scholar 

  80. Das DK, Moraru II, Maulik N, Engelman RM. Gene expression during myocardial adaptation to ischemia and reperfusion. Ann N Y Acad Sci 1994; 723: 292–307.

    Article  PubMed  CAS  Google Scholar 

  81. Glatz JF, van Nieuwenhoven FA, Luiken JJ, Schaap FG, van der Vusse GJ. Role of membrane-associated and cytoplasmic fatty acid-binding proteins in cellular fatty acid metabolism. Prostaglandins Leukot Essent Fatty Acids 1997; 57: 373–378.

    Article  PubMed  CAS  Google Scholar 

  82. Tanka T, Sohmiya K, Kawamura K. Is CD36 deficiency an etiology of hereditary hypertrophie cardiomyopathy? J Mol Cell Cardiol 1997; 29: 121–127.

    Article  Google Scholar 

  83. Miskin R, Reich E. Plasminogen activator: induction of synthesis by DNA damage. Cell 1980; 19: 217–224.

    Article  PubMed  CAS  Google Scholar 

  84. Hubank M, Schatz DG. cDNA.RDA: a sensitive and flexible method for the identification of differentially expressed genes. In: S. M. Weissman (ed), Methods in Enzymology, London, Academic Press, 1998, in press.

    Google Scholar 

  85. Brown AJH, Hutchings C, Burke JF, Mayne LV. Targeted Display, a new technique for the analysis of differential gene expression. In: S M Weissman (ed), Methods in Enzymology, London, Academic Press, 1998, in press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mayne, L.V. (1998). Changes in Cardiac Gene Expression After Ischaemia and Reperfusion. In: Baxter, G.F., Yellon, D.M. (eds) Delayed Preconditioning and Adaptive Cardioprotection. Developments in Cardiovascular Medicine, vol 207. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5312-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5312-6_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6231-2

  • Online ISBN: 978-94-011-5312-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics