Skip to main content

Short-term effect of nitrogen enrichment on the microbial communities of a peatland

  • Conference paper

Part of the book series: Developments in Hydrobiology ((DIHY,volume 131))

Abstract

The aim of this study was to assess the structure of the microbial loop in a Sphagnum fallax —Carex rostrata fen of the French Massif central,and the impact of nitrogen supplies on the different microbial communities. Microalgae (46% of the total microbial biomass),Protozoa (26%) and heterotrophic Bacteria (17%) were the dominant microorganisms.Rotifera (5%),Cyanobacteria (3%),Fungi (2%) and Nematoda (< 1%) were also present.Testate Amoebae were well represented in Sphagnum peatland (14% of total microbial biomass).Thus,the structure of the protist community in the surface of fen peatlands is notably different from that recorded in other environments.The input of nitrogen led to a steady increase in microbial biomasses,but only changed the structure of microbial communities significantly when the input was 50 kg ha-1.At high inputs,nitrogen supply increased the relative importance of Cyanobacteria, Euglenophyceae, Bacillariophyceae and Ciliates, and decreased the relative importance of heterotrophic Bacteria, other microalgae and testate Amoebae. The increase in the values of photosynthetic assimilation and heterotrophic activities could also reflect changes in community functioning.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aerts, R., B. Wallén & N. Malmer, 1992. Growth-limiting nutrients in Sphagnum-dominated bogs subject to low and high atmospheric nitrogen supply. J. Ecol. 80: 131–140.

    Article  Google Scholar 

  • Amblard, C., G. Bourdier, T. Sime-Ngando, S. Rachiq & J. F. Carrias, 1994. Diel and vertical variations of the microbial stocks (Bacteria, heterotrophic Flagellates, Ciliates, phytoplankton) and their relative activities. Arch. Hydrobiol. Beih. 41: 125–144.

    Google Scholar 

  • Amblard, C., J. F. Carrias, G. Bourdier & N. Maurin, 1995. The microbial loop in a humic lake: seasonal and vertical variations in the structure of the different communities. Hydrobiologia 300/301: 71–84.

    Article  Google Scholar 

  • Austin, K. A. & R. K. Wieder, 1987. Effects of elevated H+, S04 2-, NO3 -, and NH4 + in simulated acid precipitation on the growth and chlorophyll content of 3 North American Sphagnum species. The Bryologist 90: 221–229.

    Article  CAS  Google Scholar 

  • Azam, F. & O. Holm-Hansen, 1973. Use of tritiated substrates in the study of heterotrophic in sea water. Mar. Biol. 23: 191–196.

    Article  CAS  Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer & F. Thingstad, 1983. The ecological role of water column microbes in the sea. Mar. Ecol. Pro. Ser. 10: 257–263.

    Article  Google Scholar 

  • Collins, V. G., B. T. D’Sylva & P. M. Latter, 1978. Microbial population in peat. In Heal Ow. & D. F. Perkings (eds), Production Ecology of British Moors and Montane Grasslands, Springer-Verlag, Berlin: 94–112.

    Chapter  Google Scholar 

  • Couteaux, M. M. & M. Pussard M., 1982. Nature du régime alimentaire des protozoaires du sol. News Trends in Soil Biology. Proceedings of the VIII. Intl Colloquium of soil Zoology. Louvain-la-Neuve, Belgium: 179–195.

    Google Scholar 

  • Czeczuga, B., 1993. Aquatic fungi of the Gorbacz and Ostrowki Peatbogs. Acta Mycologica 28: 69–75.

    Google Scholar 

  • Duthie, H. C., 1965. A study of the distribution and periodicity of some algae in a bog pool. J. Ecol. 53: 343–359.

    Article  Google Scholar 

  • Francez, A. J., 1987. Successions écologiques dans les tourbières: le peuplement de rotifèresdu lac-tourbière de Chambedaze (Puy-de-Dôme, France). Bull. Ecol. 18: 31–38.

    Google Scholar 

  • Francez, A. J., 1988. Le peuplement de rotifères libres de deux lacs-tourbières du Puy-de-Dôme (France). Vie et Milieu 38: 281–292.

    Google Scholar 

  • Francez, A. J., 1992. Croissance et production primaire des sphaignes dans une tourbière des monts du Forez (Puy-de-Dôme, France). Vie Milieu 42: 21–34.

    Google Scholar 

  • Fenchel, T., 1987. Ecology of protozoa. Science Tech. Publishers, Madison, Wisconsin/Springer Verlag, New-York, 197 pp.

    Google Scholar 

  • Gifford, D. J., 1991. The Protozoan-Metazoan trophic link in pelagic ecosystems. J. Protozool. 38: 81–86.

    Google Scholar 

  • Gilbert, D., C. Amblard, G. Bourdier & A. J. Francez, 1998. The microbial loop at the surface of a peatland: structure, functioning and impact of nutrients inputs. Microb. Ecol. 35: 83–93.

    Article  PubMed  CAS  Google Scholar 

  • Grolière, C. A., 1977. Contribution à l’étude des ciliés des sphaignes: II-dynamique des populations. Protistologiea 13: 335–352.

    Google Scholar 

  • McKinley, K. R., 1977. Light-mediated uptake of 3H-glucose in a small hardwater lake. Ecology 58: 1356–1365.

    Article  CAS  Google Scholar 

  • McKinley, K. R. & R. G. Wetzel, 1979. Photolithotrophy, photo-heterotrophy and chemoheterotrophy: patterns of resource utilisation on an annual and diurnal basis whitin a pelagic microbial community. Microb. Ecol. 5: 1–15.

    Article  CAS  Google Scholar 

  • Munawar, M. & T. Weisse, 1989. Is the ‘Microbial loop’ an early warning indicators of anthropogenic stress? in Munawar, M., G. Dixon, C. I. Mayfield, T. Reynoldson & M. H. Sadar (eds), Environmental Bioassay Techniques and their applications. Hydrobiologia 188/189: 163–174.

    Google Scholar 

  • Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943–948.

    Article  Google Scholar 

  • Porter, K. G., E. B. Sherr, B. F. Sherr, M. Pace & R. W. Sanders, 1985. Protozoa in planktonic food webs. J. Protozool. 32: 409–415.

    Google Scholar 

  • Richardson, K. A. & G. F. Fogg, 1982. The role of dissolved organic material in the nutrition and survival of marine dinoflagellates. Phycologia 21: 17–26.

    Article  CAS  Google Scholar 

  • Riemann, B. & K. Christoffersen, 1993. Microbial trophodynamics in temperate lakes. Marine Microb. Food webs 7: 69–100.

    Google Scholar 

  • S.C.O.R.-U.N.E.S.C.O., 1966. Determination of photosynthethic pigments in sea water. S.C.O.R.-U.N.E.S.C.O., 69 pp.

    Google Scholar 

  • Simej, K. & V. Straskrabova, 1992. Bacterioplankton production and protozoan bacterivory in a mesotrophic reservoir. J. Plankton Res. 14: 773–787.

    Article  Google Scholar 

  • Steemann-Nielsen, E., 1952. The use of radio-active carbon (14C) for measuring organic production in the sea. J. Cons. Explor. Mer. 18: 117–140.

    Google Scholar 

  • Steemann-Nielsen, E., 1977. The carbon-14 technique for measuring organic production by plankton algae. A report of the present knowledge. Folia Limnol. Scand. 17: 45.

    Google Scholar 

  • Tomaszewicz, G. H., 1994. Abundance and composition of the desmid flora in a series of peat pits, in relation to pH and some other habitat parameters. Biologia, Bratislava 49/4: 519–524.

    Google Scholar 

  • Utermölh, H., 1958. Zur Vervollkommnung der quantative phytoplankton-methodik. Mitt. Int. Ver. Limnol. 9: 1–38.

    Google Scholar 

  • Van Breemen, N., C. T. Driscoll & J. Mulder, 1984. Acidic deposition and internal proton sources in acidification of soils and waters. Nature 307: 599–604.

    Article  Google Scholar 

  • Warner, B., 1987. Abundance and diversity of testate amoeba (Rhizopoda, Testacea) in Sphagnum peatlands in southwestern Ontario, Canada. Arch. Protistenkd. 133: 173–180.

    Article  Google Scholar 

  • Williams, B. L. & G. P. Sparling, 1988. Microbial biomass carbon and readily mineralized nitrogen in peat and forest humus. Soil Biol Biochem 20: 579–581.

    Article  Google Scholar 

  • Williams, B. L., D. Silcock, A.-J. Francez, D. Gilbert, A. Buttler, P. Grosvernier., Y. Matthey, H. Vasander, J. Jauhiainen, A. Kajak, J. Petal & M. Hornets, 1996. Impact of nitrogen deposition on the carbon balance in peatland ecosystems. EC Environment programme, 3rd Framework. Final report., 96 pp.

    Google Scholar 

  • Yesmin, L., S. M. Gammack, L. J. Sanger & M. S. Cresser, 1995. Impact of atmospheric N deposition on inorganic-and organic-N outputs in water draining from peat. Sc. Total Envir. 166: 201–209.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J.-C. Amiard B. Le Rouzic B. Berthet G. Bertru

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Gilbert, D., Amblard, C., Bourdier, G., Francez, AJ. (1998). Short-term effect of nitrogen enrichment on the microbial communities of a peatland. In: Amiard, JC., Le Rouzic, B., Berthet, B., Bertru, G. (eds) Oceans, Rivers and Lakes: Energy and Substance Transfers at Interfaces. Developments in Hydrobiology, vol 131. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5266-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5266-2_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6216-9

  • Online ISBN: 978-94-011-5266-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics