Skip to main content

Inclusion of Neutral Guests in a Self-Assembling Superstructure

  • Conference paper
Molecular Recognition and Inclusion
  • 246 Accesses

Abstract

Self-assembled heterodimeric molecular capsule based on the charged hydrogen bonding interaction between two different CTV monomers (1 and 2) was developed. The formation of the molecular capsule was confirmed by inclusion phenomena of complementary neutral guests in DMSO-d 6. The encapsulated TMS was released by prolonged heating or pH adjustment. Molecular modeling and intermolecular NOEs suggested the three-dimensional structure of the termolecular inclusion complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References and Notes

  1. For an excellent introduction on self-assembling biological systems, see: (a) Lehninger, A. L. (1976) Biochemistry, Worth Publishers, Inc., New York, Chapter 36.

    Google Scholar 

  2. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J. D. (1989) Molecular Biology of the Cell, Garland Publishing, New York.

    Google Scholar 

  3. Namba, K. and Stubbs, G. (1986) Structure of Tobacco Mosaic Virus at 3.6 Å Resolution: Implications for Assembly, Science, 231, 1401–1406.

    Article  PubMed  CAS  Google Scholar 

  4. Klug, A. (1983) From Macromolecules to Biological Assemblies (Nobel Lecture), Angew. Chem. Int. Ed. Engl. 22, 565–582.

    Article  Google Scholar 

  5. For recent reviews, see: (a) Lehn, J.-M. (1995) Supramolecular Chemistry, VCH, Weinheim

    Book  Google Scholar 

  6. Lindsey, J. S. (1991) Self-Assembly in Synthetic Routes to Molecular Devices Biological Principles and Chemical Perspectives: A Review, New J. Chem. 15, 153–180.

    CAS  Google Scholar 

  7. Lawrence, D. S., Jiang, T., and Levett, M. (1995) Self-Assembling Supramolecular Complexes, Chem. Rev. 95, 2229–2260.

    Article  CAS  Google Scholar 

  8. Philp, D. and Stoddart, J. F. (1996) Self-Assembly in Natural and Unnatural Systems, Angew. Chem. Int. Ed. Engl. 35, 1154–1196.

    Article  Google Scholar 

  9. Grotzfeld, R. M., Branda, N., and Rebek, J., Jr. (1996) Reversible Encapsulation of Disc-Shaped Guests by a Synthetic, Self-Assembled Host, Science, 271, 487–489.

    Article  PubMed  CAS  Google Scholar 

  10. Meissner, R. S., Rebek, J., Jr., and de Mendoza, J. (1995) Autoencapsulation Through Intermolecular Forces: A Synthetic Self-Assembling Spherical Complex, Science, 270, 1485–1488.

    Article  PubMed  CAS  Google Scholar 

  11. Valdes, C., Spitz, U. P., Kubik, S. W., and Rebek, J., Jr. (1995) Pseudo-Spherical Host Molecules: Synthesis, Dimerization, and Nucleation Effects, Angew. Chem. Int. Ed. Engl. 34, 1885–1887.

    Article  CAS  Google Scholar 

  12. Valdes, C., Spitz, U. P., Toledo, L. M., Kubik, S. W., and Rebek, J., Jr. (1995) Synthesis and Self-Assembly of Pseudo-Spherical Homo-and Heterodimeric Capsules, J. Am. Chem. Soc. 117, 12733–12745.

    Article  CAS  Google Scholar 

  13. Branda, N., Grotzfeld, R. M., Valdes, C., and Rebek, J., Jr. (1995) Control of Self-Assembly and Reversible Encapsulation of Xenon in a Self-Assembling Dimer by Acid-Base Chemistry, J. Am. Chem. Soc. 117, 85–88.

    Article  CAS  Google Scholar 

  14. Branda, N., Wyler, R., and Rebek, J., Jr. (1994) Encapsulation of Methane and Other Small Molecules in a Self-Assembling Superstructure, Science, 263, 1267–1268.

    Article  PubMed  CAS  Google Scholar 

  15. Fujita, M., Ogura, D., Miyazawa, M., Oka, H., Yamaguchi, K., and Ogura, K. (1995) Self-Assembly of ten molecules into nanometre-sized organic host frameworks, Nature, 378, 469–471.

    Article  CAS  Google Scholar 

  16. Koh, K., Araki, K., and Shinkai, S. (1994) Self-Assembled Molecular Capsule Based on the Hydrogen-Bonding Interaction between Two Different Calix[4]arenes, Tetrahedron Lett. 35, 8255–8258.

    Article  CAS  Google Scholar 

  17. Collet, A. (1987) Cyclotriveratrylenes and Cryptophanes, Tetrahedron, 43, 5725–5759.

    Article  CAS  Google Scholar 

  18. Collet, A., Dutasta, J.-P., Lozach, B., and Canceill, J. (1993) Cyclotriveratrylenes and Cryptophanes, in E. Weber (ed.), Topics in Current Chemistry, Springer-Verlag, Berlin, Vol. 165, pp. 103–129.

    Google Scholar 

  19. Bondi, A. (1964) van der Waals Volumes and Radii, J. Phys. Chem. 68, 441–451.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Lee, S.B., Hong, JI. (1998). Inclusion of Neutral Guests in a Self-Assembling Superstructure. In: Coleman, A.W. (eds) Molecular Recognition and Inclusion. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5288-4_68

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5288-4_68

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6226-8

  • Online ISBN: 978-94-011-5288-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics