Skip to main content

Two birds with one stone: genes that encode products targeted to two or more compartments

  • Chapter
Protein Trafficking in Plant Cells

Abstract

Eukaryotic cells are divided into multiple membrane-bound compartments, all of which contain proteins. A large subset of these proteins perform functions that are required in more than one compartment. Although in most cases proteins carrying out the same function in different compartments are encoded by different genes, this is not always true. Numerous examples have now been found where a single gene encodes proteins (or RNAs) found in two (or more) cell organelles or membrane systems. Some particularly clear examples come from protein synthesis itself: plant cells contain three protein-synthesizing compartments, the cytosol, the mitochondrial matrix and the plastid stroma. All three compartments thus require tRNAs and aminoacyl-tRNA synthetases. Some mitochondrial tRNAs and their aminoacyl-tRNA synthetases are identical to their cytosolic counterparts and they are encoded by the same genes. Similarly, some mitochondrial and plastid aminoacyl-tRNA synthetases are encoded by the same nuclear genes. The various ways in which differentially targeted products can be generated from single genes is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arand M, Knehr M, Thomas H, Zeller HD, Oesch F: An impaired peroxisomal targeting sequence leading to an unusual bicompartmental distribution of cytosolic epoxide hydrolase. FEBS Lett 294: 19–22 (1991).

    Article  PubMed  CAS  Google Scholar 

  2. Atkins CA, Smith PMC, Storer PJ: Reexamination of the intracellular localization of de novo purine synthesis in cowpea nodules. Plant Physiol 113: 127–135 (1997).

    PubMed  CAS  Google Scholar 

  3. Bagga S, Adams H, Kemp JD, Sengupta-Gopalan C: Accumulation of 15-kilodalton zein in novel protein bodies in transgenic tobacco. Plant Physiol 107: 13–23 (1995).

    PubMed  CAS  Google Scholar 

  4. Ballas N, Citovsky V: Nuclear localization signal binding protein from Arabidopsismediates nuclear import of Agrobacterium VirD2 protein. Proc Natl Acad Sci USA 94: 10723–10728 (1997).

    Article  PubMed  CAS  Google Scholar 

  5. Boguta M, Hunter LA, Shen W-C, Gillman EC, Martin NC, Hopper AK: Subcellular locations of MOD5 proteins: mapping of sequences sufficient for targeting to mitochondria and demonstration that mitochondrial and nuclear isoforms comingle in the cytosol. Mol Cell Biol 14: 2298–2306 (1994).

    Article  PubMed  CAS  Google Scholar 

  6. Borgese N, Aggujaro D, Carrera P, Pietrini G, Bassetti M: A role for N-myristoylation in protein targeting: NADH-cytochrome b5 reductase requires myristic acid for association with outer mitochondrial but not ER membranes. J Cell Biol 135: 1501–1513 (1996).

    Article  PubMed  CAS  Google Scholar 

  7. Bossie MA, DeHoratius C, Barcelo G, Silver P: A mutant nuclear protein with similarity to RNA binding proteins interferes with nuclear import in yeast. Mol Biol Cell 3: 875–893 (1992).

    PubMed  CAS  Google Scholar 

  8. Brink S, Flugge UI, Chaumont F, Boutry M, Emmermann M, Schmitz U, Becker K, Pfanner N: Preproteins of chloroplast envelope inner membrane contain targeting information for receptor-dependent import into fungal mitochondria. J Biol Chem 269: 16478–16485 (1994).

    PubMed  CAS  Google Scholar 

  9. Brown MS, Goldstein JL: The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89: 331–340 (1997).

    Article  PubMed  CAS  Google Scholar 

  10. Casey PJ: Protein lipidation in cell signaling. Science 268: 221–225 (1995).

    Article  PubMed  CAS  Google Scholar 

  11. Chatton B, Walter P, Ebel JP, Lacroute F, Fasiolo F: The yeast VAS1gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. J Biol Chem 263: 52–57 (1988).

    PubMed  CAS  Google Scholar 

  12. Chen HC, Moussaid M, Dietrich A, Wintz H: Evolution of a tRNAphe gene in A. thaliana: import of cytosolic tRNApheinto mitochondria. Biochem Biophys Res Comm 237: 432–437 (1997).

    Article  PubMed  CAS  Google Scholar 

  13. Cheng S-H, Cline K, DeLisle AJ: An Arabidopsis chloroplast RNA-binding protein gene encodes multiple mRNAs with different 5’ ends. Plant Physiol 106: 303–311 (1994).

    Article  PubMed  CAS  Google Scholar 

  14. Chiu W, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J: Engineered GFP as a vital reporter in plants. Curr Biol 6: 325–330 (1996).

    Article  PubMed  CAS  Google Scholar 

  15. Chow KS, Singh DP, Roper JM, Smith AG: A single precursor protein for ferrochelatase-I from Arabidopsis is imported in vitro into both chloroplasts and mitochondria. J Biol Chem 272: 27565–27571 (1997).

    Article  PubMed  CAS  Google Scholar 

  16. Creissen G, Reynolds H, Xue Y, Mullineaux P: Simultaneous targeting of pea glutathione reductase and of a bacterial fusion protein to chloroplasts and mitochondria in transgenic tobacco. Plant J 8: 167–175 (1995).

    Article  PubMed  CAS  Google Scholar 

  17. Cunillera N, Boronat A, Ferrer A: The Arabidopsis thaliana FPS1 gene generates a novel mRNA that encodes a mitochondrial farnesyl-diphospate synthase isoform. J Biol Chem 272: 15381–15388 (1997).

    Article  PubMed  CAS  Google Scholar 

  18. Danpure CJ: How can the products of a single gene be localized to more than one intracellular compartment? Trends Cell Biol 5: 230–238 (1995).

    Article  PubMed  CAS  Google Scholar 

  19. Danpure CJ: Variable peroxisomal and mitochondrial targeting of alanine: glyoxylate aminotransferase in mammalian evolution and disease. Bioessays 19: 317–326 (1997).

    Article  PubMed  CAS  Google Scholar 

  20. de Castro Silva Filho M, Chaumont F, Leterme S, Boutry M: Mitochondrial and chloroplast targeting sequences in tandem modify protein import specificity in plant organelles. Plant Mol Biol 30: 769–780 (1996).

    Article  PubMed  Google Scholar 

  21. de Castro Silva-Filho M, Wieers MC, Flugge UI, Chaumont F, Boutry M: Different in vitroand in vivotargeting properties of the transit peptide of a chloroplast envelope inner membrane protein. J Biol Chem 272: 15264–15269 (1997).

    Article  Google Scholar 

  22. Dietrich A, Carneiro V, Maréchal-Drouard L, Small I: A single base change prevents import of tRNAAla into mitochondria in transgenic plants. Plant J 10: 913–918 (1996).

    Article  PubMed  CAS  Google Scholar 

  23. Dietrich A, Weil JH, Maréchal-Drouard L: Nuclear-encoded transfer RNAs in plant mitochondria. Annu Rev Cell Biol 8: 115–131 (1992).

    Article  PubMed  CAS  Google Scholar 

  24. Duchene A-M, Dietrich A: Isolation and characterization of a glycyl-tRNA synthetase sequence from Arabidopsis thaliana(Accession No. AJ002062). Plant Physiol 115: 1730 (1997).

    Google Scholar 

  25. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S: A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391: 43–50 (1998).

    Article  PubMed  CAS  Google Scholar 

  26. Galili G, Sengupta-Gopalan C, Ceriotti A: The endoplasmic reticulum of plant cells and its role in maturation of secretory proteins and biogenesis of oil bodies. Plant Mol Biol, this issue (1998).

    Google Scholar 

  27. Glaser E, Sjöling S, Tanudij M, Whelan J: Mitochondrial protein import in plants: signals, sorting, targeting, processing and regulation. Plant Mol Biol, this issue (1998).

    Google Scholar 

  28. Gomord V, Denmat L-A, Fitchette-Lainé A-C, Satiat-Jeunemaitre B, Hawes C, Faye L: The C-terminal HDEL sequence is sufficient for retention of secretory proteins in the endoplasmic reticulum (ER) but promotes vacuolar targeting of proteins that escape the ER. Plant J 11: 313–325 (1997).

    Article  PubMed  CAS  Google Scholar 

  29. Gorlich D, Mattaj IW: Nucleocytoplasmic transport. Science 271: 1513–1518 (1996).

    Article  PubMed  CAS  Google Scholar 

  30. Grebenok RJ, Pierson E, Lambert GM, Gong F-C, Afonso CL, Haldeman-Cahill R, Carrington JC, Galbraith DW: Greenfluorescent protein fusions for efficient characterization of nuclear targeting. Plant J 11: 573–586 (1997).

    Article  PubMed  CAS  Google Scholar 

  31. Heese-Peck A, Raikhel NV: The nuclear pore complex. Plant Mol Biol, this issue (1998).

    Google Scholar 

  32. Henderson J, Bauly JM, Ashford DA, Oliver SC, Hawes CR, Lazarus CM, Venis MA, Napier RM: Retention of maize auxin-binding protein in the endoplasmic reticulum: quantifying escape and the role of auxin. Planta 202: 313–323 (1997).

    Article  PubMed  CAS  Google Scholar 

  33. Himmelreich R, Plagens H, Hubert H, Reiner B, Herrmann R: Comparative analysis of the genomes of the bacteria Mycoplasma pneumoniae and Mycoplasma genitalium. Nucl Acids Res 25: 701–712 (1997).

    Article  PubMed  CAS  Google Scholar 

  34. Huang J, Hack E, Thornburg RW, Myers AM: A yeast mitochondrial leader peptide functions in vivoas a dual targeting signal for both chloroplasts and mitochondria. Plant Cell 2: 1249–1260 (1990).

    PubMed  CAS  Google Scholar 

  35. Hurt EC, Soltanifar N, Goldschmidt-Clermont M, Rochaix J-D, Schatz G: The cleavable pre-sequence of an imported chloroplast protein directs attached polypeptides into yeast mitochondria. EMBO J 5: 1343–1350 (1986).

    PubMed  CAS  Google Scholar 

  36. Joshi CP, Zhou H, Huang X, Chiang VL: Context sequences of translation initiation codon in plants. Plant Mol Biol 35: 993–1001 (1997).

    Article  PubMed  CAS  Google Scholar 

  37. Köhler RH, Cao J, Zipfel WR, Webb WW, Hanson MR: Exchange of protein molecules through connections between higher plant plastids. Science 276: 2039–2042 (1997).

    Article  PubMed  Google Scholar 

  38. Köhler RH, Zipfel WR, Webb WW, Hanson MR: The green fluorescent protein as a marker to visualize plant mitochondria in vivo. Plant J 11: 613–621 (1997).

    Article  PubMed  Google Scholar 

  39. Kornfeld S: Structure and function of the mannose 6-phosphate/insulinlike growth factor II receptors. Annu Rev Biochem 61: 307–330 (1992).

    Article  PubMed  CAS  Google Scholar 

  40. Kozak M: Determinants of translational fidelity and efficiency in vertebrate mRNAs. Biochimie 76: 815–821 (1994).

    Article  PubMed  CAS  Google Scholar 

  41. Ladner RD, Caradonna SJ: The human dUTPase gene encodes both nuclear and mitochondrial isoforms. J Biol Chem 272: 19072–19080 (1997).

    Article  PubMed  CAS  Google Scholar 

  42. Lumbreras V, Campos N, Boronat A: The use of an alternative promoter in the Arabidopsis thalianaHMG1 gene generates an mRNA that encodes a novel 3-hydroxy-methylglutaryl coenzyme A reductase isoform with an extended N-terminal region. Plant J 8: 541–549 (1995).

    Article  PubMed  CAS  Google Scholar 

  43. Luo M, Orsi R, Patrucco E, Pancaldi S, R. C: Multiple transcription start sites of the carrot dihydrofolate reductasethymidylate synthase gene, and sub-cellular localization of the bifunctional protein. Plant Mol Biol 33: 709–722 (1997).

    Article  PubMed  CAS  Google Scholar 

  44. Martin NC, Hopper AK: How single genes provide tRNA processing enzymes to mitochondria, nuclei and the cytosol. Biochimie 76: 1161–1167 (1994).

    Article  PubMed  CAS  Google Scholar 

  45. Martin RP, Schneller JM, Stahl AJC, Dirheimer G: Import of nuclear deoxyribonucleic acid coded lysine-accepting transfer ribonucleic acid (anticodon C-U-U) into yeast mitochondria. Biochemistry 18: 4600–4605 (1979).

    Article  PubMed  CAS  Google Scholar 

  46. Matsui M, Stoop CD, Von Arnim AG, Wei N, Deng X-W: ArabidopsisCOP1 protein specifically interacts in vitro with a cytoskeleton-associated protein, CIP1. Proc Natl Acad Sci USA 92: 4239–4243 (1995).

    Article  PubMed  CAS  Google Scholar 

  47. Mireau H, Lancelin D, Small ID: The same Arabidopsisgene encodes both cytosolic and mitochondrial alanyl-tRNA synthetases. Plant Cell 8: 1027–1039 (1996).

    PubMed  CAS  Google Scholar 

  48. Moll T, Tebb G, Surana U, Robitsch H, Nasmyth K: The role of phosphorylation and the CDC28 protein kinase in cell cycle-regulated nuclear import of the S. cerevisiaetranscription factor SWI5. Cell 66: 743–758 (1991).

    Article  PubMed  CAS  Google Scholar 

  49. Müntz K: Deposition of storage proteins. Plant Mol Biol, this issue (1998).

    Google Scholar 

  50. Natsoulis G, Hilger F, Fink GR: The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine-tRNA synthetases of S. cerevisiae. Cell 46: 235–243 (1986).

    Article  PubMed  CAS  Google Scholar 

  51. Neuhaus J-M, Pietrzak M, Boiler T: Mutation analysis of the C-terminal vacuolar targeting peptide of tobacco chitinase: low specificity of the sorting system, and gradual transition between intracellular retention and secretion into the extracellular space. Plant J 5: 45–54 (1994).

    Article  PubMed  CAS  Google Scholar 

  52. Neuhaus J-M, Rogers JC: Sorting of proteins to vacuoles in plant cells. Plant Mol Biol, this issue (1998).

    Google Scholar 

  53. Oda K, Yamato K, Ohta E, Nakamura Y, Takemura M, Nozato N, Akashi K, Ohyama K: Transfer RNA genes in the mitochondrial genome from a liverwort, Marchantia polymorpha: the absence of chloroplast-like tRNAs. Nucl Acids Res 20: 3773–3777 (1992).

    Article  PubMed  CAS  Google Scholar 

  54. Okita TW: Compartmentation of poteins in the endomembrane system of plant cells. Annu Rev Plant Physiol Plant Mol Biol 47: 327–350 (1996).

    Article  PubMed  CAS  Google Scholar 

  55. Picard D, Yamamoto KR: Two signals mediate hormone-dependent nuclear localization of the glucocorticoid receptor. EMBO J 11: 3333–3340 (1987).

    Google Scholar 

  56. Rihs H-P, Jans DA, Fan H, Peters R: The rate of nuclear cytoplasmic protein transport is determined by the casein kinase II site flanking the nuclear localization sequence of the SV40 T-antigen. EMBO J 10: 633–639 (1991).

    PubMed  CAS  Google Scholar 

  57. Robinson C, Hynds PJ, Robinson D, Mant A: Multiple pathways for the targeting of thylakoid proteins in chloroplasts. Plant Mol Biol, this issue (1998).

    Google Scholar 

  58. Sadler I, Chiang A, Kurihara T, Rothblatt J, Way J, Silver P: A yeast gene important for protein assembly into the endoplasmic reticulum and the nucleus has homology to DnaJ, an Escherichia coliheat shock protein. J Cell Biol 109: 2665–2675 (1989).

    Article  PubMed  CAS  Google Scholar 

  59. Smith AG, Santana MA, Wallace-Cook AD, Roper JM, Labbe-Bois R: Isolation of a cDNA encoding chloroplast ferrochelatase from Arabidopsis thalianaby functional complementation of a yeast mutant. J Biol Chem 269: 13405–13413 (1994).

    PubMed  CAS  Google Scholar 

  60. Smith HM, Hicks GR, Raikhel NV: Importin α from Arabidopsis thalianais a nuclear import receptor that recognizes three classes of import signals. Plant Physiol 114: 411–417 (1997).

    Article  PubMed  CAS  Google Scholar 

  61. Smith PMC, Mann AJ, Atkins CA: AIR synthase in cowpea nodules: a single gene product targeted to two organelles? Plant Mol Biol 36: 811–820 (1998).

    Article  PubMed  CAS  Google Scholar 

  62. Soll J, Tien R: Protein translocation into and across the chloroplastic envelope membranes. Plant Mol Biol, this issue (1998).

    Google Scholar 

  63. Staehelin: The plant ER: a dynamic organelle composed of a large number of discrete functional domains. Plant J 11: 1151–1165 (1997).

    Article  PubMed  CAS  Google Scholar 

  64. Tarassov I, Entelis N, Martin RP: Mitochondrial import of a cytoplasmic lysine-tRNA in yeast is mediated by cooperation of cytoplasmic and mitochondrial lysyl-tRNA synthetases. EMBO J 14: 3461–3471 (1995).

    PubMed  CAS  Google Scholar 

  65. Terzaghi WB, Bertekap Jr. RL, Cashmore AR: Intracellular localization of GBF proteins and blue-light induced import of GBF2 fusion proteins into the nucleus of cultured Arabidopsis and soybean cells. Plant J 11: 967–982 (1997).

    Article  PubMed  CAS  Google Scholar 

  66. Unseld M, Marienfeld JR, Brandt P, Brennicke A: The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nature Genet 15: 57–61 (1997).

    Article  PubMed  CAS  Google Scholar 

  67. Von Heijne G, Steppuhn J, Herrmann RG: Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem 180: 535–545 (1989).

    Article  Google Scholar 

  68. Waegemann K, Soll J: Phosphorylation of the transit sequence of chloroplast precursor proteins. J Biol Chem 271: 6545–6554 (1996).

    Article  PubMed  CAS  Google Scholar 

  69. Wimmer B, Lottspeich F, van der Klei I, Veenhuis M, Gietl C: The glyoxysomal and plastid molecular chaperones (70-kDa heat shock protein) of watermelon cotyledons are encoded by a single gene. Proc Natl Acad Sci USA 94: 13624–13629 (1997).

    Article  PubMed  CAS  Google Scholar 

  70. Wolfe CL, Hopper AK, Martin NC: Mechanisms leading to and the consequences of altering the normal distribution of ATP(CTP):tRNA nucleotidyltransferase in yeast. J Biol Chem 271:4679–4686 (1996).

    Article  PubMed  CAS  Google Scholar 

  71. Wolfe KH, Morden CW, Palmer JD: Function and evolution of a minimal plastid genome from a nonphotosynthetic plant. Proc Natl Acad Sci USA 89: 10648–10652 (1992).

    Article  PubMed  CAS  Google Scholar 

  72. Zhang JZ, Somerville CR: Suspensor-derived polyembryony caused by altered expression of valyl-tRNA synthetase in the twn2mutant of Arabidopsis. Proc Natl Acad Sci USA 94: 7349–7355 (1997).

    Article  PubMed  CAS  Google Scholar 

  73. Zoladek T, Vaduva G, Hunter LA, Boguta M, Go BD, Martin NC, Hopper AK: Mutations altering the mitochondrial-cytoplasmic distribution of Mod5p implicate the actin cytoskeleton and mRNA 3’ ends and/or protein synthesis in mitochondrial delivery. Mol Cell Biol 15: 6884–6894 (1995).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jürgen Soll

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Small, I., Wintz, H., Akashi, K., Mireau, H. (1998). Two birds with one stone: genes that encode products targeted to two or more compartments. In: Soll, J. (eds) Protein Trafficking in Plant Cells. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5298-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5298-3_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6229-9

  • Online ISBN: 978-94-011-5298-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics