Skip to main content

Fate of plant detritus in a European salt marsh dominated by Atriplex portulacoides (L.) Aellen

  • Conference paper
Oceans, Rivers and Lakes: Energy and Substance Transfers at Interfaces

Part of the book series: Developments in Hydrobiology ((DIHY,volume 131))

Abstract

This paper deals with the organic matter dynamics of a dwarf shrub species, Atriplex portulacoides, which characterizes the majority of ungrazed European salt marshes. These dynamics were investigated by the simultaneous estimation of primary production, litter production, decomposition processes and accumulation of organic matter in sediment. We used harvested biomass techniques and the litter-bag method, as well as more recent techniques such as determination of natural isotopic compositions. The results of this study have been compared with those of other studies of salt marshes of the Eastern Coast of America dominated by Spartina alterniflora. Studies of the fate of halophytic organic matter in salt marshes have shown that processes such as consumption, decomposition, or flooding rapidly could distribute organic material to different compartments of the marsh system.Aboveground productivity of A. portulacides was 1700 g m-2 yr-1. Approximately 80% of this production was transformed rapidly in necromass. A large part of this dead material (86%) fell as litter directly onto the sediment at the sampling site. The remainder was washed away by tides, either out of the marsh, or into the upper marsh where it accumulated in drift lines. Decomposition of A. portulacoides on the sediment was followed using litter-bags. Decay constants, based on the first order decay function, ranged between 0.0404 d-1 and 0.0113 d-1 and appeared high when compare with data obtained in other American and European salt marshes. Nitrogen immobilisation was not detectable in this decomposition experiment. During decay, nitrogen concentrations increased, whereas absolute amount of nitrogen decreased. After microbial decomposition, plant detritus was rapidly incorporated into sediment. The carbon isotopic composition of organic matter in sediment showed that organic matter in the middle marsh came from both aboveground production of A. portulacoides and microalgae. The patterns for these two kinds of organic matter in different granulometric fractions depended on tidal submersion frequency. During the summer, when the salt marsh was not disturbed by tides, the clay fraction got richer in plant organic matter, whereas, during the other periods, this fraction was characterized by microalgal organic matter. This study provides new data about the dynamic of organic matter. It remains still difficult to establish comparisons between North American and European salt marsh functioning according to the variability of primary production, microbial decomposition and tidal range in these ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bender, M. M., 1971. Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry 10: 1239–1244.

    Article  CAS  Google Scholar 

  • Benner, R., A. E. Maccubin & R. E. Hodson, 1984. Anaero-biodegradation of the lignin and polysaccharide components of lignocellulose and synthetic lignin by sediment microflora. Appl. envir. Microbiol. 47: 998–004.

    CAS  Google Scholar 

  • Benner, R., M. L. Fogel, E. K. Sprague & R. E. Hodson, 1987. Depletion of 13C in lignin and its implications for stable carbon isotope studies. Nature 329: 708–710.

    Article  CAS  Google Scholar 

  • Berg, B., M. P. Berg, P. Bottner, E. Box, A. Breymeyer, R. Calco de Anta, M. Coûteaux, A. Escudero, R. Gallardo, W. Kratz, M. Madeira, E. Mälkönen, C. Mc Claugherty, V. Meentemeyer, F. Munoz, P. Piussi, J. Remacle & A. Virzo de Santo, 1993. Litter mass loss rates in pine forests of Europe and Eastern United States: some relationships with climate and litter quality. Biogeochemistry 20: 127–159.

    Article  Google Scholar 

  • Boorman, L. A., J. Hazelden, P. J. Loveland, J. G. Wells & J. E. Levasseur, 1994. Comparative relationship between primary production and organic and nutrient fluxes in four European salt marshes. In W. J. Mitsch (ed.), Global Wetlands: Old World and New. Elsevier Science B.V.: 181–200.

    Google Scholar 

  • Bouchard, V., 1996. Production et devenir de la matière organique des halophytes dans un marais salé européen en système macroti-dal. Thesis Rennes University, 209 pp.

    Google Scholar 

  • Bouchard, V. & J. C. Lefeuvre, 1996. Hétérogénéité de la productivité d’Atriplex portulacoides (L.) Aellen dans un marais salé macrotidal. C. R. Acad. Sci. 319: 1027–1034.

    Google Scholar 

  • Boulton, A. J. & P. I. Boon, 1991. A review of methodology used to measure leaf litter decomposition in lotic environments: time to turn over an old leaf? Aust. J. mar. Freshwat. Res. 42: 1–43.

    Article  CAS  Google Scholar 

  • Buth, G. J. C., P. F. M. Verdunschot & L. de Wolf, 1982. Decomposition of three halophyts in different habitats of an Eastern Scheid salt marsh. Hydrobiol. Bull. 16: 103–112.

    Article  Google Scholar 

  • Buth, G. C. C. & L. Wolf, 1985. Decomposition of Spartina anglica, Elytrigia pungens and Halimione portulacoides in a Dutch salt marsh in association with fauna and habitat influences. Vegetatio 62: 337–355.

    Article  Google Scholar 

  • Buth, G. J. C. & L. A. C. J. Voesenek, 1987. Decomposition of standing and fallen litter of halophytes in a Dutch salt marsh. In A. H. L. Huiskes, C. W. P. M. Blom & J. Rozema (eds), Vegetation between land and sea. Dr. W. J. Pub.: 146–162.

    Google Scholar 

  • Chapman, V. J., 1974. Salt Marshes and Salt Deserts of the World. 2nd ed., J. Cramer Verlag, Bremerhaven.

    Google Scholar 

  • Christian, R. R., 1984. A life table approach to decomposition studies. Ecology 65: 1693–1697.

    Article  Google Scholar 

  • Craig, H., 1957. Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of dioxide. Geoch. Cosmoch. Acta 12: 133–149.

    Article  CAS  Google Scholar 

  • Cranford, P. J., D. C. Jr Gordon & C. M. Jarvis, 1989. Measurement of cordgrass, Spartina alterniflora, production in a macrotidal estuary. Estuaries 12: 27–14.

    Article  Google Scholar 

  • Créach, V., 1995. Origines et transferts de la matiere organique dans un marais littoral: Utilisation des compositions isotopiques naturelles du carbone et de l’azote. Thesis Rennes University, 134 pp.

    Google Scholar 

  • Créach, V., M. T. Schricke, G. Bertru & A. Mariotti, 1997. Stable isotopes and gut analyses to determine feeding relationships in salt marsh macroconsumers. Estuar. coast. Shelf. Sci. 320: 339–347.

    Google Scholar 

  • Currin, C. A., S. Y. Newell & H. W Paerl, 1995. The role of standing dead Spartina alterniflora and benthic microalgae in salt marsh food webs: considerations based on multiple stable isotope analysis. Mar. Ecol. Prog. Ser. 121: 99–116.

    Article  Google Scholar 

  • Dame, R. F., 1982. The flux of floating macrodetritus in the North Inlet estuarine ecosystem. Mar. Ecol. Prog. Ser. 16: 161–171.

    Google Scholar 

  • Dame, R. F., 1989. The importance of Spartina alterniflora to Atlantic coast estuaries. Aquat. Sci. 1: 639–660.

    Google Scholar 

  • Dankers, N., M. Binsbergen, K. Zegers, R. Laane & M. Rutgers, 1984. Transportation of water, particulate and dissolved organic and inorganic matter between a salt marsh and Ems-Dollard Estuary, The Netherlands. Estuar. coast. Shelf. Sci. 19: 143–165.

    Article  CAS  Google Scholar 

  • De Leeuw, J., H. Olff & J. P. Baker, 1990. Year-to-year variation in peak above-ground biomass of six salt-marsh angiosperm communities as related to rainfall deficit and inundation frequency. Aquat. Bot. 36: 139–151.

    Article  Google Scholar 

  • Ember, L. M., D. F. Williams & J. T. Morris, 1987. Processes that influence carbon isotope variations in salt marsh sediments. Mar. Ecol. Prog. Ser. 36: 33–42.

    Article  Google Scholar 

  • Fogel, M. L., E. K. Sprague, A. P. Gize & R. W. Frey, 1989. Diagenesis of organic matter in Georgia Salt Marsh. Estuar. coast. Shelf. Sci. 28:211–230.

    Article  CAS  Google Scholar 

  • Fry, B. & E. B. Sherr, 1984. 13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contrib. Mar. Sci. 27: 49–63.

    CAS  Google Scholar 

  • Gallagher, J. L., W. J. Pfeiffer & L. R. Pomeroy, 1976. Leaching and microbial utilization of dissolved organic carbon from leaves of Spartina alterniflora. Estuar. coast. Shelf. Sci. 4: 467–471.

    Google Scholar 

  • Gallagher, J. L., R. J. Reimold, R. A. Linthurst & W. J. Pfeiffer, 1980. Aerial production, mortality, and mineral accumulation-export dynamics in Spartina alterniflora and Juncus roemerianus plant stands in a Georgia salt marsh. Ecology 61: 303–312.

    Article  Google Scholar 

  • Gehu, J. M. & J. Gehu-Franck, 1982. Etude phytosociologique analytique et globale de l’ensemble des vases salés et des prés salés et saumâtres de la façade atlantique française. Bull. Ecol. 13: 357–386.

    Google Scholar 

  • Guillon, L. M., 1984. Les schorres de la baie du Mont Saint-Michel. Unités de végétation et facteurs de milieu. Rapport inédit. CEE/Ministère de l’environnement. Lab. Evol. Syst. Nat. Mod., Université de Rennes l et Museum National d’Histoire Naturelle.

    Google Scholar 

  • Groenendijk, A. M., 1984. Primary production of four dominant salt marsh angiosperms in the SW Netherlands. Vegetatio 57: 143–152.

    Article  Google Scholar 

  • Groenendijk, A. M. & M. A. Vink-Lievaart, 1987. Primary production and biomass on a Dutch salt marsh: emphasis on the below-ground component. Vegetatio 70: 21–27.

    Google Scholar 

  • Gordon, D. C. Jr. & P. J. Cranford, 1994. Export of organic matter from macrotidal salt marshes in the upper bay of Fundy, Canada. In W. J. Mitsch (ed.), Global Wetlands: Old World and New. Elsevier Science B.V.: 257–264.

    Google Scholar 

  • Hackney, C. T. & E. B. Haines, 1980. Stable carbon isotope composition of fauna and organic matter collected in a Mississipi Estuary. Estuar. coast. Shelf. Sci. 10: 703–708.

    CAS  Google Scholar 

  • Haines, E. B., 1977. The origin of detritus in Georgia salt marshes estuaries. Oikos 29: 254–260.

    Article  Google Scholar 

  • Haines, E. B. & C. L. Montague, 1979. Food sources of estuarine invertebrates analysed using 13C/12C ratios. Ecology 60: 48–56.

    Article  Google Scholar 

  • Halupa, P. J. & B. L. Howes, 1995. Effects of tidally mediated litter moisture content on decomposition of Spartina alterniflora and S. patens. Mar. Sci. 123: 379–391.

    Google Scholar 

  • Hemminga, M. A. & G. J. C. Buth, 1991. Decomposition in salt marsh ecosystems of the S.W. Netherlands: the effects of biotic and abiotic factors. Vegetatio 92: 73–83.

    Google Scholar 

  • Hicks, R. E., C. Lee & A. C. Marinucci, 1991. Loss and recycling of amino acids and protein from smooth cord grass (Spartina alterniflora) litter. Estuaries 14: 430–439.

    Article  CAS  Google Scholar 

  • Kemp, P. F., S. Y. Newell & C. S. Hopkinson, 1990. Importance of grazing on the salt marsh grass Spartina alterniflora to nitrogen turnover in a macrofaunal consumer, Littorina irrorata, and to decomposition of standing-dead Spartina. Mar. Biol. 104: 311–319.

    Article  CAS  Google Scholar 

  • Lefeuvre, J. C. & R. F. Dame, 1994. Comparative studies of salt marsh processes in the New and Old Worlds: an introduction. In W. J. Mitsch (ed.), Global Wetlands: Old World and New. Elsevier Science B.V.: 169–180.

    Google Scholar 

  • Lefeuvre, J. C., G. Bertru, F. Burel, L. Brient, V. Créach, Y. Gueuné, J. Levasseur, A. Mariotti, A. Radureau, C. Retière, B. Savouré & O. Troccaz, 1994. Comparative Studies on Salt Marsh Processes: Mont Saint-Michel bay, a multi-disciplinary study. In W. J. Mitsch (ed.), Global Wetlands: Old World and New. Elsevier Science B.V.: 215–234.

    Google Scholar 

  • Levasseur, J. E., 1993. Physiographic végétation et production primaire. In J. C. Lefeuvre (ed.), Comparative studies on salt marsh processes. Commission of the European Community. EEC contract n° E5V-0098: 33–54.

    Google Scholar 

  • Long, S. P. & C. F. Mason, 1983. Saltmarsh Ecology. Glasgow, Blackie.

    Google Scholar 

  • Mann, K. H., 1972. Macrophyte production and detritus food chains in coastal waters. Mem. Ist. ital. Idrobiol. 29 Suppl.: 353–383.

    Google Scholar 

  • Marinucci, A. C., 1982. Trophic importance of Spartina alterniflora production and decomposition to the marsh-estuarine ecosytem. Biol. Conserv. 22: 35–58.

    Article  Google Scholar 

  • Meyers, P. A., 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Anal. Chem. 56: 1859–1861.

    Google Scholar 

  • Mc Kee, K. L. & W. H. Patrick, 1988. The relationship of smooth cordgrass (Spartina alterniflora) to tidal datums: a review. Estuaries 1: 143–151.

    Article  Google Scholar 

  • Newell, S. Y., R. D. Fallon & J. D. Miller, 1989. Decomposition and microbial dynamics for standing, naturally positioned leaves of the salt-marsh grass Spartina alterniflora. Mar. Biol. 101: 471–481.

    Article  Google Scholar 

  • Nyman, J. A., R. D. Delaune, H. H. Roberts & W. H. Patrick Jr., 1993. Relationship between vegetation and soil formation in a rapidly submerging coastal marsh. Mar. Ecol. Prog. Ser. 96: 269–279.

    Article  Google Scholar 

  • Nixon, S. W., 1980. Between coastal marshes and coastal waters — a review of twenty years of speculation and research on the role of salt marshes in estuarine productivity and water chemistry. In P. Hamilton & K. B. Macdonald (eds), Estuarine and Wetland Processes with Emphasis on Modelling. Plenum Press, New York: 437–525.

    Google Scholar 

  • Odum, E. P. & A. A. de la Cruz, 1967. Particulate organic matter in a Georgia salt marsh-estuarine ecosystem. In G. H. Lauff (ed.), Estuaries. AAAS, Washington.

    Google Scholar 

  • Odum, E. P., 1969. The strategy of ecosystem decelopment. Science 164: 262–270.

    Article  PubMed  CAS  Google Scholar 

  • Odum, E. P. & E. J. Heald, 1975. The detritus based food web of an estuarine mangrove community. In L. E. Cronin (ed.), Estuarine Research, Vol. 1., Academic Press, New York: 265–286.

    Google Scholar 

  • O’Leary, M. H., 1981. Carbon isotope fractionation in plants. Phytochemistry 20: 553–567.

    Article  Google Scholar 

  • Reice, S. R. & A. E. Stiven, 1983. Environmental patchiness, litter decomposition and associated faunal patterns in a Spartina alterniflora marsh. Estuar. Coast. Shelf. Sci. 16: 559–571.

    Article  Google Scholar 

  • Reidenbaugh, T. G. & W. C. Banta, 1980. Origin and effects of Spartina wrack in a Virginia salt marsh. Gulf Research Report 6:393–401.

    Google Scholar 

  • Rice, D. L. & K. R. Tenore, 1981. Dynamics of carbon and nitrogen during the decomposition of detritus derived from estuarine macrophytes. Estuar. Coast. Shelf. Sci. 13: 681–690.

    Article  CAS  Google Scholar 

  • Shaver, G. R. & J. M. Melillo, 1984. Nutrient budget of marsh plants: efficiency concepts and relation to availability. Ecology 65: 1491–1510.

    Article  Google Scholar 

  • Smalley, A. E., 1959. The growth cycle of Spartina and its relation to the insect populations in the marsh. In R. A. Ragotzkie, J. M. Teal, L. R. Pomeroy & D. C. Scott (eds), Proc. Salt Marsh Conf., Athens, University of Georgia: 96–100.

    Google Scholar 

  • Smith, B. N. & S. Epstein. 1970. Biogeochemistry of the stable isotopes of hydrogen and carbon in salt marsh biota. Plant Phys. 46: 738–742.

    Article  CAS  Google Scholar 

  • Teal, J. M., 1962. Energy flow in the salt marsh ecosystem of Georgia. Ecology 43: 614–624.

    Article  Google Scholar 

  • Tenore, K. R., 1984. Nitrogen in benthic food chains. In T. H. Blackburn & J. Sorensen (eds), Nitrogen Cycling in Coastal Marine Environments. Willey: 191–206.

    Google Scholar 

  • Tieszen, L. L., 1991. Natural variations in the carbon isotope values of plants: implications for archaeology, ecology and paleoecology. J. Arch. Sci. 18: 227–248.

    Article  Google Scholar 

  • Valiela, I., B. Howes, R. Howarth, A. Giblin, K. Foreman, J. M. Teal & J. E. Hobbie. 1982. The regulation of primary production and decomposition in a salt marsh ecosystem. In B. Gopal, R. E. Turner, R. G. Wetzel amp;. D. E. Whigham (eds), Wetlands: Ecology and Management. National Institute of Ecology, Jaipur, India: 151–168.

    Google Scholar 

  • Valiela, I., J. Wilson, R. Buchsbaum, C. Riestsam, D. Bryant, K. Foreman & J. Teal, 1984. Importance of chemical composition of salt marsh litter on decay rates and feeding by detritivores. Bull. mar. Sci. 35: 261–269.

    Google Scholar 

  • Valiela, I., J. M. Teal, S. D. Allen, R. van Etten, D. Goehringer & S. Volkmann, 1985. Decomposition in salt marsh ecosystems: the phases and major factors affecting disappearance of above-ground organic matter. J. exp. mar. Biol. Ecol. 89: 29–54.

    Article  CAS  Google Scholar 

  • Vernberg, F. J., 1993. Salt marsh processes: a review. Envir. Toxic. Chem. 12: 2167–2195.

    Article  Google Scholar 

  • White, D. S. & B. L. Howes, 1994. Nitrogen incorporation into decomposing Utter of Spartina alterniflora. Limnol. Oceanogr. 39: 133–140.

    Article  CAS  Google Scholar 

  • Wolff, W. J., M. N. van Eeden & E. Lammens, 1979. Primary production and import of particulate organic matter on a salt marsh in the Netherlands. Neth. J. Sea. Res. 13: 242–255.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J.-C. Amiard B. Le Rouzic B. Berthet G. Bertru

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Bouchard, V., Creach, V., Lefeuvre, J.C., Bertru, G., Mariotti, A. (1998). Fate of plant detritus in a European salt marsh dominated by Atriplex portulacoides (L.) Aellen. In: Amiard, JC., Le Rouzic, B., Berthet, B., Bertru, G. (eds) Oceans, Rivers and Lakes: Energy and Substance Transfers at Interfaces. Developments in Hydrobiology, vol 131. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5266-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5266-2_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6216-9

  • Online ISBN: 978-94-011-5266-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics