Skip to main content

Homology Invariants of Homogeneous Complex Manifolds

  • Chapter
Lie Groups and Lie Algebras

Part of the book series: Mathematics and Its Applications ((MAIA,volume 433))

  • 829 Accesses

Abstract

A connected Lie group has an Iwasawa decomposition G = K × ℝdG, where K is a maximal compact subgroup of G. It is well-known that a complex Lie group G is compact, i.e., d G = 0, if and only if G is a torus. One also has the following

Mathematics Subject Classification (1991): 32M10.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abels, H.: Some topological aspects of proper group actions; noncompact dimension of groups, J. London Math. Soc. 25 (1982) no. 2, 525–538.

    Article  MathSciNet  MATH  Google Scholar 

  2. Akhiezer, D.N.: Dense orbits with two ends, Izv. AN SSSR, Ser. matem. 41 (1977) 308–324.

    MATH  Google Scholar 

  3. Akhiezer, D.N. and Gilligan, B.: On complex homogeneous spaces with top homology in codimension two, Canad. J. Math. 46 (1994) 897–919.

    Article  MathSciNet  MATH  Google Scholar 

  4. Auslander, L. and Tolimieri, R.: Splitting theorems and the structure of solvmanifolds, Ann. of Math. 92 (1970) no. 2, 164–173.

    Article  MathSciNet  MATH  Google Scholar 

  5. Barth, W. and Otte, M.: Invariante holomorphe Funktionen auf reduktiven Liegruppen, Math. Ann. 201 (1973) 97–112.

    Article  MathSciNet  MATH  Google Scholar 

  6. Chevalley, C.: Théorie des groupes de Lie II: Groupes algébriques, Hermann, Paris, 1951.

    Google Scholar 

  7. Freudenthal, H.: Über die Enden topologischer Räume und Gruppen, Math. Z., 33 (1931) 692–713.

    Article  MathSciNet  Google Scholar 

  8. Gilligan, B.: Ends of homogeneous complex manifolds having nonconstant holomorphic functions, Arch. Math. 37 (1981) 544–555.

    Article  MathSciNet  MATH  Google Scholar 

  9. Gilligan, B.: On the ends of complex manifolds homogeneous under a Lie group, Proc. Syrnpos. Pure Math. 52 (1991) Part 2, 217–224.

    Article  MathSciNet  Google Scholar 

  10. Gilligan, B.: On a topological invariant of complex Lie groups and solv-manifolds, C.R. Math. Rep. Acad. Sci. Canada 14 (1992) 109–114.

    MathSciNet  MATH  Google Scholar 

  11. Gilligan, B.: On homogeneous complex manifolds having more than two ends, C.R. Math. Rep. Acad. Sci. Canada 15 (1993) 29–34.

    MathSciNet  MATH  Google Scholar 

  12. Gilligan, B.: Comparing two topological invariants for homogeneous complex manifolds, C.R. Math. Rep. Acad. Sci. Canada 16 (1994) 155–160.

    MathSciNet  MATH  Google Scholar 

  13. Gilligan, B.: Structure of complex homogeneous spaces with respect to topological invariants, Schriftenreihe, Heft Nr. 218, Forschungsschwerpunkt Komplexe Mannigfaltigkeiten, Bochum, 1994.

    Google Scholar 

  14. Gilligan, B.: Complex homogeneous spaces of real groups with top homology in codimension two, Ann. Global Anal. Geom. 13 (1995) 303–314.

    Article  MathSciNet  MATH  Google Scholar 

  15. Gilligan, B.: On closed radical orbits in certain homogeneous complex manifolds, Bull. Austr. Math. Soc. 54 (1996), to appear.

    Google Scholar 

  16. Gilligan, B. and Heinzner, P.: Globalization of holomorphic actions on principal bundles, preprint, 1995.

    Google Scholar 

  17. Gilligan, B. and Huckleberry, A.T.: Complex homogeneous manifolds with two ends, Michigan Math. J., 28 (1981) 183–198.

    Article  MathSciNet  MATH  Google Scholar 

  18. Gilligan, B., Oeljeklaus, K. and Richthofer, W.: Homogeneous complex manifolds with more than one end, Canad. J. Math. 41 (1989) 163–177.

    Article  MathSciNet  MATH  Google Scholar 

  19. Huckleberry, A.T. and Livorni, L.: A classification of homogeneous surfaces, Canad. J. Math. 33 (1981) 1097–1110.

    Article  MathSciNet  MATH  Google Scholar 

  20. Huckleberry, A.T. and Oeljeklaus, E.: Classification Theorems for Almost Homogeneous Spaces, Publ. Inst. E. Cartan, 9, Nancy, 1984.

    Google Scholar 

  21. Huckleberry, A.T. and Oeljeklaus, E.: On holomorphically separable complex solvmanifolds, Ann. Inst. Fourier 36 (1986) 57–65.

    Article  MathSciNet  MATH  Google Scholar 

  22. Iwasawa, K.: On some types of topological groups, Ann. of Math. 50 (1949) 507–558.

    Article  MathSciNet  MATH  Google Scholar 

  23. Karpelevich, F.I.: On a fibration of homogeneous spaces, Uspekhi Matem. Nauk 11 (1956) no. 3 (69), 131–138 (in Russian).

    MATH  Google Scholar 

  24. Loeb, J-J.: Action d’une forme réelle d’un groupe de Lie complexe sur les fonctions plurisousharmoniques, Ann. Inst. Fourier 35 (1985) 49–87.

    Article  MathSciNet  Google Scholar 

  25. Matsushima, Y. and Morimoto, A.: Sur certains espaces fibrés holomorphes sur une variété de Stein, Bull. Soc. Math. France 88 (1960) 137–155.

    MathSciNet  MATH  Google Scholar 

  26. Morimoto, A.: Noncompact complex Lie groups without nonconstant holomorphic functions, Proc. Conf. in Complex Analysis, Minneapolis (1964) 256–272.

    Google Scholar 

  27. Mostow, G.D.: On covariant fiberings of Klein spaces, I, II, Amer. J. Math. 77 (1995) 247-278; 84 (1962) 466–474.

    Article  MathSciNet  MATH  Google Scholar 

  28. Mostow, G.D.: Some applications of representative functions to solv-manifolds, Amer. J. Math. 93 (1971) 11–32.

    Article  MathSciNet  MATH  Google Scholar 

  29. Oeljeklaus, K. and Richthofer, W.: Homogeneous complex surfaces, Math. Ann. 268 (1984) 273–292.

    Article  MathSciNet  MATH  Google Scholar 

  30. Oeljeklaus, K. and Richthofer, W.: On the structure of complex solvmanifolds, J. Diff. Geom. 27 (1988) 399–421.

    MathSciNet  MATH  Google Scholar 

  31. Tits, J. Free subgroups in linear groups, J. of Algebra 20 (1972) no. 2, 250–270.

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, H-C.: One-dimensional cohomology group of locally compact metrically homogeneous spaces, Duke Math. J. 19 (1952) 303–310.

    Article  MathSciNet  MATH  Google Scholar 

  33. Winkelmann, J.: The classification of three-dimensional homogeneous complex manifolds, dissertation, Bochum, 1987.

    Google Scholar 

  34. Yau, S.T.: Remarks on the group of isometries of a Riemannian manifold, Topology 16 (1977) 239–247.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gilligan, B. (1998). Homology Invariants of Homogeneous Complex Manifolds. In: Komrakov, B.P., Krasil’shchik, I.S., Litvinov, G.L., Sossinsky, A.B. (eds) Lie Groups and Lie Algebras. Mathematics and Its Applications, vol 433. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5258-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5258-7_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6212-1

  • Online ISBN: 978-94-011-5258-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics