Skip to main content

Introduction of Green Plants for the Control of Metals and Organics in Environmental Remediation

  • Chapter
Effluents from Alternative Demilitarization Technologies

Part of the book series: NATO Science Series ((ASDT,volume 22))

Abstract

In this chapter the potential possibilities of phytoremediation will be discussed, with special attention paid to the application of in vitro systems for basic research in the role of plants for the remediation of contaminated sites or flows, and in the improvement of their effectiveness. Due to the expense of conventional engineering techniques, reaching over 500 dollars per ton, or a quarter million dollars per acre, it is not surprising that the cleanup of contaminated sites has not been proceeding at a rapid pace [1]. There is an active effort to develop new, more cost effective technologies for remediation of the environment. One of them is known as phytoremediation. Phytoremediation is defined, according to Cunningham and Berti, as the use of green plants to remove, contain or render harmless environmental contaminants [2]. It is important to note, that this includes the use of vegetation for in situ treatment of water, sediments and soils. In this process specially selected or engineered plants can be used for extraction of toxic metals from soil or water, including removal of radioactive elements, removal of toxic organic compounds and, if possible, their mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cunningham S.D., Berti W.R. and Huang J.W. (1995) Phytoremediation of contaminated soils. TIBTECH 13, 393–397

    Article  CAS  Google Scholar 

  2. Cunningham S.D. and Berti W.R. (1993) Remediation of contaminated soils with green plants: an overview. In Vitro Cell Dev. Biol. 29P, 207–212

    Google Scholar 

  3. Schnoor J.L., Licht L.A, McCutcheon S.C., Wolfe N.L, and Carreira L.H. (1995) Phytoremediation of organic and nutrient contaminants. Environmental Science and Technol. 29, A318–323

    Google Scholar 

  4. Cunningham S.D. and Ow D.W. (1996) Promises and prospects of phytoremediation. Plant Physiol. 110,715–719

    CAS  Google Scholar 

  5. Boyajian G.E. and Carreira L.H. (1997) Phytoremediation: A clean transition from laboratory to marketplace? Nature Biotechnology, 15,2,127–128

    Article  CAS  Google Scholar 

  6. Betts K.S. (1997) Phytoremediation project taking up TCE. Environmental Science and Technol. 31, 8, 347A

    Google Scholar 

  7. Salt D.E., Blaylock M, Kumar N. P.B.A, Dushenkov V, Ensley B.D., Chet I. and Raskin I. (1995) Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology, 13, 5, 468–474

    Article  CAS  Google Scholar 

  8. Anderson T.A., Guthrie E.A, Walton B.T. (1993) Bioremediation. Environmental Science and Technol 27,13,2630–2636

    Article  CAS  Google Scholar 

  9. Macek T., Mackova M, Kotrba P., Truksa M, Singh-Cundy A., Scouten W.H. and Yancey N. (1997) Attempts to prepare transgenic tobacco with higher capacity to accumulate heavy metals containing yeast metallothionein combined with a polyhistidine, in H. Verachten and W. Verstraete (eds.), Environmental Biotechnology, Proc. Int. Symp., Oostende, April 1997, Technological Institute Gent, pp. 263–266

    Google Scholar 

  10. Fletcher J.S., Donnelly P.K. and Hegde R.S. (1995) Biostimulation of PCB-degrading bacteria by compounds released from plant roots, in R.E. Hinchee, D.B. Anderson and R.E. Hoeppel (eds.), Bioremediation of recalcitrant organics, Battelle Press, Columbus, pp. 131–136

    Google Scholar 

  11. Hegde R.S. and Fletcher J.S. (1996) Influence of plant growth stage and season on the release of root phenolics by mulberry as related to development of phytoremediation technology. Chemosphere, 32, 12, 2471–2479

    Article  CAS  Google Scholar 

  12. Donnelly P.K. and Fletcher J.S. (1994) Potential use of mycorrhizal fungi as bioremediation agents, in T.A. Anderson, (ed.), Bioremediation through rhizosphere technology, ACS Symposium Series No. 563, American Chemical Society, pp. 93–99

    Chapter  Google Scholar 

  13. Langebartels C. and Harms H. (1984) Metabolism of pentachlorophenol in cell suspension cultures of soybean and wheat: Pentachlorophenol glucoside formation. Z. Pflanzenphysiol. 113, 3, 201–211

    CAS  Google Scholar 

  14. Groeger A.W. and Fletcher J.S. (1988) The influence of increasing chlorine content on the accumulation and metabolism of polychlorinated biphenyls by Paul’s Scarlet Rose cells. Plant Cell Reports, 7, 329–332

    Article  CAS  Google Scholar 

  15. Lee I. and Fletcher J.S. (1992) Involvement of mixed function oxidase systems in PCB metabolism by plant cells. Plant Cell Reports, 11, 97–100

    Article  CAS  Google Scholar 

  16. Macek T., Macková M., Oenášková J., Demnerová K., Pazlarová J., K en V. (1996) Peroxidase isoenzyme patern and total activity changes in plant cells cultivated in vitro under abiotic stress, in C. Obinger, U. Burner, R. Ebermann, C. Penel, H. Greppin (eds.), Plant Peroxidases: Biochemistry and Physiology, University of Geneva, pp. 380–385

    Google Scholar 

  17. Macková M., Macek T., Burkhard J., O enášková J., Demnerová K., Pazlarová J. (1997) Biodegradation of polychlorinated biphenyls by plant cells. International Biodeterioration and Biodegradation, 39,4, 317–325

    Article  Google Scholar 

  18. Harms H. and Kottutz E. (1990). In: Progress in Plant Cellular and Molecular Biology, H.J.J. Nijkamp, L.H.W van der Pias and J. van Aartrijk, (eds.), Kluwer Academic Publishers, Dordrecht Boston, pp. 650–655

    Chapter  Google Scholar 

  19. Macek T., Kotrba P., Šchová M., Skácel F, Demnerovâ K. and Ruml T. (1994) Accumulation of cadmium by hairy root cultures of Solanum nigrum. Biotechnol. Letters, 16, 6, 621–624

    Article  CAS  Google Scholar 

  20. Macek T., Kotrba P., Ruml T., Skácel F. and Macková M. (1994) Accumulation of cadmium by hairy root cultures, in P.M. Doran (ed.), Hairy Roots: Culture and Application, Harwood Academic Publishers, pp. 133–138

    Google Scholar 

  21. Macková M., Macek T., O enášková J., Burkhard J., Demnerová K., Pazlarová J. (1996) Selection of the potential plant degraders of PCB. Chemické listy, 90, 9, 712–713

    Google Scholar 

  22. Macková M., Macek T., Kuerová P., Burkhard J., Pazlarová J. and Demnerová K. (1997) Degradation of polychlorinated biphenyls by hairy root culture of Solanum nigrum. Biotechnol. Letters, 19, 8, 787–790

    Article  Google Scholar 

  23. Hughes J.B., Shanks J., Vanderford M., Lauritzen J. and Bhadra R. (1997) Transformation of TNT by aquatic plants and plant tissue cultures. Environmental Science and Technol. 31,266–271

    Article  CAS  Google Scholar 

  24. Betts K.S. (1998) Getting to the root of phytoremediation. Environmental Science and Technol. 32, 1, A18

    Google Scholar 

  25. Shaw A.J. (1990) Heavy metal tolerance in plants: Evolutionary aspects. CRC Press, Boca Raton.

    Google Scholar 

  26. Landberg T. and Greger M. (1994) Can heavy metal tolerant clones of Salyx be used as vegetation filters on heavy metal contaminated land? In: P. Aronsson and K. Perttu, (eds.), Willow vegetation filters for municipal wastewaters and sludges, S.U.A.S., Uppsala, 133–144

    Google Scholar 

  27. Brooks R.R., Lee J., Reeves R.D., Jaffre T. (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J. Geochem. Expl. 7,49–77

    Article  CAS  Google Scholar 

  28. Novâk F.A. (1928) Quelque remarques relatives au problème de la vegetation sur les terrains serpentiniques. Preslia, 6,42–48

    Google Scholar 

  29. Pichi-Sermolli R. (1948) Flora e vegetazione delle serpentine e delle altre ofioliti dell alta valle del Trevere (Toscana). Webbia, 6, 1–9

    Google Scholar 

  30. Huang J.W., Chen J.J, Berti W.R, and Cunningham S.D. (1997) Phytoremediation of lead- contaminated soils: Role of synthetic chelates in lead phytoextraction, Environmental Science and Technol 31, 800–805

    Article  CAS  Google Scholar 

  31. Brown S.L., Chaney R.L., Angle J. S. and Baker A.J.M. (1995) Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens and metal tolerant Silene vulgaris grown on sludge-ammended soils. Environmental Science and Technol 29, 1581–1585

    Article  CAS  Google Scholar 

  32. Commis D. (1995) Metal-scavenging plants to cleanse the soil. Agricultural Research, USDA-ARS, 11, 4–9

    Google Scholar 

  33. Betts K.S. (1997) TPH soil cleanup aided by ground cover. Environmental Science and Technol 31, 5, 214A

    Google Scholar 

  34. Betts K.S. (1997) Native aquatic plants remove explosives. Environmental Science and Technol 31, 7, 304A

    Article  CAS  Google Scholar 

  35. Grill E., Loffler S., Winnacker E-L. and Zenk M.H. (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthetised from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc. Nat. Acad. Sci USA, 84, 6838–6846

    Article  Google Scholar 

  36. Kotrba P., Ruml T. and Macek T. (1994) Cadmium binding by microbial and plant cells. Chem. Listy, 88, 642–649

    CAS  Google Scholar 

  37. Truksa M., Singh-Cundy A., Macek T., Kotrba P., Macková M., Yancey N., Scouten W.H. (1996) Transgenic plants expressing metal binding proteins in phytoremediation. Chem. Listy, 90,9, 707

    CAS  Google Scholar 

  38. Macek T., Mackovâ M., Truksa M., Singh-Cundy A., Kotrba P., Yancey N., Scouten W.H. (1996) Preparation of transgenic tobacco with a yeast metallothionein combined with a polyhistidine tail. Chem. Listy, 90, 9, 690

    CAS  Google Scholar 

  39. Jones R.L. (1994) ASPP recomends hazardous waste remediation technologies to DOE. ASPP Newsletter, 21, 6, 12–13

    Google Scholar 

  40. Macek T. (1989). Poroporo, Solanum aviculare, S. laciniatum: in vitro culture and the production of solasodine, in Biotechnology in Agriculture and Forestry, 7, Y.P.S. Bajaj (ed.), Springer Verlag Berlin Heidelberg New York Tokyo, 443–467

    Google Scholar 

  41. Káš J., Burkhard J., Demnerová K., Koš ál J., Macek T., Macková M. and Pazlarová J. (1997) Perspectives in biodégradation of alkanes and PCBs. Pure ans Appl. Chem. 69,11, 2357–2369

    Google Scholar 

  42. Burkhard J., Macková M., Macek T., Kuerová P. and Demnerova K. (1997) Analytical procedure for the estimation of PCB transformation by plant tissue cultures. Anal. Commun. 34,10, 287–290

    Article  CAS  Google Scholar 

  43. Demnerová K., Burkhard J., KoŠ ál J., Macková M., Pazlarová J., Kuncová G., Macek T. and Kaštánek F. (1997) Biodegradation of alkanes and PCBs: Experience in the Czech Republic, in F.W. Holm (ed.), Mobile Alternative Demilitarization Technologies, NATO ASI Series 1, Vol. 12, 53–70

    Chapter  Google Scholar 

  44. Butler J.M., Groeger A.W. and Fletcher J.S. (1992) Characterization of monochlorinated biphenyl products formed by Pauls Scarlet Rose cells. Bull. Environ. Contam. Toxicol. 49, 821–826

    Article  CAS  Google Scholar 

  45. Wilken A., Bock C, Bokern M. and Harms H. (1995) Metabolism of different PCB congeners in plant cell cultures. Environ. Toxicol, and Chem., 14, 12,2017–2022

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Macek, T., Macková, M., Burkhard, J., Demnerová, K. (1998). Introduction of Green Plants for the Control of Metals and Organics in Environmental Remediation. In: Holm, F.W. (eds) Effluents from Alternative Demilitarization Technologies. NATO Science Series, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5310-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5310-2_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5254-9

  • Online ISBN: 978-94-011-5310-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics