Skip to main content

Ices in the Giant Planets

  • Chapter

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 227))

Abstract

Interior models show that Jupiter and Saturn consist mostly of free hydrogen and helium, while Uranus and Neptune consist mostly of material with a zero-pressure density near 1 g cm−3. The dominant material in Uranus and Neptune is almost certainly ice, while models imply that Jupiter and Saturn each contain roughly one Uranus or Neptune mass of non-hydrogen-helium material which is probably ice. Although the ice component of the giant planets is largely inaccessible to direct observation, a considerable body of indirect evidence suggests that these four planets contain the largest reservoirs of ice in the planetary system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bjoraker, G.L., Larson, H.P. and Kunde, V.G. (1986) The abundance and distribution of water vapor in Jupiter’s atmosphere. Astrophys. J..

    Google Scholar 

  • Carlson, B.E., Lads, A.A. and Rossow, W.B. (1992) The abundance and distribution of water vapor in the Jovian troposphere as inferred from VOYAGER IRIS observations, Astrophys. J., 388, pp. 648–668.

    Article  ADS  Google Scholar 

  • Chabrier, G., Saumon, D, Hubbard, W.B. and Lunine, J.I. (1992) The molecular-metallic transition of hydrogen and the structure of Jupiter and Saturn, Astrophys. J., 391, pp. 817–826.

    Article  ADS  Google Scholar 

  • Cieplak, P., Kollman, P. and Lybrand, T. (1990) A new water potential including polarization: application to gas-phase, liquid, and crystal properties of water, J. Chem. Phys., 92, pp. 6755–6760.

    Article  ADS  Google Scholar 

  • de Pater, I., Romani, P.N. and Atreya, S.K. (1989) Uranus deep atmosphere revealed, Icarus, 82, pp. 288–313.

    Article  ADS  Google Scholar 

  • Eberhardt, P., Reber, M., Krankowsky, D. and Hodges, R.R. (1995) The D/H and 18O/16O ratios in water from comet P/Halley, Astron. and Astophys. to appear.

    Google Scholar 

  • Gautier, D. and Owen, T. (1989) The composition of outer planet atmospheres. In: S.K. Atreya, J.B. Pollack and M.S. Matthews (eds.), Origin and Evolution of Planetary and Satellite Atmospheres, University of Arizona Press, Tucson, pp. 487–512.

    Google Scholar 

  • Gudkova, T.V., Zharkov, V.N. and Leont’ev, V.V. (1989) Models of Jupiter and Saturn having a two-layer molecular envelope, Sol. Sys. Res. 22, pp. 159–166.

    ADS  Google Scholar 

  • Guillot, T., Chabrier, G., Gautier, D. and Morel, P. (1994) Effect of radiative transport on the evolution of Jupiter and Saturn, Astrophys. J., 450, pp. 463–472.

    Article  ADS  Google Scholar 

  • Hemley, R.J., Jephcoat, A.P., Mao, H.K., Zha, C.S., Finger, L.W. and Cox, D.E. (1987) Static compression of H2O-ice to 128 GPa (1.28Mbar), Nature, 330, pp. 737–740.

    Article  ADS  Google Scholar 

  • Hubbard, W.B. (1968) Thermal structure of Jupiter, Astrophys. J., 152, pp. 745–754.

    Article  ADS  Google Scholar 

  • Hubbard, W.B. and MacFarlane, J.J. (1980) Theoretical predictions of deuterium abundances in the jovian planets, Icarus, 44, pp. 676–682.

    Article  ADS  Google Scholar 

  • Hubbard, W.B. and Marley, M.S. (1989) Optimized Jupiter, Saturn, and Uranus interior models, Icarus, 78, pp. 102–118.

    Article  ADS  Google Scholar 

  • Kaiser, M.L., Zarka, P., Desch, M.D. and Farrell, W.M. (1991) Restrictions on the characteristics of Neptunian lightning, J. Geophys. Res., 96 suppl., pp. 19,043–19,047.

    Article  ADS  Google Scholar 

  • Kirk, R.L. and Stevenson, D.J. (1987) Hydromagnetic implications of zonal flows in the giant planets, Astrophys. J., 316, pp. 836–846.

    Article  ADS  Google Scholar 

  • Lissauer, J.J. (1987) Time scales for planetary accretion and the structure of the proto-planetary disk, Icarus, 69, pp. 249–265.

    Article  ADS  Google Scholar 

  • Marley, M.S., Gomez, P. and Podolak, M. (1995) Monte Carlo interior models for Uranus and Neptune, J. Geophys. Res., submitted.

    Google Scholar 

  • Mitchell, A.S. and Nellis, W.J. (1982) Equation of state and electrical conductivity of water and ammonia shocked to 100 GPa (lOMbar) pressure range, J. Chem. Phys., 76, pp. 6273–6281.

    Article  ADS  Google Scholar 

  • Nellis, W.J., Ree, F.H., van Thiel, M. and Mitchell, A.C. (1981) Shock compression of liquid carbon monoxide and methane to 90 GPa (900 kbar), J. Chem. Phys., 75, pp. 3055–3063.

    Article  ADS  Google Scholar 

  • Podolak, M. and Cameron, A.G.W. (1974) Models of the giant planets, Icarus, 22, pp. 123–148.

    Article  ADS  Google Scholar 

  • Podolak, M., Hubbard, W.B. and Stevenson, D.J. (1991) Models of Uranus’ interior and magnetic field. In: J. Bergstralh, E. Minor, and M. S. Matthews (eds.), Uranus, Univ. of Arizona Press, Tucson, pp. 2–64.

    Google Scholar 

  • Podolak, M., Hubbard, W.B. and Pollack, J.B. (1993) Gaseous accretion and the formation of giant planets. In: G. Levy, J.I. Lunine and M. Matthews (eds.), Protostars and Planets III Univ. of Arizona Press, Tucson, pp. 1109–1147.

    Google Scholar 

  • Podolak, M., Weizman, A. and Marley, M. (1995) Comparative models of Uranus and Neptune Planet, and Space sci., to appear.

    Google Scholar 

  • Radousky, H.B., Mitchell, A.C. and Nellis, W.J. (1990) Shock temperature measurements of planetary ices: NH3, CH4, and “synthetic Uranus”, J. Chem. Phys., 93, pp. 8235–8239.

    Article  ADS  Google Scholar 

  • Ree, F. (1976) Equation of state of H2O. Report UCRL-52190 Lawrence Livermore Lab., Livermore, California.

    Google Scholar 

  • Ree, F. (1979) Systematics of high-pressure and high-temperature behavior of hydrocarbons, J. Chem. Phys., 70, pp. 974–983.

    Article  ADS  Google Scholar 

  • Ross, M. (1981) The ice layer in Uranus and Neptune — diamonds in the sky? Nature, 292, pp. 435–436.

    Article  ADS  Google Scholar 

  • Stevenson, D.J. and Lunine, J.I. (1988) Rapid formation of Jupiter by diffusive redistribution of water vapor in the solar nebula, Icarus, 75, pp. 146–155.

    Article  ADS  Google Scholar 

  • Yair, Y., Levin, Z. and Tzivion, S. (1995) Lightning generation in a Jovian thundercloud: results from an axisymmetric numerical cloud model, Icarus, 115, pp. 421–434.

    Article  ADS  Google Scholar 

  • Zharkov, V.N., Tsarevsky, I.A. and Trubitsyn, V.P. (1978) Equations of state of hydrogen, hydrogen compounds, crystals of inert gases, oxides, iron and FeS. NASA TM 75311.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Podolak, M., Hubbard, W.B. (1998). Ices in the Giant Planets. In: Schmitt, B., De Bergh, C., Festou, M. (eds) Solar System Ices. Astrophysics and Space Science Library, vol 227. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5252-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5252-5_30

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6209-1

  • Online ISBN: 978-94-011-5252-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics