Skip to main content

The Surface Compositions of Triton, Pluto, and Charon

  • Chapter
Solar System Ices

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 227))

Abstract

Neptune’s satellite Triton, and the planet-satellite binary Pluto and Charon, are the most distant planetary bodies on which ices have been directly detected. Triton and Pluto have very similar dimensions and mean densities, suggesting a similar or common origin. Through Earth-based spectroscopic observations in the near-infrared, solid N 2, CH 4, H 2 O, and CO have been found on both bodies, with the additional molecule CO 2 on Triton. N 2 dominates both surfaces, although the coverage is not spatially uniform. On Triton, the CH 2 and CO are mostly or entirely frozen in the N 2 matrix, while CO 2 may be spatially segregated. On Pluto, some CH 4 and the CO are frozen in the N 2 matrix, but there is evidence for additional CH 2 in a pure state, perhaps lying as a lag deposit on a subsurface layer of N 2. Despite their compositional and dimensional similarities, Pluto and Triton are quite different from one another in detail. Additional hydrocarbons and other volatile ices have been sought spectroscopically but have not yet been detected. The only molecule identified on Pluto’s satellite Charon is solid H 2 O, but the spectroscopic data are of low precision and admit the presence of other ices such as CH 4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allamandola, L. J. (1984) Absorption and Emission Characteristics of Interstellar Dust. In Kessler, M. F. and Phillips, J. P. (eds.) Galactic and Extragalactic Infrared Spectroscopy, Reidel, Dordrecht, 5–35

    Chapter  Google Scholar 

  • Barker, E. S., Cochran, W. D., and Cochran, A. L. (1980) Spectrophotometry of Pluto from 3500 to 7350 Å, Icarus, 44, 43–52

    Article  ADS  Google Scholar 

  • Bohn, R. B., Sandford, S. A., AUamandola, L. J. and Cruikshank, D. P. (1994) Infrared spectroscopy of Triton and Pluto ice analogs: The case for saturated hydrocarbons, Icarus, 111, 151–173

    Article  ADS  Google Scholar 

  • Broadfoot, A. L. and the Voyager UVS Team (1989) Ultraviolet spectrometer observations of Neptune and Triton, Science, 246, 1459–1466

    Article  ADS  Google Scholar 

  • Brown, G. N., Jr. and Ziegler, W. T. (1979) Vapor pressure and heats of vaporization and sublimation of liquids and solids of interest in cryogenics below 1-atm pressure. In Timmerhaus, K. D. and Snyder, H. A. (eds.) Advances in Cryogenic Engineering, 25, Plenum Press, New York, pp. 662–670

    Google Scholar 

  • Brown, R. H., and Cruikshank, D. P. (1997) Determination of the composition and state of icy surfaces in the outer solar system. Ann. Rev. Earth Planet. sci., 25, 243–277

    Article  ADS  Google Scholar 

  • Brown, R. H., Cruikshank, D. P., Veverka, J., Helfenstein, P. and Eluszkiewicz, J. (1995) Surface composition and photometric properties of Triton. In Cruikshank, D. P. (ed.) Neptune and Triton, Univ. of Arizona Press, Tucson, pp 991–1030

    Google Scholar 

  • Buie, M. W. (1984) Lightcurve CCD Spectrophotometry of Pluto, Ph.D. dissertation, Univ. of Arizona, 102 pp

    Google Scholar 

  • Buie, M. W. and Fink, U. (1987) Methane absorption variations in the spectrum of Pluto, Icarus, 70, 483–498

    Article  ADS  Google Scholar 

  • Buie, M. W., Cruikshank, D. P., Lebofsky, L. A. and Tedesco, E. F. (1987) Water frost on Charon, Nature, 329, 522–523

    Article  ADS  Google Scholar 

  • Buie, M. W., Tholen, D. J., and Wasserman, L. H. (1997) Separate lightcurves of Pluto and Charon, Icarus, 125, 233–244

    Article  ADS  Google Scholar 

  • Chandrasekhar, S. (1960) Radiative Transfer, Dover, New York, 393pp

    Google Scholar 

  • Christy, J. W. and Harrington, R. S. (1978) The satellite of Pluto, A3, 83, 1005–1008

    ADS  Google Scholar 

  • Cruikshank, D. P. (1997) Organic matter in the outer solar system: From the meteorites to the Kuiper Belt. In Pendleton, Y. J., and Tielens, A. G. G. M. (eds.) From Stardust to Planetesimals, Astron. Soc. Pacific Conf. Ser., 315–333

    Google Scholar 

  • Cruikshank, D. P. and Apt, J. (1984) Methane on Triton: Physical state and distribution, Icarus, 58, 306–311

    Article  ADS  Google Scholar 

  • Cruikshank, D. P., and Brown, R. H. (1986) Satellites of Uranus and Neptune, and the Pluto-Charon system. In Burns, J. A. and Matthews, M. S. (eds.), Satellites Univ. of Arizona Press, 836–873

    Google Scholar 

  • Cruikshank, D. P., Brown, R. H. and Clark, R. N. (1984) Nitrogen on Triton, Icarus, 58, 293–305

    Article  ADS  Google Scholar 

  • Cruikshank, D. P., Pilcher, C. B. and Morrison, D. (1976) Pluto: Evidence for methane ice, Science, 194, 835–387

    ADS  Google Scholar 

  • Cruikshank, D. P., Roush, T. L., Moore, J., Sykes, M., Owen, T. C, Brown, R. H. and Tryka, K. A. (1997a) The surfaces of Pluto and Charon. In Stern, S. A. and Tholen, D. J. (eds.) Pluto and Charon, Univ. of Arizona Press, Tucson (in press)

    Google Scholar 

  • Cruikshank, D. P., Roush, T. L., Owen, T. C, de Bergh, C, Bartholomew, M. J., Geballe, T.R., Schmitt, B., and Quirico, E. (1997b) Water ice on Triton, in preparation

    Google Scholar 

  • Cruikshank, D. P., Roush, T. L., Owen, T. C, Geballe, T. R., de Bergh, C, Schmitt, B., Brown, R. H. and Bartholomew, M. J. (1993) Ices on the surface of Triton, Science, 261, 742–745

    Article  ADS  Google Scholar 

  • Cruikshank, D. P. and Silvaggio, P. M. (1979) Triton: A satellite with an atmosphere, ApJ, 233, 1016–1020

    Article  ADS  Google Scholar 

  • Cruikshank, D. P. and Silvaggio, P. M. (1980) The surface and atmosphere of Pluto, Icarus, 41, 96–102

    Article  ADS  Google Scholar 

  • Duxbury, N. S. and Brown, R. H. (1993) The phase composition of Triton’s permanent polar caps, Science, 261, 748–751

    Article  ADS  Google Scholar 

  • Elliot, J. E., Dunham, E. W., Bosh, A. S., Slivan, S. M., Young, L. A., Wasserman, L. H. and Millis, R. L. (1989) Pluto’s atmosphere, Icarus, 77, 148–170

    Article  ADS  Google Scholar 

  • Fink, U. and DiSanti, M. A. (1987) The separate spectra of Pluto and its satellite Charon, A3, 95, 229–236

    ADS  Google Scholar 

  • Green, J. R., Brown, R. H., Cruikshank, D. P. and Anicich, V. (1991) The absorption coefficient of nitrogen with application to Triton, Bull. Amer. Astron. Soc, 23, 1208 (abstract)

    ADS  Google Scholar 

  • Grundy, W. M. (1995) Methane and nitrogen ices on Pluto and Triton: A combined laboratory and telescope investigation. Thesis, Univ. of Arizona, Tucson, 125 pp

    Google Scholar 

  • Grundy, W. M., and Fink, U. (1993) CCD spectra of Pluto from 1982 to present, Bull. Am. Astron. Soc, 25, 1131 (abstract)

    ADS  Google Scholar 

  • Grundy, W. M., and Fink, U. (1996) Synoptic CCD spectrophotometry of Pluto over the past 15 years, Icarus, 124, 329–343

    Article  ADS  Google Scholar 

  • Grundy, W. M., Schmitt, B. and Quirico, E. (1993a) Temperature dependent absorption spectra of CH4 and N2 ices, Bull. Am. Astron. Soc, 25, 1132

    ADS  Google Scholar 

  • Grundy, W. M., Schmitt, B. and Quirico, E. (1993b) The temperature dependent spectra of alpha and beta nitrogen ice with application to Triton, Icarus, 105, 254–258

    Article  ADS  Google Scholar 

  • Gurrola, E. M. (1995) Interpretation of radar data from the icy galilean satellites and Triton. Dissertation, Stanford University

    Google Scholar 

  • Hansen, J. E. and Travis L. D. (1974) Light scattering in planetary atmospheres, Space sci. Rev., 16, 527–610

    Article  ADS  Google Scholar 

  • Hapke, B. W. (1981) Bidirectional reflectance spectroscopy 1. Theory, J. Geophys. Res., 86, 3039–3054

    Article  ADS  Google Scholar 

  • Hapke, B. W. (1984) Bidirectional reflectance spectroscopy 3. Correction for macroscopic roughness, Icarus, 59, 41–59

    Article  ADS  Google Scholar 

  • Hapke, B. W. (1986) Bidirectional reflectance spectroscopy 4. The extinction coefficient and the opposition effect, Icarus, 67, 264–280

    Article  ADS  Google Scholar 

  • Hapke, B. W. (1993a) Combined theory of reflectance and emittance spectroscopy. In Pieters, C. M. and Englert, P. A. J. (eds.) Remote Geochemical Analysis: Elemental and Mineralogical Composition, Cambridge Univ. Press, New York, pp 31–42

    Google Scholar 

  • Hapke, B. W. (1993b) Reflectance and Emittance Spectroscopy, Cambridge Univ. Press, New York, 455 pp

    Book  Google Scholar 

  • Herbert, F. and Sandel, B. R. (1991) CH4 and haze in Triton’s lower atmosphere, J. Geophys. Res., 96, 19241–19252

    Article  ADS  Google Scholar 

  • Hillier, J., Veverka, J., Helfenstein, P., and Lee, P. (1994) Photometric diversity of terrains on Triton, Icarus, 109, 296–312

    Article  ADS  Google Scholar 

  • Hudgins, D. M., Sandford, S. A., Allamandola, L. J. and Tielens A. G. G. M. (1993) Mid-and far-infrared spectroscopy of ices: Optical constants and integrated absorbances, Apj Sup., 86, 713–870

    Article  ADS  Google Scholar 

  • Jenniskens, P., and Blake, D. F. (1994) Structural transitions in amorphous water ice and astrophysical implications, Science, 265, 753–756

    Article  ADS  Google Scholar 

  • Jenniskens, P., and Blake, D. F. (1996) Crystallization of amorphous water ice in the solar system. ApJ, 473, 1104–1113

    Article  ADS  Google Scholar 

  • Jewitt, D. C. and Luu, J. X. (1995) The solar system beyond Neptune, AJ, 109, 1867–1876

    Article  ADS  Google Scholar 

  • Johnson, R. E. (1990) Energetic Charged-Particle Interactions with Atmospheres and Surfaces, Springer, Berlin, 232 pp

    Book  Google Scholar 

  • Krasnopolsky, V. K., and Cruikshank, D. P. (1995) Photochemistry of Triton’s atmosphere and ionosphere,J. Geophys. Res., 100, 21,271–21,286

    Article  ADS  Google Scholar 

  • Lanzerotti, L. J., Brown, W. L., Maclennan, C. G., Cheng, A. F., Krimigis, S. M., and Johnson, R. E. (1987) Effects of charged particles on the surfaces of the satellites of Uranus, J. Geophys. Res., 92, 14,949–14,957

    Article  ADS  Google Scholar 

  • Laufer, D., Kochavi, E. and Bar-Nun, A. (1987) Structure and dynamics of amorphous water ice,Phys. Rev. B., 36, 9219–9227

    Article  ADS  Google Scholar 

  • Löwen, H. W., Bier, K. D. and Jodl, H. J. (1990) Vibron-phonon excitations in the molecular crystals N2, O2, and CO by Fourier transform infrared and Raman studies, J. Chem. Phys., 93, 8565–8575

    Article  ADS  Google Scholar 

  • Lunine, J. I., Atreya, S. K. and Pollack, J. B. (1989) Present state and chemical evolution of the atmospheres of Titan, Triton and Pluto. In Atreya, S. K., Pollack, J. B., and Matthews, M. S. (eds.) Origin and Evolution of Planetary and Satellite Atmospheres, Univ. of Arizona Press, Tucson, 605–665

    Google Scholar 

  • Marcialis, R. L., Rieke, G. H. and Lebofsky, L. A. (1987) The surface composition of Charon: Tentative identification of water ice, Science, 237, 1349–1351

    Google Scholar 

  • Marcialis, R. L. and Lebofsky, L. A. (1991) CVF spectrophotometry of Pluto: Correlation of composition with albedo,Icarus, 89, 255–263

    Article  ADS  Google Scholar 

  • Marcialis, R. L., Lebofsky, L. A., DiSanti, M. A., Fink, U., Tedesco, E. F. and Africano, J. (1992) The albedos of Pluto and Charon: Wavelength dependence, AJ, 103, 1389–1394

    Article  ADS  Google Scholar 

  • McKinnon, W. B., Lunine, J. I. and Banfield, D. (1995) Origin and evolution of Triton. In Cruikshank, D.P. (ed.) Neptune and Triton, Univ. of Arizona Press, Tucson, 807–877

    Google Scholar 

  • Owen, T. C, Roush, T. L., Cruikshank, D. P., Elliot, J. L., Young, L. A., de Bergh, C, Schmitt, B., Geballe, T. R., Brown, R. H. and Bartholomew, M. J. (1993) Surface ices and the atmospheric composition of Pluto,Science, 261, 745–748

    Article  ADS  Google Scholar 

  • Pearl, J., Ngoh, M, Ospina, M. and Khanna R. (1991) Optical constants of solid methane and ethane from 10,000 to 450 −1,J. Geophys. Res., 96, 17,477–17,482

    Article  ADS  Google Scholar 

  • Quirico, E. (1995) Etudes spectroscopiques proche infrarouges de solides moléculaires. Application à l’étude des surfaces glacées de Triton et Pluton. Thesis, Université Joseph Fourier-Grenoble I, 298 pp

    Google Scholar 

  • Quirico, E. and Schmitt, B. (1997) Near infrared spectroscopy of simple hydrocarbons and carbon oxides diluted in solid N2 and as pure ices: Implications for Triton and Pluto,Icarus (in press, June issue)

    Google Scholar 

  • Quirico, E., Schmitt, B., Bini, R. and Salvi, P. R. (1996) Spectroscopy of some ices of astrophysical interest: SO2, N2 and N2:CH4 mixtures, Planet. Space sci., 44, 973–986

    Article  ADS  Google Scholar 

  • Roush, T. (1994) Charon: More than water ice? Icarus, 108, 243–254

    Article  ADS  Google Scholar 

  • Roush, T., Pollack, J. B., Cruikshank, J. B., Young, E. F. and Bartholomew, M. J. (1994) Geometric albedo of Charon,Bull. Amer. Astron. Soc., 26, 1169 (abstract)

    ADS  Google Scholar 

  • Roush, T., Cruikshank, D. P., Pollack, J. B., Young, E. F. and Bartholomew, M. J. (1996) Near-infrared geometric albedos of Charon and Pluto: Constraints on Charon’s surface composition,Icarus, 119, 214–218

    Article  ADS  Google Scholar 

  • Sagan, C. and Khare, B. N. (1979) Tholins: Organic chemistry of interstellar grains and gas,Nature, 277, 102–107

    Article  ADS  Google Scholar 

  • Sagan, C. and Thompson, W. R. (1984) Production and condensation of organic gases in the atmosphere of Titan,Icarus, 59, 133–161

    Article  ADS  Google Scholar 

  • Schmitt, B. and Quirico, E. (1992) Laboratory data on near-infrared spectra of ices of planetary interest,Bull. Amer. Astron. Soc.,24, 968 (abstract)

    ADS  Google Scholar 

  • Schmitt, B., Quirico, E. and Lellouch, E. (1992) Near infrared spectra of potential solids at the surface of Titan,Proc. Symp. Titan, ESA SP-338, 383–388

    Google Scholar 

  • Schmitt, B., Quirico, E., de Bergh, C, Owen, T. C. and Cruikshank D. P. (1993) The near-infrared spectra of Triton and Pluto: A laboratory analysis of the methane bands, Bull. Am. Astron. Soc, 25, 1129 (abstract)

    ADS  Google Scholar 

  • Schmitt, B., Douté, S., Quirico, E., Benchkoura, A., de Bergh, C, Owen, T. C. and Cruikshank, D. P. (1994) The state and composition of the surface of Pluto: Laboratory experiments and numerical modeling, Bull. Amer. Astron. Soc, 26, 1170 (abstract)

    ADS  Google Scholar 

  • Sill, G. T., Fink, U. and Ferraro J. R. (1980) Absorption coefficients of solid N H3 from 50 to 7000 cm−1, J. Opt. Soc. Am., 70, 724–739

    Article  ADS  Google Scholar 

  • Smith, B. A. and the Voyager ISS Team, (1989) Voyager 2 at Neptune: Imaging science results, Science, 246, 1422–1449

    Article  ADS  Google Scholar 

  • Smith, E. V. P., and Gottlieb, D. M. (1974) Solar flux and its variations, Space sci. Rev., 16, 771–802

    ADS  Google Scholar 

  • Soifer, B. T., Neugebauer, G. and Matthews, K. (1980) The 1.5–2.5 μm spectrum of Pluto, AJ, 85, 166–167

    Article  ADS  Google Scholar 

  • Spencer, J. R., Buie, M. W. and Bjoraker, G. L. (1990) Solid methane on Triton and Pluto: 3-4 micron spectrophotometry, Icarus, 88, 491–496

    Article  ADS  Google Scholar 

  • Stansberry, J. A., Lunine, J. I., Hubbard, W. B., Yelle, R. V., and Hunten, D. M. (1994) Mirages and the nature of Pluto’s atmosphere, Icarus, 111, 503–513

    Article  ADS  Google Scholar 

  • Stansberry, J. A., Pisano, D. J., and Yelle, R. V. (1995) The emissivity of nitrogen ice on Triton and Pluto, Planet. Space sci., 44, 945–955

    Article  ADS  Google Scholar 

  • Stern. S. A. (1993) Properties and tentative identification of the strongly UV-absorbing surface constituent on Triton, Icarus, 102, 170–173

    Article  ADS  Google Scholar 

  • Stone, E. C. and Miner, E. D. (1989) The Voyager 2 encounter with the Neptunian system, Science, 246, 1417–1421

    Article  ADS  Google Scholar 

  • Strobel, D. F., and Summers, M. E. (1995) Triton’s upper atmosphere and ionosphere. In Cruikshank, D. P. (ed.) Neptune and Triton, Univ. of Arizona Press, Tucson, 1107–1148

    Google Scholar 

  • Strazzulla, G., and Johnson, R. E. (1991) Irradiation effects on comets and cometary debris. In Newburn, R. L., Jr., Neugebauer, M, and Rahe, J. (eds.) Comets in the Post-Halley Era, Kluwer, Dordrecht, 243–275

    Chapter  Google Scholar 

  • Thompson, W. R., Murray, B. G. J. P. T., Khare, B. N., and Sagan, C. (1987) Coloration and darkening of methane clathrate and other ices by charged particle irradiation: Applications to the outer solar system, J. Geophys. Res., 92, 14,933–14,947

    Article  ADS  Google Scholar 

  • Thompson, W. R. and Sagan, C. (1990) Color and chemistry on Triton, Science, 250, 415–418

    Article  ADS  Google Scholar 

  • Trafton, L. (1984) Large seasonal variations in Triton’s atmosphere, Icarus, 58, 312–324

    Article  ADS  Google Scholar 

  • Tryka, K. A., Brown, R. H., Anicich, V., Cruikshank, D. P. and Owen, T. C. (1993) Spectroscopic determination of the phase composition and temperature of nitrogen ice on Triton, Science, 261, 751–754

    Article  ADS  Google Scholar 

  • Tryka, K. A., Brown, R. H., Cruikshank, D. P., Owen, T. C, Geballe, T. R. and De-Bergh, C. (1994) Temperature of nitrogen ice on Pluto and its implications for flux measurements, Icarus, 112, 513–527

    Article  ADS  Google Scholar 

  • Tyler, G. L., and the Voyager Radio Science Team (1989) Voyager radio science observations of Neptune and Triton, Science, 246, 1466–1473

    Article  ADS  Google Scholar 

  • Van Thiel, M., Decker, E. D. and Pimentel G. C. (1957) Infrared studies of hydrogen bonding of water by the matrix isolation technique, J. Chem. Phys., 27, 486–490

    Article  ADS  Google Scholar 

  • Warren, S.G. (1984) Optical constants of ice from the ultraviolet to the microwave, Appl. Opt., 23, 1206–1225

    Article  ADS  Google Scholar 

  • Weissman, P. R. (1995) The Kuiper Belt, Ann. Rev. Astron. Astrophys., 33, 327–357

    Article  ADS  Google Scholar 

  • Young, E. F. and Binzel, R. P. (1994) A new determination of radii and limb parameters for Pluto and Charon from mutual event lightcurves, Icarus, 108, 219–224

    Article  ADS  Google Scholar 

  • Young, L. A. (1994) Bulk Properties and Atmospheric Structure of Pluto and Charon, Ph.D. dissertation, Massachusetts Inst. of Technology, 124 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cruikshank, D.P., Roush, T.L., Owen, T.C., Quirico, E., Bergh, C.D. (1998). The Surface Compositions of Triton, Pluto, and Charon. In: Schmitt, B., De Bergh, C., Festou, M. (eds) Solar System Ices. Astrophysics and Space Science Library, vol 227. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5252-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5252-5_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6209-1

  • Online ISBN: 978-94-011-5252-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics