Skip to main content

Part of the book series: Mathematics and Its Applications ((MAIA,volume 459))

Abstract

Diffusion theory on Finsler manifolds is briefly presented, including generalizations of the notions of stochastic parallel transport, stochastic development (rolling), and Brownian motion from the well-known Riemannian case. The results discussed cover the case of an arbitrary h - and v - metrical deflection-free v - symmetric Finsler connection, which proves important in applications, as can be seen from our second paper in this issue involving the so-called Wagner connection.

This work was partially supported by NSERC A-7667. This article appeared in Mathl. Comput. Modelling Vol. 20, pp. 109-116, 1994. It is included here, with permission from Pergamon Press.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonelli, P.L. and Zastawniak, T.J. (1994) Density-Dependent Host-Parasite Systems of Rothschild Type and Finslerian Diffusion, Mathl. Comput. Modelling, 20, 117–129.

    Article  MathSciNet  MATH  Google Scholar 

  2. Rund, H. (1959) The Differential Geometry of Finaler Spaces, Springer-Verlag, Berlin.

    Book  Google Scholar 

  3. Matsumoto, M. (1986) Foundations of Finsler Geometry and Special Finaler Spaces, Kasheisha Press, Saikawa 3-23-2, Otsushi, Shigaken.

    Google Scholar 

  4. Cartan, E. (1971) Les Espaces de Finsler, Actualités, 79, Paris, 1934, 2nd ed.

    Google Scholar 

  5. Antonelli, P.L. and Zastawniak, T. J. (1993) Stochastic Calculus on Finaler Manifolds and an Application in Biology, Nonlinear World, 1, 149–171.

    MathSciNet  Google Scholar 

  6. Antonelli, P.L. and Zastawniak, T.J. (1992) Diffusions on Finsler Manifolds, Proc. of XXVth Symposium on Math. Phys., Toruń, Poland.

    Google Scholar 

  7. Antonelli, P.L. and Zastawniak, T.J. (1995) Diffusion on the Tangent and Indicatrix Bundles of a Finsler Manifold, Tensor, N. S., 56, 233–247.

    MathSciNet  MATH  Google Scholar 

  8. Itô, K. (1950) Stochastic Differential Equations in a Differentiable Manifold, Nagoya Math. J., 1, 35–47.

    MathSciNet  MATH  Google Scholar 

  9. Itô, K. (1953) Stochastic Differential Equations in a Differentiable Manifold (2), Mem. Coll. Sci. Univ. Kyoto Math., 28, 81–85.

    MATH  Google Scholar 

  10. Itô, K. (1962, 1963) The Brownian Motion and Tensor Fields on a Riemannian Manifold, Proc. Intern. Congr. Math., Stockholm, Inst. Mittag-Leffler, Djursholm, 536–539.

    Google Scholar 

  11. Itô, K. (1975) Stochastic Parallel Displacement, in: M. A. Pinsky (ed.), Probabilistic Methods in Differential Equations, Lect. Notes in Math., Vol. 451, Springer-Verlag, Berlin-Heidelberg-New York, 1–7.

    Chapter  Google Scholar 

  12. Elworthy, K.D. (1982) Stochastic Differential Equations on Manifolds, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  13. Emery, M. (1989) Stochastic Calculus in Manifolds, Springer-Verlag, Berlin, Heidelberg.

    Book  MATH  Google Scholar 

  14. Ikeda, N. and Watanabe, S. (1981, 1989) Stochastic Differential Equations and Diffusion Processes, North Holland, Amsterdam, Kodansha, Tokyo.

    MATH  Google Scholar 

  15. Antonelli, P.L. (ed.), (1985) Mathematical Essays on Growth and the Emergence of Form, Univ. of Alberta Press, Edmonton.

    MATH  Google Scholar 

  16. Antonelli, P.L. (1993) On y-Berwald Connections and Hutchinson’s Ecology of Social Interactions, Tensor, N. S., 52, 27–36.

    MathSciNet  MATH  Google Scholar 

  17. Antonelli, P.L., Bradbury, R., Krivan, V. and Shimada, H. (1993) A Dynamical Theory of Heterochrony: Time-Sequencing Changes in Ecology, Development and Evolution, J. Biol. Syst., 1, 451–487.

    Article  MathSciNet  Google Scholar 

  18. Nelson, E. (1985) Quantum Fluctuations, Princeton Univ. Press, Princeton, N.J.

    MATH  Google Scholar 

  19. Kunita, H. (1990) Stochastic Flows and Stochastic Differential Equations, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Antonelli, P.L., Zastawniak, T.J. (1998). Introduction to Diffusion on Finsler Manifolds. In: Antonelli, P.L., Lackey, B.C. (eds) The Theory of Finslerian Laplacians and Applications. Mathematics and Its Applications, vol 459. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5282-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5282-2_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6223-7

  • Online ISBN: 978-94-011-5282-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics