Skip to main content

Orbital Isomorphism Between Two Classical Integrable Systems

The Euler case and the Jacobi problem

  • Chapter
Lie Groups and Lie Algebras

Part of the book series: Mathematics and Its Applications ((MAIA,volume 433))

Abstract

We describe the orbital invariants of two famous integrable systems (the Euler case in rigid body dynamics and the Jacobi problem) and show that these systems are orbitally topologically equivalent.

Mathematics Subject Classification (1991): 58F05.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andronov, A.A., Leontovich E.A., Gordon, I.I. and Mayer A.G.: Quantitative Theory of Dynamical Systems of Second Order, Nauka, Moscow, 1966 (in Russian).

    Google Scholar 

  2. Anosov, D.V., Aranson, S.H., Bronstein, LU. and Grines, V.Z.: Smooth dynamical systems II, In: Modern problems of mathematics, 1 (1985) VINITI, Moscow, 151–242 (in Russian).

    MATH  Google Scholar 

  3. Arnold, V.I. and Ilyaschenko, Yu.S.: Ordinary differential equations, In: Modern problems of mathematics, 1 (1985) VINITI, Moscow, 7–149 (in Russian).

    Google Scholar 

  4. Arkhangelskii, Yu.A.: Analytical Dynamics of a Rigid Body, Nauka, Moscow, 1977 (in Russian).

    Google Scholar 

  5. Bolsinov, A.V.: Methods of calculation of the Fomenko-Zieschang invariant, In: Topological Classification of Integrable System, Adv. Soviet Math. 6 Amer. Math. Soc., Providence, RI, 147–183.

    Google Scholar 

  6. Bolsinov, A.V., Matveev, S.V. and Fomenko, A.T.: Topological classification of in-tegrable Hamiltonian systems with two degrees of freedom. List of the systems of low complexity, Russian Math. Surveys, 45 (1990) no. 2, 59–94.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bolsinov, A.V. and Fomenko A.T.: Orbital equivalence of integrable Hamiltonian systems with two degrees of freedom. A classification theorem I, Russian Acad. Sci. Sb. Math. 81 (1995) no. 2, 421–465; II, Russian Acad. Sci. Sb. Math. 82 (1995) no. 1, 21-63.

    MathSciNet  Google Scholar 

  8. Bolsinov, A.V. and Fomenko A.T.: Orbital classification of integrable Euler-type systems in dynamics of a rigid body, Uspekhi Matem. Nauk 48 (1993) no. 5, 163–164 (in Russian).

    Google Scholar 

  9. Fomenko, A.T.: Topological classification of all Hamiltonian differential equations of general type with two degrees of freedom, In: The Geometry of Hamiltonian Systems. Proceedings of a Workshop Held June 5-16, 1989, Springer-Verlag, Berkeley, New York, 1991, 131–339.

    Chapter  Google Scholar 

  10. Fomenko, A.T.: The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions to integrability, Math. USSR Izvestiya 29 (1987) no. 3 pp. 629–658.

    Article  MATH  Google Scholar 

  11. Fomenko, A.T. and Zieschang, H.: A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom, Math. USSR Izvestiya 36 (1991) no. 3, 567–596.

    Article  MathSciNet  MATH  Google Scholar 

  12. Jacobi, C.G.J.: Lectures in Dynamics, Moscow-Leningrad, 1936.

    Google Scholar 

  13. Kozlov, V.V.: Methods of Quantitative Analysis in a Rigid Body Dynamics, Moscow Univ. Press, Moscow, 1980.

    Google Scholar 

  14. Kozlov, V.V.: Two integrable problems of classical mechanics, Vestnik MGU 4 (1981), 80–83 (in Russian).

    Google Scholar 

  15. Kozlov, V.V. and Fedorov Yu.N.: Memoir on Integrable Systems, Springer-Verlag (to appear).

    Google Scholar 

  16. Leontovich, E.A. and Mayer A.G.: On the scheme determining the topological structure of a trajectories foliation, Doklady AN SSSR 103 (1955), no. 4 (in Russian).

    Google Scholar 

  17. Moser, J.: Three integrable Hamiltonian systems connected with isospectral deformations, Advances in Math. 16 (1975) no. 2, 197–220.

    Article  MathSciNet  MATH  Google Scholar 

  18. Nguen, T.Z. and Polyakova L.S.: A topological classification of integrable geodesic flows on the two-dimensional sphere with an additional integral quadratic in moments, J. Nonlinear Sci. 3 (1993) no. 1, 85–108.

    Article  MathSciNet  Google Scholar 

  19. Oshemkov, A.A.: Methods of calculation of the Fomenko-Zieschang invariant, In: Topological Classification of Integrable System, Adv. Soviet Math. 6 Amer. Math. Soc., Providence, RI, 67–146.

    Google Scholar 

  20. Peixoto, M.M.: On the classification of flows on manifolds, In: Dynamical systems. Proc. Symp. Univ. of Bahia, Acad. Press, New York-London, 1973, 389–419.

    Google Scholar 

  21. Sadov, Yu.A.: Action-angle variables in the Euler-Poinsot problem, Priklad. Mat. i Mekh. 34 (1970) no. 5, 962–964 (in Russian).

    Google Scholar 

  22. Topological Classification of Integrable System, Adv. Soviet Math. 6 Amer. Math. Soc., Providence, RI.

    Google Scholar 

  23. Umanskii, Ya.L.: Scheme of three-dimensional dynamical system of Morse-Smale type, Doklady AN SSSR 230 (1976) no. 6, 1286–1289.

    MathSciNet  Google Scholar 

  24. Abraham, R. and Marsden, J.: Foundations of Mechanics, Benjamin-Cummings, New York, 1978.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bolsinov, A.V., Fomenko, A.T. (1998). Orbital Isomorphism Between Two Classical Integrable Systems. In: Komrakov, B.P., Krasil’shchik, I.S., Litvinov, G.L., Sossinsky, A.B. (eds) Lie Groups and Lie Algebras. Mathematics and Its Applications, vol 433. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5258-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5258-7_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6212-1

  • Online ISBN: 978-94-011-5258-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics