Skip to main content

Abstract

We define and study connections on principal sheaves locally isomorphic to appropriate sheaves of groups. Their relationship with connections on principal fibre bundles, connections on vector sheaves (in the sense of [13]) and the early ideas of [1] is also investigated. Only sheaf-theoretic methods are employed, without any differentiability. This enlarges the framework of the classical geometry to non-smooth spaces and might be of interest to modern physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aragnol, A. Sur la géométrie différentielle des espaces fibrés, Ann. Ec. Norm., Vol. no. 75(3) (1958), pp. 33–407.

    MathSciNet  Google Scholar 

  2. Atiyah, M. Complex analytic connections in fibre bundles, Trans Amer. Math. Soc., Vol. no. 85 (1957), pp. 181–207.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bourbaki, N. Groupes et algèbres de Lie. Hermann, Paris, (1972).

    Google Scholar 

  4. Bredon, G.L. Sheaf theory. McGraw-Hill, New York, (1967).

    MATH  Google Scholar 

  5. Bartocci, C., Bruzo, U., Hermández-Ruipérez, D. The geometry of supermanifolds. Kluwer, Dordrecht, (1991).

    Book  MATH  Google Scholar 

  6. Godement, R. Topologie algébrique et théorie des faisceaux (3ème éd.). Hermann, Paris, (1973).

    MATH  Google Scholar 

  7. Greub, W., Halperin, S., Vanstone, R. Connections, curvature and cohomology (in 3 volumes). Academic Press, New York, (1976).

    MATH  Google Scholar 

  8. Grothendieck, A. A general theory of fibre spaces with structural sheaf (2nd ed.). Kansas Univ, (1958).

    Google Scholar 

  9. Gunning, R.S. Lectures on vector bundles over Riemann surfaces. Princeton Univ. Press, Princeton NJ, (1967).

    MATH  Google Scholar 

  10. Heller, M. Algebraic foundations of the theory of differential spaces, Demonstratio Mathematics, Vol. no. 24 (1991), pp. 349–364.

    MathSciNet  MATH  Google Scholar 

  11. Kobayashi, S., Nomizu, K. Foundations of differential geometry. Vol.1, Interscience, New York, (1963).

    MATH  Google Scholar 

  12. Koszul, J.L. Lectures on fibre bundles and differential geometry. Tata Inst. Fund. Res., Bombay, (1960).

    Google Scholar 

  13. Mallios, A. On an abstract form of Weil’s integrality theorem, Note di Matematica, Vol. no. 12 (1992), pp. 167–202.

    MathSciNet  MATH  Google Scholar 

  14. Mallios, A. Geometry of vector sheaves (book in preparation).

    Google Scholar 

  15. Mallios, A. i) On the existence of A-connections, Abstracts Amer. Math Soc, Vol. no. 9(6) (1988), p.509; ii) A-connections as splitting extensions, ibid. Vol. no. 10(2), p.186; iii) Local forms of A-connections and structural equations, ibid. Vol. no. 11(4), p.354.

    Google Scholar 

  16. Mallios, A. The de Rham-Kähler complex of the Gel’fand sheaf of a topological algebra, J. Math. Anal. Appl., Vol. no. 175 (1993), pp. 143–168.

    Article  MathSciNet  MATH  Google Scholar 

  17. Mallios, A. Vector sheaves and second quantization (to appear).

    Google Scholar 

  18. Mallios, A. Topological algebras. Selected topics. North Holland, Amsterdam, (1986).

    MATH  Google Scholar 

  19. Manin, Yu.I. Gauge field theory and complex geometry. Springer-Verlag, Berlin, (1988).

    MATH  Google Scholar 

  20. Mostow, M.A. The differentiable space structures of Milnor classifying spaces, simplicial complexes and geometric relations, J. Differential Geometry, Vol. no. 14 (1979), pp. 255–293.

    MathSciNet  MATH  Google Scholar 

  21. Selesnick, S.A. Second quantization, projective modules and local gauge invariance, Intern. J. Theor. Phys., Vol. no. 22 (1983), pp. 29–53.

    Article  MathSciNet  MATH  Google Scholar 

  22. Vassiliou, E. From principal connections to connections on principal sheaves, Anal. Stiint. Univ. ‘Al.I.Cuza’ Iaşi, Vol. no. 42, Supl., s.I.a, Matem., (1996), pp. 149–160.

    MathSciNet  MATH  Google Scholar 

  23. Vassiliou, E. Flat principal sheaves (manuscript).

    Google Scholar 

  24. Vassiliou, E. The Chern-Weil homomorphism of principal sheaves (in preparation).

    Google Scholar 

  25. Vassiliou, E. On Mallios’ A-connections as connections on principal sheaves, Note di Matematica (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vassiliou, E. (1999). Connections on Principal Sheaves. In: Szenthe, J. (eds) New Developments in Differential Geometry, Budapest 1996. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5276-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5276-1_33

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6220-6

  • Online ISBN: 978-94-011-5276-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics