Skip to main content

Abstract

The idea of the fibre integral / in an oriented bundle is adapted to a regular Lie algebroid. It is based on the well-known result expressing the fibre integral of right-invariant differential forms on a principal bundle via some substitution operator. The object of this article is to define the integration operator f A over the adjoint bundle of Lie algebras g in a regular Lie algebroid A over a foliated manifold (M, F) with respect to a cross-section ɛ ∈ Sec ⋀n g, n = rank g, and to demonstrate its main properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Almeida, P. Molino, Suites d’Atiyah, feuilletages et quantification géométrique, Seminaire Gaston Darboux de Géométrie et Topologie Différentielle, Université de Montpellier, 1984–1985.

    Google Scholar 

  2. R. Almeida, P. Molino, Suites d’Atiyah et feuilletages transversalement complets, C. R. Acad. Sci. Paris Ser.I Math., 300 (1985).

    Google Scholar 

  3. M.A. Aragnol, Sur la géométrie différentielle des espaces fibres, Ann. Sci. Ec. Norm. Sup., (3) 75 (1958).

    MathSciNet  Google Scholar 

  4. M. Atiyah, Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc, 85, No 1, (1957), 181–207.

    Article  MathSciNet  MATH  Google Scholar 

  5. B. Balcerzak, Lie algebroid of a vector bundle, in preparation.

    Google Scholar 

  6. R. Bott, Lectures on characteristic classes and foliations, Lectures Notes in Math., 279 (1972).

    Google Scholar 

  7. A. Coste, P. Dazord, A. Weinstein, Groupoides symplectiques, Publ. Dep. Math. Université de Lyon 1, 2/A (1987).

    Google Scholar 

  8. P. Dazord, D. Sondaz, Varietes de Poisson —Algebroides de Lie, Publ. Dep. Math. Universite de Lyon 1, 1/B (1988).

    Google Scholar 

  9. W. Greub, S. Halperin, R. Vanstone, Connections, Curvature, and Cohomology, Vol.1, 1971, Vol.11 1973, Vol.III 1976, New York and London.

    Google Scholar 

  10. P.J. Higgins, K. Mackenzie, Algebraic constructions in the category of Lie algebroids, J.Algebra, 1988.

    Google Scholar 

  11. Huebschmann J. Poisson cohomology and quantization, J.reine angew. Math. 408 (1980), 57–113.

    MathSciNet  Google Scholar 

  12. F. Kamber, Ph. Tondeur, Foliated Bundles and Characteristic Classes, Lectures Notes in Math. 493, Springer-Verlag 1975.

    Google Scholar 

  13. J. Kubarski, Pradines-type groupoids over foliations; cohomology, connections and the Chern-Weil homomorphism, Technical University, Institute of Mathematics, Preprint 2, August 1986.

    Google Scholar 

  14. J. Kubarski, Lie algebroid of a principal fibre bundle, Publ. Dep. Math. University de Lyon 1, l/A, 1989.

    Google Scholar 

  15. J. Kubarski, The Chern-Weil homomorphism of regular Lie algebroids, Publ. Dep. Math. University de Lyon 1, 1991.

    Google Scholar 

  16. J. Kubarski, A criterion for the Minimal Closedness of the Lie Subalgebra Corresponding to a Connected Nonclosed Lie Subgroup, REVISTA MATEMATICA de 1a Universidad Complutense de Madrid, Vol.4, nu 2 y 3; 1991.

    Google Scholar 

  17. J. Kubarski, Invariant cohomology of regular Lie algebroids, Proceedings of the VII International Colloquium on Differential Geometry, ‘Analysis and Geometry in Foliated Manifolds’, Santiago de Compostela, Spain 26-30 July, 1994, World Scientific, Singapure 1995.

    Google Scholar 

  18. J. Kubarski, Bolt’s Vanishing Theorem for Regular Lie Algebroids, Transaction of the A.M.S. Volume 348, Number 6, June 1996.

    Google Scholar 

  19. J. Kubarski, Characteristic homomorphisms of regular Lie algebroids, Poster ECM, Paris, July 6-10, 1992, Publ. Dep. Math. Unoversity de Lyon (in print).

    Google Scholar 

  20. J. Kubarski, Characteristic classes of flat and of partially flat regular Lie algebroids over foliated manifolds, Publ. Dep. Math. University de Lyon (in print).

    Google Scholar 

  21. J. Kubarski, Poincaré duality for transitive unimodular invariantly oriented Lie algebroids, in preparation.

    Google Scholar 

  22. J. Kubarski, Euler class and Gysin sequence of spherical Lie algebroids, in preparation.

    Google Scholar 

  23. J. Kubarski, The Euler-Poincaré-Hopf theorem for flat connections, in preparation.

    Google Scholar 

  24. A. Kumpera, An Introduction to Lie groupoids, Nucleo de Estudos e Pasquisas Cientificas, Rio de Janeiro, 1971.

    Google Scholar 

  25. K. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, Cambridge University Press, 124, 1987.

    Google Scholar 

  26. K. Mackenzie, Lie algebroids and Lie pseudoalgebras, Bull. London Math. Soc., 27 (1995), 97–147.

    Article  MathSciNet  MATH  Google Scholar 

  27. L. Maxim-Raileanu, Cohomology of Lie algebroids, An. Sti. Univ. ‘Al. I. Cuza’ Iasi. Sect. I a Mat. XXII f 2 (1976), 197–199.

    MathSciNet  Google Scholar 

  28. P. Molino, Etude des feuilletages transversalement complets et applications, Ann.Sci. Ecole Norm. Sup., 10(3) (1977), 289–307.

    MathSciNet  MATH  Google Scholar 

  29. P. Molino, Riemannian Foliations, Progress in Mathematics Vol.73, Birkhäuser Boston Basel, 1988.

    Google Scholar 

  30. C. Moore, C. Schochet, Global Analysis on Foliated Spaces, Mathematical Sciences Research Institute publications; 9, 1988, Springer-Verlag New-York Inc.

    Google Scholar 

  31. Ngo-Van-Que, Du prolongement des espaces fibres et des structures infinitesimales, Ann. Inst. Fourier, (Grenoble), 17.1, 1967, 157–223.

    MathSciNet  Google Scholar 

  32. J. Pradines, Théorie de Lie pour les groupoides differentiables dans la catégorie des groupoides, Calcul differential dans la catégorie des groupoides infinitésimaux, C. R. Acad. Sci. Ser.A-B, Paris, 264, (1967), 245–248.

    MathSciNet  MATH  Google Scholar 

  33. J. Pradines, Théorie de Lie pour les groupoides differentiables, Atti Conv Intern Geom 7 Diff. Bologna, 1967, Bologna-Amsterdam.

    Google Scholar 

  34. Ping Xu, Gerstenhaber algebras and BV-algebras in Poisson geometry, to appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kubarski, J. (1999). Fibre Integral in Regular Lie Algebroids. In: Szenthe, J. (eds) New Developments in Differential Geometry, Budapest 1996. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5276-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5276-1_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6220-6

  • Online ISBN: 978-94-011-5276-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics