Skip to main content

Intracellular Signalling Mechanisms in Myocardial Adaptation to Ischaemia

  • Chapter
Delayed Preconditioning and Adaptive Cardioprotection

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 207))

Abstract

Living organisms exhibit specific responses when confronted with sudden environmental changes. The ability of cells to acclimatise to a new environment is the basis of adaptive modification. Adaptation involves a number of cellular and biochemical alterations including (i) changes in metabolic homeostasis and (ii) reprogramming of gene expression. Changes in metabolic pathways are generally short-lived and reversible; the consequences of reprogrammed gene expression are long-term and may lead to permanent alteration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986; 74: 1124–1136.

    Article  PubMed  CAS  Google Scholar 

  2. Flack J, Kimura Y, Engelman RM, Das DK. Preconditioning the heart by repeated stunning improves myocardial salvage. Circulation 1991; 84: III369–III374.

    PubMed  Google Scholar 

  3. Yellon DM, Baxter GF, Garcia-Dorado D, Heusch G, Sumeray MS. Ischaemic preconditioning: present position and future directions. Cardiovasc Res 1998; 37: 21–33.

    Article  PubMed  CAS  Google Scholar 

  4. Parratt JR. Protection of the heart by ischaemic preconditioning: mechanisms and possibilities for pharmacological exploitation. Trends Pharmacol Sci 1994; 15: 19–25.

    Article  PubMed  CAS  Google Scholar 

  5. Maulik N, Das DK. Hunting for differentially expressed mRNA species in preconditioned myocardium. Ann N Y Acad Sci 1996; 793: 240–258.

    Article  PubMed  CAS  Google Scholar 

  6. Das DK, Moraru II, Maulik N, Engelman RM. Gene expression during myocardial adaptation to ischemia and reperfusion. Ann N Y Acad Sci 1994; 723: 292–307.

    Article  PubMed  CAS  Google Scholar 

  7. Das DK, Engelman RM, Kimura Y. Molecular adaptation of cellular defenses following preconditioning of the heart by repeated ischemia. Cardiovasc Res 1993; 27: 578–584.

    Article  PubMed  CAS  Google Scholar 

  8. Yamashita N, Hoshida S, Nishida M et al. Time course of tolerance to ischemia-reperfusion injury and induction of heat shock protein 72 by heat stress in the rat heart. J. Mol Cell Cardiol 1997; 29: 1815–1821.

    Article  PubMed  CAS  Google Scholar 

  9. Maulik N, Sharma HS, Das DK. Induction of the haem oxygenase gene expression during the reperfusion of ischemic rat myocardium. J Mol Cell Cardiol 1996; 28: 1261–1270.

    Article  PubMed  CAS  Google Scholar 

  10. Moraru II, Engelman DT, Engelman RM et al. Myocardial ischemia triggers rapid expression of mitochondrial genes. Surg Forum 1994; 45: 315–317.

    Google Scholar 

  11. Sharma HS, Maulik N, Gho BCG, Das DK, Verdouw PD. Coordinated expression of heme oxygenase-1 and ubiquitin in the porcine heart subjected to ischemia and reperfusion. Mol Cell Biochem 1996; 157: 111–116.

    Article  PubMed  CAS  Google Scholar 

  12. Maulik N, Das DK. Molecular cloning, sequencing and expression analysis of a fatty acid transport gene in rat heart induced by ischemic preconditioning and oxidative stress. Mol Cell Biochem 1996; 160/161: 241–247.

    Article  CAS  Google Scholar 

  13. Baxter GF, Marber MS, Patel VC, Yellon DM. Adenosine receptor involvement in a delayed phase of myocardial protection 24 hours after ischemic preconditioning. Circulation 1994; 90: 2993–3000.

    Article  PubMed  CAS  Google Scholar 

  14. Baxter GF, Goma FFM, Yellon DM. Involvement of protein kinase C in the delayed cytoprotection following sublethal ischemia in rabbit myocardium. Br J Pharmacol 1995; 115: 222–224.

    Article  PubMed  CAS  Google Scholar 

  15. Hunter T, Alexander CB, Cooper JA. Protein tyrosine kinases. Ann Rev Biochem 1995; 54: 897–930.

    Article  Google Scholar 

  16. Sadowski HB, Shuai K, Darnell JE, Gilman MZ. A common nuclear signal transduction pathway activated by growth factor and cytokine receptors. Science 1993; 261: 1739–1744.

    Article  PubMed  CAS  Google Scholar 

  17. Carpenter CL, Auger KR, Chanudhuri M et al. Phosphoinositide 3-kinase is activated by phosphopeptides that bind to the SH2 domains of the 85-kDa subunit. J Biol Chem 1993; 268: 9478–9483.

    PubMed  CAS  Google Scholar 

  18. Quilliam LA, Huff SY, Rabun KM et al. Membrane-targeting potentiates guanine nucleotide exchange factor CDC25 and SOS1 activation of Ras transforming activity. Proc Natl Acad Sci USA 1994; 91: 8512–8516.

    Article  PubMed  CAS  Google Scholar 

  19. Maulik N, Watanabe M, Zu YL et al. Ischemic precon-ditioning triggers the activation of MAP Kinases and MAPKAP kinase 2 in rat hearts. FEBS Lett 1996; 396: 233–237.

    Article  PubMed  CAS  Google Scholar 

  20. Das DK, Maulik N, Yoshida T, Engelman RM, Zu YL. Preconditioning potentiates molecular signaling for myocardial adaptation to ischemia. Ann N Y Acad Sci 1996; 793: 191–209.

    Article  PubMed  CAS  Google Scholar 

  21. Maulik N, Watanabe M, Tosaki A et al. Tyrosine kinase regulation of phospholipase D-protein C kinase pathway in ischemic preconditioning. J Am Coll Cardiol 1996; 27: 385A (abstract).

    Article  Google Scholar 

  22. Prasad MR, Popescu L, Moraru II, Liu X, Engelman RM, Das DK. Role of phospholipase A2 and phospholipase C in myocardial ischemic reperfusion injury. Am J Physiol 1991; 260: H877–H883.

    PubMed  CAS  Google Scholar 

  23. Cohen MV, Liu Y, Liu GS et al. Phospholipase D plays a major role in ischemic preconditioning in rabbit heart. Circulation 1996; 94: 1713–1718.

    Article  PubMed  CAS  Google Scholar 

  24. Moraru II, Popescu L, Maulik N, Liu X, Das DK. Phospholipase D signaling in ischemic heart. Biochim Biophys Acta 1992; 1139: 148–154.

    Article  PubMed  CAS  Google Scholar 

  25. Trifan OC, Popescu LM, Tosaki A, Cordis G, Das DK. Ischemic preconditioning involves phospho-lipase D. Annals N.Y. Acad Sci 1996; 793: 485–488.

    Article  CAS  Google Scholar 

  26. Tosaki A, Maulik N, Cordis GA, Trifan OC, Popescu LM, Das DK. Ischemic preconditioning triggers phospholipase D signaling in the rat heart. Am J Physiol 1997; 273: H1860–H1866.

    PubMed  CAS  Google Scholar 

  27. Billah MM. Phospholipase D and cell signaling. Curr Opin Immunol 1993; 5: 114–123.

    Article  PubMed  CAS  Google Scholar 

  28. Das DK, Engelman RM, Rousou JA, Breyer RH, Otani H, Lemeshow S. Role of membrane phospholipids in myocardial injury induced by ischemia and reperfusion. Am J Physiol 1986; 251: H71–H79.

    PubMed  CAS  Google Scholar 

  29. Moraru II, Jones RM, Popescu L, Engelman R, Das DK.Prazosin reduces myocardial ischemia/reperfusion-induced Ca2+ overloading in rat heart by inhibiting phosphoinositide signaling. Biochim Biophys Acta 1995; 1268: 1–8.

    Google Scholar 

  30. Tosaki A, Maulik N, Engelman DT, Engelman RM, Das DK. The role of protein kinase C in ischemic/reperfused preconditioning isolated rat hearts. J Cardiovasc Pharmacol 1996; 28: 723–731.

    Article  PubMed  CAS  Google Scholar 

  31. Fantl WJ, Johnson DE, Williams LT. Signalling by receptor tyrosine kinases. Ann Rev Biochem 1993; 62: 453–481.

    Article  PubMed  CAS  Google Scholar 

  32. Meisenhelder J, Suh PG, Rhee SG, Hunter T. Phospholipase C gamma is substrate for the PDGF and EGF receptor protein tyrosine kinases in vivo and in vitro. Cell 1989; 57: 1109–1122.

    Article  PubMed  CAS  Google Scholar 

  33. Ha KS, Exton JH. Differential translocation of protein kinase C isozymes by thrombin and platelet derived growth factor. A possible function for phosphatidylcholine-derived diacylglycerol. J Biol Chem 1993; 268: 10534–10539.

    PubMed  CAS  Google Scholar 

  34. Schmidt M, Huwe SM, Fasselt B et al. Mechanisms of phospholipase D stimulation by m3 muscarinic acetylcholine receptors. Evidence for involvement of tyrosine phosphorylation. Eur J. Biochem 1994; 225: 667–675.

    Article  PubMed  CAS  Google Scholar 

  35. Rivard N, Rydzewska G, Lods JS, Martinex LJ, Morisset J. Pancreas growth, tyrosine kinase, Ptdlns 3-kinase, and PLD involve gigh-affinity CCK-receptor occupation. Am J Physiol 1994; 266: G62–G70.

    PubMed  CAS  Google Scholar 

  36. Bourgoin S, Grinstein S. Peroxides of vanadate induce activation of phospholipase D in HL-60 cells. Role of tyrosine phosphorylation. J Biol Chem 1992; 267: 11908–11916.

    PubMed  CAS  Google Scholar 

  37. Fialkow L, Chan CK, Chan S, Grinstein S, Downey GP. Regulation of tyrosine phosphorylation in neutrophils by the NADPH oxidase. Role of reactive oxygen intermediates. J. Biol Chem 1993; 268: 17131–17137.

    PubMed  CAS  Google Scholar 

  38. Natarajan V, Scribner WM, Taher MM. 4-hydroxynonenal, a metabolite of lipid peroxidation, activates phospholipase D in vascular endothelial cells. Free Rad Biol Med 1993; 15:365–375.

    Article  PubMed  CAS  Google Scholar 

  39. Uings IJ, Thompson NT, Randall RW et al. Tyrosine phosphorylation is involved in receptor coupling to phospholipase D but not phospholipase C in the human neutrophil. Biochem J. 1992; 281: 597–600.

    PubMed  CAS  Google Scholar 

  40. Natarajan V, Vepa S, Verma RS, Scribner WM. Inhibitors of tyrosine kinases and protein tyrosine phosphatases modulate hydrogen peroxide-induced activation of endothelial cell phospholipase D. Am J Physiol (in press)

    Google Scholar 

  41. Prasad MR, Jones RM. Enhanced membrane protein kinase C activity in myocardial ischemia. Basic Res Cardiol 1992; 87: 19–26.

    Article  PubMed  CAS  Google Scholar 

  42. Henrich CJ, Simpson PC. Differential acute and chronic response of protein kinase C in cultured neonatal rat heart myocytes to al-adrenergic and phorbol ester stimulation. J Mol Cell Cardiol 1988; 20: 1081–1085.

    Article  PubMed  CAS  Google Scholar 

  43. Fearon CW, Tashjian AH. Thyrotropin-releasing hormone induces redistribution of protein kinase C in GH4C1 rat pitutary cells. J Biol Chem 1985; 260: 8366–8371.

    PubMed  CAS  Google Scholar 

  44. Ytrehus K, Liu Y, Downey JM. Preconditioning protects ischemic rabbit heart by protein kinase C activation Am J Physiol 1994; 266: H1145–H1152.

    Google Scholar 

  45. Mitchell MB, Meng X, Brown J, Harken AH, Banerjee A. Preconditioning of isolated rat heart is mediated by protein kinase C activation. Am J. Physiol 1994; 266: H1145–H1152.

    Google Scholar 

  46. Nishizuka Y. Studies and perspectives of protein kinase C. Science 1986; 233: 305–312.

    Article  PubMed  CAS  Google Scholar 

  47. Maulik N, Sharma HS, Das DK. Induction of heme oxygenase gene expression during the reperfusion of ischemic rat myocardium. J Mol Cell Cardiol 1996; 28:1261–1270.

    Article  PubMed  CAS  Google Scholar 

  48. Das DK, Engelman RM, Kimura Y. Molecular adaptation of cellular defences following preconditioning of the heart by repeated ischemia. Cardiovasc Res 1993; 27: 578–584.

    Article  PubMed  CAS  Google Scholar 

  49. Brand T, Sharma HS, Fleischmann KE et al. Proto-oncogene expression in porcine myocardium subjected to ischemia and reperfusion. Circ Res 1992; 71: 1351–1360.

    Article  PubMed  CAS  Google Scholar 

  50. Heads RJ, Latchman DS, Yellon DM. Differential stress protein mRNA expression during early ischemic preconditioning in the rabbit heart and its relationship to adenosine receptor function. J. Mol Cell Cardiol 1995; 27: 2133–2148.

    Article  PubMed  CAS  Google Scholar 

  51. Bugge E, Ytrehus K. Ischemic preconditioning is protein kinase C dependent but not through stimulation of a adrenergic or adenosine receptors in the isolated rat heart. Cardiovas Res 1995; 29: 401–406.

    CAS  Google Scholar 

  52. Dixon BS, Sharma RV, Dickerson T, Fortune J. Bradykinin and angiotensin II: activation of protein kinase C in arterial muscle. Am J Physiol. 1994; 266: C1406–C1420.

    PubMed  CAS  Google Scholar 

  53. Goto M, Liu Y, Yang XM, Ardeil JL, Cohen MV, Downey JM. Role of bradykinin in protection of ischemic preconditioning in rabbit hearts. Circ Res 1995; 77:611–621

    Article  PubMed  CAS  Google Scholar 

  54. Liu Y, Tsuchida A, Cohen MV, Downey JM. Pretreatment with angiotensin II activates protein kinase C and limits myocardial infarction in isolated rabbit hearts. J Mol Cell Cardiol 1995; 27: 883–892.

    Article  PubMed  CAS  Google Scholar 

  55. Yamazaki T, Komuro I, Kudoh S et al. Endothelin-1 is involved in mechanical stress-induced cardiomyocyte hypertrophy. J Biol Chem 1996; 271: 3221–3228.

    Article  PubMed  CAS  Google Scholar 

  56. Lenormand P, Sardet C, Pages G, L’Allemain G, Brunet A, Pouyssegur J. Growth factors induce nuclear translocation of MAP kinases (p42 MAPK and p44 MAPK) but not of their activator MAP kinase kinase (p45 MAPK) in fibroblasts. J Cell Biol. 1993; 122,1079–1088.

    Article  PubMed  CAS  Google Scholar 

  57. Force T, Bonventrem JV, Heidecker G, Rapp U, Avruch J, Kyriakis LM. Enzymatic characteristics of thew Raf-1 protein kinase. Proc Natl Acad Sci USA, 1994; 91: 1270–1274.

    Article  PubMed  CAS  Google Scholar 

  58. Zu Y-L, Ai Y, Gilchrist A et al. High expression and activation of MAP kinase-activated protein kinase 2 in myocardium. J Mol Cell Cardiol 1997; 29: 2150–2168.

    Article  Google Scholar 

  59. Maulik N, Yoshida T, Zu Y-L, Das DK. Ischemic preconditioning triggers a tyrosine kinase-dependent signal transduction process involving 38P MAP kinases and MAPKAP kinase 2. J Mol Cell Cardiol 1997; 29: A272 (abstract).

    Google Scholar 

  60. Egan SE, Weinberg, RA. The pathway to signal achievement. Nature 1993; 65:781–783.

    Article  Google Scholar 

  61. Davis RJ. MPKs: new JNK expands the group. Trends Biochem Sci 1994; 19: 470-447.

    Google Scholar 

  62. Raingeaud J, Whitmarsh AJ, Barrett T, Derijard B, Davies RJ. MKK3 and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol Cell Biol 1996; 365: 781–783.

    Google Scholar 

  63. Olson MF, Ashworth A, Hall A. An essential role for rho, rac and cdc 42 GTPases in cell cycle progression through GI. Science 1995; 269: 1270–1272.

    Article  PubMed  CAS  Google Scholar 

  64. Doza YN, Cuenda A, Thomas GM, Cohen P, Nebreda AR. Activation of the MAP kinase homologue RK requires the phosphorylation of Thr-180 & Thr-182 and both residues are phosphorylated in chemically stressed KB cells. FEBS Lett. 1995; 364: 223–228.

    Article  PubMed  CAS  Google Scholar 

  65. Raingeaud J, Gupta S, Rogers J, Dickens M, Han J, Ulevitch RJ, Davis RJ. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem 1995; 270: 7420–7426.

    Article  PubMed  CAS  Google Scholar 

  66. Raingeaud J, Whitmarsh AJ, Barrett T, Derijard B, Davis RJ. MKK3 & MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol Cell Biol 1996; 16:1247–1255.

    PubMed  CAS  Google Scholar 

  67. Rouse J, Cohen P, Trigon S, Morange M, Alonso-Llamazares A, Zamanillo D, Hunt T, Nebreda AR. A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase 2 and phosphorylation of the small heat shock proteins. Cell 1994; 78: 1027–1037.

    Article  PubMed  CAS  Google Scholar 

  68. Lee JC, Laydon JT, McDonnell PC et al. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 1994; 372: 739–746.

    Article  PubMed  CAS  Google Scholar 

  69. Derijard B, Raingeaud J, Barrett T et al. Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science 1995; 267: 682–685.

    Article  PubMed  CAS  Google Scholar 

  70. Han J, Lee JD, Bibbs L, Ulevitch RJ. A MAP kinase targeted by endotoxin and hyperosmolality in mammalian cells. Science 1994; 265: 808–811.

    Article  PubMed  CAS  Google Scholar 

  71. Freshney NW, Rawlinson L, Guesdon F et al. Interleukin 1 activates a novel protein kinase cascade that results in the phosphorylation of HSP 27. Cell 1994; 78: 1039–1049.

    Article  PubMed  CAS  Google Scholar 

  72. Ciocca DR, Oesterreich S, Chamness GC, Mc Guire WL, Fuqua SAW. Biological and clinical implications of heat shock protein 27000: a review. J Natl Cancer Inst 1993; 85: 1558–1570.

    Article  PubMed  CAS  Google Scholar 

  73. Stokoe D, Engel K, Campbell DG, Cohen P, Gaeste M. Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins. FEBS 1992; 313: 307–313.

    Article  CAS  Google Scholar 

  74. Zu YL, Ai Y, Gilchrist A, Labadia ME, Sha’afi RI, Huang CK. Activation of MAP kinase-activated protein kinase 2 in human neutrophils after phorbol ester or fMLP peptide stimulation. Blood 1996; 87: 5287–5296.

    PubMed  CAS  Google Scholar 

  75. Zu YL, Ai Y, Huang CK. Characterization of an autoinhibitory domain in human mitogen activated protein kinase activated protein kinase 2. J Biol Chem 1995; 270: 202–206.

    Article  PubMed  CAS  Google Scholar 

  76. Maulik N, Wei ZJ, Engelman RM et al. Interleukin-1α preconditioning reduces myocardial ischemic reperfusion injury. Circulation 1993; 88:11387–11394.

    Google Scholar 

  77. Maulik N, Watanabe M, Engelman D et al. Myocardial adaptation to ischemia by oxidative stress induced by endotoxin. Am J Physiol 1995; 269: C907–C916.

    PubMed  CAS  Google Scholar 

  78. Landry J, Lambert H, Zhou M et al. Human HSP 27 is phosphorylated at serines 78 and 82 by heat shock and mitogen-activated kinases that recognize the same amino acid motif as S6 kinase II. J. Biol Chem 1992; 267: 794–803.

    PubMed  CAS  Google Scholar 

  79. Das DK, Maulik N, Engelman RM, Rousou JA, Deaton D, Flack JE. Signal transduction pathway leading to HSP 27 and HSP 70 gene expression during myocardial adaptation to stress. Ann N Y Acad Sci 1998; in press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Das, D.K. (1998). Intracellular Signalling Mechanisms in Myocardial Adaptation to Ischaemia. In: Baxter, G.F., Yellon, D.M. (eds) Delayed Preconditioning and Adaptive Cardioprotection. Developments in Cardiovascular Medicine, vol 207. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5312-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5312-6_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6231-2

  • Online ISBN: 978-94-011-5312-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics