Skip to main content

Homogeneous Spaces: From the Classical to the Quantum Case

  • Chapter
New Developments in Differential Geometry, Budapest 1996

Abstract

The formalism of a classical homogeneous spase is encoded by using the language of Hopf algebras. In this way a natural definition of a quantum homogeneous space is presented. We study the simplest case of a quantum 2-sphere, and investigate its tangent space via pseudo-vector fields. A quantum analogue of the polar decomposition for the coordinates of this quantum sphere is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Abe: Hopf Algebras, Cambridge Univ. Press, 1980.

    Google Scholar 

  2. A. Arvanitoyeorgos and D. Ellinas: Quantum (co)modules for dual quantum groups, Submitted for publication.

    Google Scholar 

  3. G. E. Andrews: q-Series: Their Development and Applications in Analysis, Number Theory, Combinatorics, Physics and Computer Algebra, AMS CBMS 1986.

    Google Scholar 

  4. F. Bonechi, N. Ciccoli, R. Giachetti, E. Sorace and M. Tarlini: Invariant q-Schrödinger Equation from homogeneous spaces of the 2-dim Euclidean quantum group, Comm. Math. Physics 175 (1996) 161.

    Article  MathSciNet  MATH  Google Scholar 

  5. C-S. Chu, P-M. Ho and B. Zumino: The quantum 2-sphere as a complex manifold, (preprint 1995, LBL-37055, UCB-PTH-95/10, Z. Phys. C., to appear).

    Google Scholar 

  6. V. G. Drinfel’d: Quantum groups, Proc. ICM Berkeley CA, 1987, Ed. A. M. Gleason, AMS, Providence RI.

    Google Scholar 

  7. M. S. Dijkhuizen and T. H. Koornwinder: Quantum homogeneous spaces, duality and quantum 2-spheres, Geom. Dedicata 52 (1994) 291–315.

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Ellinas: Path integrals for quantum algebras and the classical limit, J. Phys. A Gen. Math. A26 (1993) L543.

    MathSciNet  Google Scholar 

  9. D. Ellinas: Phase operators via group contraction, Jour. Math. Phys. 32, 135 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  10. L. D. Faddeev, N. Yu Reshetikhin and L. A. Takhtadjan: Quantization of Lie groups and Lie algebras, Leningrand Math. J. 1, 193 (1990).

    MATH  Google Scholar 

  11. P. R. Halmos: A Hilbert Space Problem Book, Springer Berlin 1982.

    Google Scholar 

  12. Y. I. Manin: Quantum groups and noncommutative geometry, Centre de Recherches Mathématiques 1561, Université de Montréal (1988).

    Google Scholar 

  13. S. Montgomery: Hopf Algebras and Their Actions on Rings, Amer. Math. Society CBMS (82) (1993).

    Google Scholar 

  14. M. Noumi, K. Mimachi: A skey-Wilson polynomials as spherical functions on SU q(2), in: P. P. Kulish ed. Quantum Groups LNM 1510, Spinger Verlag, New York, 1992 98–103.

    Chapter  Google Scholar 

  15. A. M. Perelomov: Generalized Coherent States and their Applications, Springer Verlag, Berlin 1985.

    Google Scholar 

  16. P. Podles: Quantum Spheres, Lett. Math. Phys. 14, 193 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Reed, B. Simon: Methods in Modern Mathematical Physics I, Functional Analysis, Academic, New York 1972. p.139.

    Google Scholar 

  18. M. Sweedler: Hopf Algebras, W. A. Benjamin, 1969.

    Google Scholar 

  19. L. L. Vaksman and Y. S. Soibel’man: Algebra of functions on the quantum groups SU(2), Func. Anal. Appl. 22, 170 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  20. F. W. Warner: Foundations of Differential Manifolds and Lie Groups, Scott, Foresman, Glenview, Illinois, 1971.

    Google Scholar 

  21. S. L. Woronowicz: Twisted SU(2) group. An example of noncommutative differential calculus, Publ. RISM, Kyoto Univ. 23, 117 (1987).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Arvanitoyeorgos, A., Ellinas, D. (1999). Homogeneous Spaces: From the Classical to the Quantum Case. In: Szenthe, J. (eds) New Developments in Differential Geometry, Budapest 1996. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5276-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5276-1_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6220-6

  • Online ISBN: 978-94-011-5276-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics