Skip to main content

The Rings of the Outer Planets

  • Chapter
Book cover Solar System Ices

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 227))

Abstract

All four of the giant planets are encircled by rings. Saturn’s rings were discovered by Galileo in 1610. Huygens was the first to realize, during the 1655–1656 ring-plane crossing, that the changing appearance of the rings results from their varying tilt as Saturn orbits the Sun (van Helden, 1984). Until 1977, Saturn’s rings were thought to be unique. In that year, the narrow, opaque uranian rings were discovered during the occultation of a bright star by Uranus (Elliot and Kerr, 1984). Two years later, Voyager 1 returned the first image of the broad, faint jovian ring, whose existence had been hinted at by a drop in particle fluxes measured by Pioneer 10 in 1976 (Burns et al. 1984). Finally, a stellar occultation in 1984 revealed the existence of incomplete ring ‘arcs’ around Neptune (Hubbard et al. 1986). Voyager 2 subsequently imaged the neptunian rings, and showed that the arcs were the densest component of an extensive system of faint rings (Smith et al. 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Araki, S. (1991a) Dynamics of planetary rings, American Scientist, 79, pp. 44–59.

    ADS  Google Scholar 

  • Araki, S. (1991b) The dynamics of particle disks. III — Dense and spinning particle disks, Icarus, 90, pp. 139–171.

    Article  MathSciNet  ADS  Google Scholar 

  • Araki, S. and Tremaine, S. (1986) The dynamics of dense particle disks, Icarus, 65, pp. 83–109.

    Article  ADS  Google Scholar 

  • Asphaug, E. and Benz, W. (1996) Size, density, and structure of comet Shoemaker-Levy 9 inferred from the physics of tidal breakup, Icarus, 121, pp. 225–248.

    Article  ADS  Google Scholar 

  • Bauer, J., Lissauer, J.J. and Simon, M. (1997) Edge-on observations of Saturn’s E and G rings in the near-IR, Icarus, 125, pp. 440–445.

    Article  ADS  Google Scholar 

  • Becker, L.A., Bada, J., Winans, R.E., et al. (1994) Fullerenes in the 1.8 byr old Sudbury impact structure, Science, 265, pp. 642–645.

    Article  ADS  Google Scholar 

  • Becker, L., Poreda, R.J. and Bada, J.L. (1996) Extraterrestrial helium trapped in fullerenes in the Sudbury impact structure, Science, 272, pp. 249–252.

    Article  ADS  Google Scholar 

  • Borderies, N. (1989) Ring dynamics, Cel. Mech. Dyn. Astron., 46, pp. 207–230.

    Article  ADS  MATH  Google Scholar 

  • Borderies, N., Goldreich, P. and Tremaine, S. (1984) Unsolved problems in planetary ring dynamics. In: Greenberg, R.J., and Brahic, A. (eds.) Planetary Rings. Arizona, Tucson, pp. 713–734.

    Google Scholar 

  • Borderies, N., Goldreich, P. and Tremaine, S. (1985) A granular flow model for dense planetary rings, Icarus, 63, pp. 406–420.

    Article  ADS  Google Scholar 

  • Bosh, A.S. and Rivkin, A.S. (1995) Satellites of Saturn, Inter. Astron. Union Circular 6192.

    Google Scholar 

  • Bosh, A.S. and Rivkin, A.S. (1996) Observations of Saturn’s inner satellites during the May 1995 ring-plane crossing, Science, 272, pp. 518–521.

    Article  ADS  Google Scholar 

  • Brahic, A. (1977) Systems of colliding bodies in a gravitational field. I — Numerical simulation of the standard model, Astron. Astrophys., 54, pp. 895–907.

    ADS  Google Scholar 

  • Brahic, A. and Hénon, M. (1977) Systems of colliding bodies in a gravitational field. II — Effect of transversal viscosity, Astron. Astrophys., 59, pp. 1–7.

    ADS  Google Scholar 

  • Bridges, F.G., Hatzes, A. and Lin, D.N.C. (1984) Structure, stability and evolution of Saturn’s rings, Nature, 309, pp. 333–335.

    Article  ADS  Google Scholar 

  • Bridges, F.G., Supulver, K.D., Lin, D.N.C., et al. (1996) Energy loss and sticking mechanisms in particle aggregation in planetesimal formation, Icarus, 123, pp. 422–435.

    Article  ADS  Google Scholar 

  • Brophy, T.G., Esposito, L.W., Stewart, G.R. and Rosen, P.A. (1992) Numerical simulation of satellite-ring interactions — Resonances and satellite-ring torques, Icarus, 100, pp. 412–433.

    Article  ADS  Google Scholar 

  • Brophy, T.G. and Rosen, P.A. (1992) Density waves in Saturn’s rings probed by radio and optical occultation — Observational tests of theory, Icarus, 99, pp. 448–467.

    Article  ADS  Google Scholar 

  • Buratti, B.J., Hillier, J.K. and Wang, M. (1996) The lunar opposition surge: Observations by Clementine, Icarus, 124, pp. 490–499.

    Article  ADS  Google Scholar 

  • Bunch, T.E., Becker, L., Bada, J., et al. (1996) The effects of hypervelocity impact on carbonaceous compounds: Experimental insights. In: Doyle L.R. (ed.) Circumstellar Habitable Zones. Travis House, Menlo Park, California, pp. 331–350.

    Google Scholar 

  • Burns, J.A., Showalter, M.R. and Morfill, G.E. (1984) The ethereal rings of Jupiter and Saturn. In: Greenberg, R.J. and Brahic, A. (eds.) Planetary Rings. Arizona, Tucson, pp. 200–272.

    Google Scholar 

  • Burns, J.A., Schaffer, L.E., Greenberg R.J. and Showalter, M.R. (1985) Lorentz resonances and the structure of the Jovian ring, Nature, 316, pp. 115–119.

    Article  ADS  Google Scholar 

  • Canup, R.M. and Esposito, L.W. (1995) Accretion in the Roche zone: Coexistence of rings and ring moons, Icarus, 113, pp. 331–352.

    Article  ADS  Google Scholar 

  • Canup, R.M. and Esposito, L.W. (1997) Evolution of the G Ring and the population of macroscopic ring particles, Icarus, 126, pp. 28–41.

    Article  ADS  Google Scholar 

  • Cheng, A.F. and Lanzerotti, L.J. (1978) Ice sputtering by radiation belt protons and the rings of Saturn and Uranus, J. Geophys. Res., 83, pp. 2597–2602.

    Article  ADS  Google Scholar 

  • Chyba, C.F., Thomas, P.J., Brookshaw, L. and Sagan, C. (1990) Cometary delivery of organic molecules to the eartly Earth, Science, 249, pp. 366–373.

    Article  ADS  Google Scholar 

  • Clark, R.N. (1980) Ganymede, Europa, Callistoand Saturn’s rings — Compositional analysis from reflectance spectroscopy, Icarus 44, pp. 388–409.

    Article  ADS  Google Scholar 

  • Clark, R.N. and McCord, T.B. (1980) The rings of Saturn — New near-infrared reflectance measurements and a 0.326–4.08 micron summary, Icarus, 43, pp. 161–168.

    Article  ADS  Google Scholar 

  • Clark, R.N., Fanale, F.P. and Gaffey, M.J. (1986) Surface composition of natural satellites. In: Burns, J.A. and Matthews, M.S. (eds.) Satellites. Arizona, Tucson, pp. 437–491.

    Google Scholar 

  • Colwell, J.E. (1994) The disruption of planetary satellites and the creation of planetary rings, Planet. Space Sci., 42, pp. 1139–1149.

    Article  ADS  Google Scholar 

  • Colwell, J.E. and Esposito, L.W. (1990) A model of dust production in the Neptune ring system, Geophys. Res. Lett. 17, pp. 1741–1744.

    Article  ADS  Google Scholar 

  • Colwell, J.E. and Esposito, L.W. (1992) Origins of the rings of Uranus and Neptune. I — Statistics of satellite disruptions, J. Geophys. Res., 97, pp. 10227–10241.

    Article  ADS  Google Scholar 

  • Colwell, J.E. and Esposito L.W. (1993) Origins of the rings of Uranus and Neptune. II — Initial conditions and ring moon populations, J. Geophys. Res., 98, pp. 7387–7401.

    Article  ADS  Google Scholar 

  • Cook, A.F. and Franklin, F.A. (1964) Rediscussion of Maxwell’s Adams Prize essay on the stability of Saturn’s rings, Astron. I., 69, pp. 173–200.

    MathSciNet  ADS  Google Scholar 

  • Cook, A.F. and Franklin, F.A. (1970) The effects of meteoroidal bombardment of Saturn’s rings, Astron. J., 75, pp. 195–205.

    Article  ADS  Google Scholar 

  • Cooke, M.L. (1991) Saturn’s Rings: Photometric Studies of the C Ring and Radial Variation in the Keeler Gap, unpublished Ph.D. thesis, Cornell.

    Google Scholar 

  • Cruikshank, D.P., Allamandola, L.J., Hartmann, W.K., et al. (1991) Solid CN-bearing material on outer solar system bodies, Icarus, 94, pp. 345–353.

    Article  ADS  Google Scholar 

  • Cruikshank, D.P., Brown, R.H., Calvin, W.M. and Roush, T.L. (1997) Ices on the satellites of Jupiter, Saturnand Uranus, in this volume.

    Google Scholar 

  • Cuzzi, J.N. (1985) Rings of Uranus — Not so thick, not so black, Icarus, 63, pp. 312–316.

    Article  ADS  Google Scholar 

  • Cuzzi, J.N. (1995) Evolution of planetary ring-moon systems, Earth, Moon, Planets, 67, pp. 179–208.

    Article  ADS  Google Scholar 

  • Cuzzi, J.N. and Burns, J.A. (1988) Charged particle depletion surrounding Saturn’s F ring — Evidence for a moonlet belt?, Icarus, 74, pp. 284–324.

    Article  ADS  Google Scholar 

  • Cuzzi, J.N. and Durisen, R.H. (1990) Bombardment of planetary rings by meteoroids — General formulation and effects of Oort Cloud projectiles. Icarus, 84, pp. 467–501.

    Article  ADS  Google Scholar 

  • Cuzzi, J.N. and Estrada, P.R. (1996) Compositional evolution of Saturn’s rings: Ice, tholin, and “Chiron”-dust, Bull. Amer. Astron. Soc, 28 (abstract) pp. 1124–1125.

    ADS  Google Scholar 

  • Cuzzi, J.N., Lissauer, J.J., Esposito, L.W., et al. (1984) Saturn’s rings: Properties and processes. In: Greenberg, R. J. and Brahic, A. (eds.) Planetary Rings. Arizona, Tucson, pp. 73–199.

    Google Scholar 

  • Danielson, G.E., McMuldroch, S., Carlson, R.W., et al. (1997) The jovian ring as seen by the Galileo NIMS at high phase angle (abstract), Bull. Amer. Astron. Soc, 29, in press (http://cass.jsc.nasa.gov/meetings/dps97/html/Hl710/H1711.html)

  • Daubar, I.J., Ockert-Bell, M.E., Burns, J.A., et al. (1997) Galileo saw Jupiter’s rings, too (abstract), Bull. Amer. Astron. Soc. 29, in press (http://cass.jsc.nasa.gov/meetings/dps97/html/H1710/Hl710.html)

  • Denk, T., Jaumann, R. and Neukum, G. (1995) The distribution of ice and impurities on the icy satellites of Saturn (abstract), Solar System Ices meeting abstract book, p. 29

    Google Scholar 

  • de Pater, I. and Dickel J.R. (1991) Multifrequency radio observations of Saturn at ring inclination angles between 5 and 26 degrees, Icarus, 94, pp. 474–492.

    Article  ADS  Google Scholar 

  • de Pater, L, Showalter, M.R., Lissauer, J.J. and Graham, J.R. (1996) Keck infrared observations of Saturn’s E and G Rings during Earth’s 1995 ring plane crossings, Icarus, 121, pp. 195–198.

    Article  ADS  Google Scholar 

  • Dilley, J.P. (1993) Energy loss in collisions of icy spheres: Loss mechanism and size-mass dependence, Icarus, 105, pp. 225–234.

    Article  ADS  Google Scholar 

  • Dones, L. (1991) A recent cometary origin for Saturn’s rings?, Icarus, 92, pp. 194–203.

    Article  ADS  Google Scholar 

  • Dones, L., Cuzzi, J.N. and Showalter, M.R. (1993) Voyager photometry of Saturn’s A Ring, Icarus, 105, pp. 184–215.

    Article  ADS  Google Scholar 

  • Dones, L., Gladman, B., Melosh, H.J., et al. (1997) Dynamical lifetimes and final fates of small bodies: Orbit integrations vs. Öpik calculations, Icarus, submitted.

    Google Scholar 

  • Doyle, L.R., Dones, L. and Cuzzi, J.N. (1989) Radiative transfer modeling of Saturn’s outer B ring, Icarus, 80, pp. 104–135.

    Article  ADS  Google Scholar 

  • Durisen, R.H. (1995) An instability in planetary rings due to ballistic transport, Icarus, 115, pp. 66–85.

    Article  ADS  Google Scholar 

  • Durisen, R.H., Bode, P.W., Cuzzi, J.N., et al. (1992) Ballistic transport in planetary ring systems due to particle erosion mechanisms. II — Theoretical models for Saturn’s A-and B-ring inner edges, Icarus, 100, pp. 364–393.

    Article  ADS  Google Scholar 

  • Durisen, R.H., Bode, P.W., Dyck, S., et al. (1996) Ballistic transport in planetary ring systems due to particle erosion mechanisms. III. Torques and mass loading by mete-oroid impacts, Icarus, 124, pp. 220–236.

    Article  ADS  Google Scholar 

  • Elnszkiewicz, J. (1990) Compaction and internal structure of Mimas, Icarus, 84, pp. 215–225.

    Article  ADS  Google Scholar 

  • Elliot, J. and Kerr, R. (1984) Rings. MIT, Cambridge, Massachusetts.

    Google Scholar 

  • Elliot, J.L. and Nicholson, P.D. (1984) The rings of Uranus. In: Greenberg R.J., Brahic A. (eds.) Planetary Rings. Arizona, Tucson, pp. 25–72.

    Google Scholar 

  • Epstein, E.E., Janssen, M.A. and Cuzzi, J.N. (1984) Saturn’s rings — 3-mm low-inclination observations and derived properties, Icarus, 58, pp. 403–411.

    Article  ADS  Google Scholar 

  • Esposito, L.W. (1986) Structure and evolution of Saturn’s rings, Icarus, 67, pp. 345–357.

    Article  ADS  Google Scholar 

  • Esposito, L.W. (1993) Understanding planetary rings, Ann. Rev. Earth Planet. sci., 21, pp. 487–523.

    Article  ADS  Google Scholar 

  • Esposito, L.W. and Colwell, J.E. (1989) Creation of the Uranus rings and dust bands, Nature, 339, pp. 605–607. Erratum in Nature, 340, p. 322 (1989)

    Article  ADS  Google Scholar 

  • Esposito, L.W., Cuzzi, J.N., Holberg, J.B., et al. (1984) Saturn’s Rings: Structure, dynamicsand particle properties. In: Gehreis, T. and Matthews, M.S. (eds.) Saturn. Arizona, Tucson, pp. 463–545.

    Google Scholar 

  • Esposito, L.W., Brahic, A., Burns, J.A. and Marouf, E.A. (1991) Particle properties and processes in Uranus’ rings. In: Bergstralh J.T., Miner E.D., Matthews M.S. (eds.) Uranus. Arizona, Tucson, pp. 410–465.

    Google Scholar 

  • Estrada, P.R. and Cuzzi, J.N. (1996) Voyager observations of the color of Saturn’s rings, Icarus, 122, pp. 251–272. Erratum in Icarus, 125, p. 474.

    Article  ADS  Google Scholar 

  • Ferrari, C. and Brahic, A. (1994) Azimuthal brightness asymmetries in planetary rings. 1: Neptune’s arcs and narrow rings, Icarus 111, pp. 193–210.

    Article  ADS  Google Scholar 

  • Foryta D.W. and Sicardy, B. (1996) The dynamics of the Neptunian Adams Ring’s arcs, Icarus, 123, pp. 129–167.

    Article  ADS  Google Scholar 

  • French, R.G. and Nicholson, P.D. (1995) Edge waves and librations in the uranian e Ring, Bull. Amer. Astron. Soc, 27, p. 1205.

    ADS  Google Scholar 

  • French, R.G., Nicholson, P.D., Porco, C.C. and Marouf, E.A. (1991) Dynamics and structure of the uranian rings. In: Bergstralh J.T., Miner E.D., Matthews M.S. (eds.) Uranus. Arizona, Tucson, pp. 327–409.

    Google Scholar 

  • Froidevaux, L., Matthews, K. and Neugebauer, G. (1981) Thermal response of Saturn’s ring particles during and after eclipse, Icarus, 46, pp. 18–26.

    Article  ADS  Google Scholar 

  • Goldreich, P. and Porco, C.C. (1987) Shepherding of the uranian rings. II. Dynamics. Astron. J., 93, pp. 730–737.

    Article  ADS  Google Scholar 

  • Goldreich, P. and Tremaine, S. (1978) The velocity dispersion in Saturn’s rings, Icarus, 34, pp. 227–239.

    Article  ADS  Google Scholar 

  • Goldreich, P. and Tremaine, S. (1979) Towards a theory for the Uranian rings, Nature, 277, pp. 97–99.

    Article  ADS  Google Scholar 

  • Goldreich, P. and Tremaine, S. (1982) The dynamics of planetary rings, Ann. Rev. Astron. Astrophys., 20, pp. 249–283.

    Article  ADS  Google Scholar 

  • Goldreich, P., Tremaine, S. and Borderies, N. (1986) Towards a theory for Neptune’s arc rings, Astron J., 92, pp. 490–494.

    Article  ADS  Google Scholar 

  • Gradie, J., Thomas, P. and Veverka, J. (1980) The surface composition of Amalthea, Icarus, 44, pp. 373–387.

    Article  ADS  Google Scholar 

  • Graps, A.L., Showalter, M.R., Lissauer, J. J. and Kary, D.M. (1995) Optical depth profiles and streamlines of the uranian ∈ Ring, Astron. J., 109, pp. 2262–2273.

    Article  ADS  Google Scholar 

  • Greenberg, R.J. and Brahic, A., eds. (1984) Planetary Rings. Arizona, Tucson.

    Google Scholar 

  • Greenberg, R. and Petit, J.-M. (1996) Viscosity in keplerian disks: Steady-state velocity distribution and non-local collision effects, Icarus, 123, pp. 524–535.

    Article  ADS  Google Scholar 

  • Gresh, D.L., Marouf, E.A. and Tyler, L. (1997) Voyager radio occultation by Uranus’ rings II. Eccentricity gradients, confining satellites, thicknessand particle sizes, Icarus, submitted.

    Google Scholar 

  • Gresh, D.L., Marouf, E.A., Tyler, L., et al. (1989) Voyager radio occultation by Uranus’ rings. I — Observational results, Icarus 78, pp. 131–168.

    Article  ADS  Google Scholar 

  • Griffith, C, Moeckel, R., Cruikshank, D., et al. (1995) Near-IR spectra of the surfaces of Titan, Rhea, Iapetus and Enceladus (abstract), Solar System Ices meeting abstract book, p. 51.

    Google Scholar 

  • Grossman, A.W. (1990) Microwave Imaging of Saturn’s Deep Atmosphere and Rings, unpublished Ph.D. thesis, California Institute of Technology.

    Google Scholar 

  • Grün, E. (1994) Dust measurements in the outer solar system. In: Milani, A., di Martino, M. and Cellino, A. (eds.), Asteroids, Comets, Meteors 1993 (IAU Symposium 160), p. 367

    Google Scholar 

  • Grün, E., Zook, H.A., Baguhl, M., et al. (1993) Discovery of Jovian dust streams and interstellar grains by the Ulysses spacecraft, Nature, 362, pp. 428–430.

    Article  ADS  Google Scholar 

  • Grün, E., Gustafson, B., Mann, I., et al. (1994) Interstellar dust in the heliosphere, Astron. Astrophys., 286, pp. 915–924.

    ADS  Google Scholar 

  • Grün, E., Baguhl, M., Hamilton, D.P., et al. (1996) Constraints from Galileo observations on the origin of jovian dust streams, Nature, 381, pp. 395–398.

    Article  ADS  Google Scholar 

  • Hall, D.T., Feldman, P.D., Holberg, J.B. and McGrath, M.A. (1996) Fluorescent hydroxyl emissions from Saturn’s ring atmosphere. Science, 272, pp. 516–518.

    Article  ADS  Google Scholar 

  • Hamilton, D.P. (1996a) The asymmetric time-variable tings of Mars, Icarus, 119, pp. 153–172.

    Article  MathSciNet  ADS  Google Scholar 

  • Hamilton D.P. (1996b) Dust from Jupiter’s gossamer ring and the galilean satellites, Bull. Amer. Astron. Soc, 28 (abstract), p. 1123. (http://cass.jsc.nasa.gov/meetings/committee/html/Hl801/H1801.html)

    ADS  Google Scholar 

  • Hamilton, D.P. and Burns J.A. (1994) Origin of Saturn’s E Ring: Self-sustained, naturally. Science, 264, pp. 550–553.

    Article  ADS  Google Scholar 

  • Hänninen, J. and Porco, C. (1997) Collisional simulations of Neptune’s ring arcs. Icarus, 126, pp. 1–27.

    Article  ADS  Google Scholar 

  • Hapke, B.W., Nelson, R.M. and Smythe, W.D. (1993) The opposition effect of the moon — The contribution of coherent backscatter, Science, 260, pp. 509–511.

    Article  ADS  Google Scholar 

  • Hapke, B.W., Nelson, R.M. and Smythe, W.D. (1996) The lunar opposition effect revisited, Bull. Amer. Astron. Soc. 28 (abstract) p. 1122. (http://cass.jsc.nasa.gov/meetings/committee/html/H1705/H1705.html)

    ADS  Google Scholar 

  • Hatzes, A.P., Bridges, F.G. and Lin, D.N.C. (1988) Collisional properties of ice spheres at low impact velocities, Mon. Not. R. Astron. Soc, 231, pp. 1091–1115.

    ADS  Google Scholar 

  • Hatzes, A.P., Bridges, F., Lin, D.N.C. and Sachtjen, S. (1991) Coagulation of particles in Saturn’s rings — Measurements of the cohesive force of water frost, Icarus, 89, pp. 113–121.

    Article  ADS  Google Scholar 

  • Horányi, M. (1994) New jovian ring? Geophys. Res. Lett., 21, pp. 1039–1042.

    Article  ADS  Google Scholar 

  • Horányi M. (1996) Charged dust dynamics in the solar system, Ann. Rev. Astron. Astrophys., 34, pp. 383–418.

    Article  ADS  Google Scholar 

  • Horányi, M., Burns, J.A. and Hamilton, D.P. (1992) The dynamics of Saturn’s E ring particles, Icarus, 97, pp. 248–259.

    Article  ADS  Google Scholar 

  • Horányi, M. and Cravens, T.E. (1996) The structure and dynamics of Jupiter’s rings. Nature, 381, pp. 293–295.

    Article  ADS  Google Scholar 

  • Hubbard, W.B., Brahic, A., Sicardy, B., et al. (1986) Occultation detection of a Neptunian ring-like arc, Nature, 319, pp. 636–640.

    Article  ADS  Google Scholar 

  • Humes, D.H. (1980) Results of Pioneer 10 and 11 meteoroid experiments — Interplanetary and near-Saturn, J. Geophys. Res. 85, pp. 5841–5852.

    Article  ADS  Google Scholar 

  • Johnson, P.E., Kemp, J.C., King, R., et al. (1980) New results from optical polarimetry of Saturn’s rings, Nature, 283, pp. 146–149.

    Article  ADS  Google Scholar 

  • Karkoschka, E. (1994) Spectrophotometry of the jovian planets and Titan at 300-to 1000-nm wavelength: The methane spectrum, Icarus, 111, pp. 174–192.

    Article  ADS  Google Scholar 

  • Karkoschka, E. (1997) Rings and satellites of Uranus: Colorful and not so dark, Icarus, 125, pp. 348–363.

    Article  ADS  Google Scholar 

  • Kato, M., Iijima, Y.-I. and Arakawa, M. (1995) Ice-on-ice impact experiments, Icarus, 113, pp. 423–441.

    Article  ADS  Google Scholar 

  • Kuiper, G.P., Cruikshank, D.P. and Fink, U. (1970) The composition of Saturn’s rings. Sky Telescope, 39, p. 14.

    ADS  Google Scholar 

  • Leinert, C. and Grün, E. (1990) Interplanetary dust. In: Schwenn R., Marsch E. (eds.) Physics of the Inner Heliosphere. 1. Large-Scale Phenomena. Springer-Verlag, New York.

    Google Scholar 

  • Levison, H.F. and Duncan, M.J. (1997) From the Kuiper Belt to Jupiter-family comets: The spatial distribution of ecliptic comets, Icarus, 127, pp. 13–32.

    Article  ADS  Google Scholar 

  • Lissauer, J.J., Goldreich, P. and Tremaine, S. (1985) Evolution of the Janus-Epimetheus coorbital resonance due to torques from Saturn’s rings, Icarus, 64, pp. 425–434.

    Article  ADS  Google Scholar 

  • Lissauer, J.J., Squyres, S.W. and Hartmann, W.K. (1988) Bombardment history of the Saturn system, J. Geophys. Res., 93, pp. 13776–13804.

    Article  ADS  Google Scholar 

  • Longaretti, P.-Y. (1989) Saturn’s main ring particle size distribution — An analytic approach, Icarus, 81, pp. 51–73.

    Article  ADS  Google Scholar 

  • Longaretti, P.-Y. and Rappaport, N. (1995) Viscous overstabilities in dense narrow planetary rings. Icarus, 116, pp. 376–396.

    Article  ADS  Google Scholar 

  • Marouf, E.A., Gresh, D.L. and Tyler, G.L. (1987) Eccentricity gradients of Uranus’ ∈, β, and f α rings (abstract), Bull. Amer. Astron. Soc, 19, p. 883.

    ADS  Google Scholar 

  • Martelli, G., Ryan, E.V., Nakamura, A.M. and Giblin, I. (1994) Catastrophic disruption experiments: Recent results, Planet. Space sci., 42, pp. 1013–1026.

    Article  ADS  Google Scholar 

  • McDonald, J.S.B., Hatzes, A., Bridges, F. and Lin, D.N.C. (1989) Mass transfer during ice particle collisions in planetary rings. Icarus, 82, pp. 167–179.

    Article  ADS  Google Scholar 

  • Mekler, Y. and Podolak, M. (1994) Formation of amorphous ice in the protoplanetary nebula, Planet. Space sci., 42, pp. 865–870.

    Article  ADS  Google Scholar 

  • Mishchenko, M.I. (1993) On the nature of the polarization opposition effect exhibited by Saturn’s rings, Astrophys. J., 411, pp. 351–361.

    Article  ADS  Google Scholar 

  • Mishchenko, M.I. and Dlugach, Zh.M. (1992) Can weak localization of photons explain the opposition effect of Saturn’s rings?, Mon. Not. R. Astron. Soc, 254, pp. 15P–18P.

    ADS  Google Scholar 

  • Mishima, O., Klug, D.D. and Whalley, E. (1983) The far infrared spectrum of ice Ih in the range 8–25 cm−1: Sound waves and difference bands, with application to Saturn’s rings, J. Chem. Phys., 78, pp. 6399–6404.

    Article  ADS  Google Scholar 

  • Molina, A., Moreno, F., Kidger, M. and Ortiz, J.L. (1995) Near-infrared CVF spectrophotometry of Saturn in 1992, Astron. Astrophys., 298, pp. 624–628.

    ADS  Google Scholar 

  • Mosqueira, I. (1996) Local simulations of perturbed dense planetary rings, Icarus, 122, pp. 128–152.

    Article  ADS  Google Scholar 

  • Mosqueira, I., Estrada, P.R. and Brookshaw, L. (1996) Hydrodynamical simulations of the uranian rings, Bull. Amer. Astron. Soc, 28 (abstract) p. 1126. (http://cass.jsc.nasa.gov/meetings/committee/html/H1814/H1814.html)

    ADS  Google Scholar 

  • Murray, C.D. and Giuliatti-Winter, S.M. (1996) Periodic collisions between the moon Prometheus and Saturn’s F ring, Nature, 380, pp. 139–141.

    Article  ADS  Google Scholar 

  • Mustard, J.F. and Sunshine, J.M. (1995) Seeing through the dust — Martian crustal heterogeneity and links to the SNC meteorites. Science, 267, pp. 1623–1626.

    Article  ADS  Google Scholar 

  • Nicholson, P.D., Hamilton, D.P., Matthews, K. and Yoder, C.F. (1992) New observations of Saturn’s coorbital satellites, Icarus, 100, pp. 464–484.

    Article  ADS  Google Scholar 

  • Nicholson, P.D., Showalter, M.R., Dones L., et al. (1996) Observations of Saturn’s ring-plane crossings in August and November 1995. Science, 272, pp. 509–515.

    Article  ADS  Google Scholar 

  • Nicholson, P.D. and Dones, L. (1991) Planetary rings. Rev. Geophys. Supp., 29, pp. 313–327.

    ADS  Google Scholar 

  • Noll, K.S., Roush, T.L., Cruikshank, D.P., et al. (1997) Detection of ozone on Saturn’s satellites Rhea and Dione, Nature, 388, pp. 45–47.

    Article  ADS  Google Scholar 

  • Ockert, M.E., Cuzzi, J.N., Porco, C.C. and Johnson, T.V. (1987) Uranian ring photometry — Results from Voyager 2, J. Geophys. Res., 92, pp. 14969–14978.

    Article  ADS  Google Scholar 

  • Olkin, C.B., Bosh, A.S. (1996) The inclination of Saturn’s F Ring (abstract), Bull. Amer. Astron. Soc, 28, p. 1125.

    ADS  Google Scholar 

  • Ojakangas, G.W. and Greenberg, R. (1990) Viscosity and mass transport in nonuniform Keplerian disks, Icarus, 88, pp. 146–171.

    Article  ADS  Google Scholar 

  • Osterbart, R. and Willerding, E. (1995) Collective processes in planetary rings, Planet. Space. sci., 43, pp. 289–298.

    Article  ADS  Google Scholar 

  • Owen, T., Coradini, A. and Bar-Nun, A. (1995) Why are Saturn’s inner satellites so white? Bull. Amer. Astron. Soc., 27, p. 1167.

    ADS  Google Scholar 

  • Pilcher, C.B., Chapman, C.R., Lebofsky, L.A. and Kieffer, H.H. (1970) Saturn’s rings: Identification of water frost. Science, 167, pp. 1372–1373.

    Article  ADS  Google Scholar 

  • Porco, C.C. (1991) An explanation for Neptune’s ring arcs, Science, 253, pp. 995–1001.

    Article  ADS  Google Scholar 

  • Porco C.C. (1995) Highlights in planetary rings. Rev. Geophys. Supp. 33, pp. 497–504.

    Article  ADS  Google Scholar 

  • Porco, C.C., Cuzzi, J.N., Ockert, M.E. and Terrile, R.J. (1987) The color of the Uranian rings, Icarus, 72, pp. 69–78.

    Article  ADS  Google Scholar 

  • Porco, C.C. and Goldreich, P. (1987) Shepherding of the Uranian rings. I — Kinematics, Astron. J., 93, pp. 724–729.

    Article  ADS  Google Scholar 

  • Porco, C.C., Nicholson, P.D., Cuzzi, J.N., et al., 1995, Neptune’s ring system. In: Cruikshank, D.P. (ed.) Neptune. Arizona, Tucson, pp. 703–804.

    Google Scholar 

  • Poulet F. and Sicardy B. (1996) The 1995 Saturn ring-plane crossings: Ring thickness and small inner satellites, Bull. Amer. Astron. Soc., 28, p. 1124 (http//cass.jsc.nasa.gov/meetings/committee/html/H1803/H1803.html)

    ADS  Google Scholar 

  • Radicati di Brozolo, F., Bunch, T.E., Fleming, R.H. and Macklin, J. (1994) Fullerenes in an impact crater on the LDEF spacecraft, Nature, 369, pp. 37–40.

    Article  ADS  Google Scholar 

  • Richardson, D.C. (1994) Tree code simulations of planetary rings, Mon. Not. R. Astron. Soc., 269, pp. 493–511.

    ADS  Google Scholar 

  • Roddier, C., Roddier, F., Brahic, A., et al. (1996) Satellites of Saturn, IAU Circular 6515.

    Google Scholar 

  • Roddier, C., Roddier, F., Graves, J.E. and Northcott, M.J. (1997) Saturn, Inter. Astron. Union. Circular 6697. (also see http://queequeg.ifa.hawaii.edu/latest/saturn.html)

  • Roddier, F., Brahic, A., Dumas, C., et al., (1996) Satellites of Saturn, Inter. Astron. Union. Circular 6407.

    Google Scholar 

  • Rosen, P.A., Tyler, G.L., Marouf, E.A. and Lissauer, J.J. (1991) Resonance structures in Saturn’s rings probed by radio occultation. II — Results and interpretation, Icarus, 93, pp. 25–44.

    Article  ADS  Google Scholar 

  • Salo, H. (1991) Numerical simulations of dense collisional systems, Icarus, 90, 254–270; erratum in Icarus 92, p. 367.

    Article  ADS  Google Scholar 

  • Salo, H. (1992) Gravitational wakes in Saturn’s rings, Nature 359, pp. 619–621.

    Article  ADS  Google Scholar 

  • Salo H. (1995) Simulations of dense planetary rings. III. Self-gravitating identical particles, Icarus, 117, pp. 287–312.

    Article  ADS  Google Scholar 

  • Schaffer, L.E. and Burns, J.A. (1987) The dynamics of weakly charged dust — Motion through Jupiter’s gravitational and magnetic fields, 7. Geophys. Res., 92, pp. 2264–2280.

    Article  ADS  Google Scholar 

  • Schmit, U. and Tscharnuter, W.M. (1995) A fluid dynamical treatment of the common action of self-gravitation, collisions, and rotation in Saturn’s B-ring, Icarus, 115, pp. 304–319.

    Article  ADS  Google Scholar 

  • Schmitt, B., Espinasse, S., Grim R.J.A., et al. (1989) Laboratory studies of cometary ice analogues. In: Physics and Mechanics of Cometary Materials (ESA SP 302), pp. 65–69.

    Google Scholar 

  • Shoemaker, E.M. and Shoemaker, C.S. (1990) The collision of solid bodies. In: Beatty, J.K. and Chaikin A. (eds.) The New Solar System. Cambridge, New York, pp. 259–274.

    Google Scholar 

  • Showalter, M.R. (1991) Visual detection of 1981S13, Saturn’s eighteenth satellite, and its role in the Encke gap, Nature, 351, pp. 709–713.

    Article  ADS  Google Scholar 

  • Showalter, M.R. (1995) Arcs and clumps in the uranian λ Ring, Science, 267, pp. 490–493.

    Article  ADS  Google Scholar 

  • Showalter, M.R. (1996a) Saturn’s D Ring in the Voyager images, Icarus, 124, pp. 677–689.

    Article  ADS  Google Scholar 

  • Showalter, M.R., (1997) Bull. Amer. Astron. Soc, 29, in press (http://cass.jsc.nasa.gov/meetings/dps97/html/H1704/H1704.html)

  • Showalter, M.R., Bollinger, K.J., Cuzzi, J.N. and Nicholson, P.D. (1996) The Rings Node for the Planetary Data System, Planet. Space sci., 44, pp. 33–45.

    Article  ADS  Google Scholar 

  • Showalter, M.R., Burns, J.A., Cuzzi, J.N. and Pollack, J.B. (1987) Jupiter’s ring system — New results on structure and particle properties, Icarus, 69, pp. 458–498.

    Article  ADS  Google Scholar 

  • Showalter, M.R. and Cuzzi, J.N. (1993) Seeing ghosts — Photometry of Saturn’s G Ring, Icarus, 103, pp. 124–143.

    Article  ADS  Google Scholar 

  • Showalter, M.R., Cuzzi, J.N. and Larson, S.M. (1991) Structure and particle properties of Saturn’s E Ring, Icarus, 94, pp. 451–473.

    Article  ADS  Google Scholar 

  • Shu, F.H., Cuzzi, J.N. and Lissauer, J.J. (1983) Bending waves in Saturn’s rings, Icarus, 53, pp. 185–206.

    Article  ADS  Google Scholar 

  • Shu, F.H., Dones, L., Lissauer, J. J., et al. (1985) Nonlinear spiral density waves — Viscous damping, Astrophys. J., 299, pp. 542–573.

    Article  ADS  Google Scholar 

  • Shu, F.H. and Stewart, G.R. (1985) The collisional dynamics of particulate disks, Icarus, 62, pp. 360–383.

    Article  ADS  Google Scholar 

  • Smith, B.A., Soderblom, L., Batson, R., et al. (1982) A new look at the Saturn system — The Voyager 2 images, Science, 215, pp. 504–537.

    Article  ADS  Google Scholar 

  • Smith, B.A., Soderblom, L.A., Banfield, D., et al. (1989) Voyager 2 at Neptune — Imaging science results, Science, 246, pp. 1422–1449.

    Article  ADS  Google Scholar 

  • Smoluchowski, R. (1978) Amorphous ice on Saturnian rings and on icy satellites. Science, 201, pp. 809–811.

    Article  ADS  Google Scholar 

  • Stewart, G.R., Lin, D.N.C. and Bodenheimer, P. (1984) Collision-induced transport processes in planetary rings. In: Greenberg, R.J. and Brahic, A. (eds.) Planetary Rings. Arizona, Tucson, pp. 447–512.

    Google Scholar 

  • Supulver, K.D., Bridges, F.G. and Lin, D.N.C (1995) The coefficient of restitution of ice particles in glancing collisions: Experimental results for unfrosted surfaces, Icarus, 113, pp. 188–199.

    Article  ADS  Google Scholar 

  • Taylor, A.D., Baggaley, W.J. and Steel, D.I. (1996) The discovery of interstellar dust entering the Earth’s atmosphere, Nature 380, pp. 323–325.

    Article  ADS  Google Scholar 

  • Tholen, D.J. and Barucci, M.A. (1989) Asteroid taxonomy. In: Binzel, R.P., Gehreis, T. and Matthews, M.S. (eds.) Asteroids II. Arizona, Tucson, pp. 298–315.

    Google Scholar 

  • Thomas, P., Veverka, J. and Dermott, S. (1986) Small satellites. In: Burns, J.A. and Matthews, M.S. (eds.) Satellites. Arizona, Tucson, pp. 802–835.

    Google Scholar 

  • Thomas, P., Weitz, C. and Veverka, J. (1989) Small satellites of Uranus — Disk-integrated photometry and estimated radii, Icarus 81, pp. 92–101.

    Article  ADS  Google Scholar 

  • Throop, H.B. and Esposito, L.W. (1997) G Ring particle sizes derived from ring plane crossing observations, Icarus, submitted

    Google Scholar 

  • van Helden, A. (1984) Rings in astronomy and cosmology, 1600–1900. In: Greenberg, R.J. and Brahic, A. (eds.) Planetary Rings. Arizona, Tucson, pp. 12–22.

    Google Scholar 

  • Veverka, J., Thomas, P., Davies, M. and Morrison, D. (1981) Amalthea: Voyager imaging results, J. Geophys. Res., 86, pp. 8675–8692.

    Article  ADS  Google Scholar 

  • Wilson, P.D., Sagan, C. and Thompson, W.R. (1994) The organic surface of 5145 Pholus: Constraints set by scattering theory, Icarus, 107, pp. 288–303.

    Article  ADS  Google Scholar 

  • Wilson, P.D. and Sagan, C. (1995) Spectrophotometry and organic matter on Iapetus. 1: Composition models, J. Geophys. Res., 100, pp. 7531–7537.

    Article  ADS  Google Scholar 

  • Wisdom, J. and Tremaine, S. (1988) Local simulations of planetary rings, Astron. J., 95, pp. 925–940.

    Article  ADS  Google Scholar 

  • Zebker, H.A., Marouf, E.A. and Tyler, G.L. (1985) Saturn’s rings — Particle size distributions for thin layer models. Icarus, 64, pp. 531–548.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dones, L. (1998). The Rings of the Outer Planets. In: Schmitt, B., De Bergh, C., Festou, M. (eds) Solar System Ices. Astrophysics and Space Science Library, vol 227. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5252-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5252-5_29

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6209-1

  • Online ISBN: 978-94-011-5252-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics