Skip to main content

Surface-Atmosphere Interactions on Titan

  • Chapter
Solar System Ices

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 227))

Abstract

The solar system’s second-largest moon, Saturn’s satellite Titan, possesses a thick atmosphere rich in organics beneath which lies a surface whose character remains hidden. While the atmosphere was explored in fair detail during the Voyager 1 flyby of Titan in 1980, information about the surface has been scanty but growing through a suite of ground-based and Earth orbital data spanning the 15 years since Voyager. Ultimately the joint U.S.-European Cassini-Huygens missions will (hopefully) reveal the true nature of the surface. Whatever that nature may be, the mass and energy exchange between the surface and atmosphere is likely to be complex, probably comparable to that of the Earth prior to the origin of life. Titan’s surface-atmosphere system may provide us with a laboratory for studying the evolution of organic-rich but abiotic planetary evolution (Lunine and McKay, 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chyba, CF., Thomas, P.J. and Zahnle, K.J. (1993) The 1908 Tunguska explosion: atmospheric disruption of a stony asteroid, Nature, 361, pp. 40–44.

    Article  ADS  Google Scholar 

  • Courtin, R., Gautier, D. and McKay, O.P. (1995) Titan’s thermal emission spectrum: Re-analysis of the Voyager infrared measurements, Icarus, 114, pp. 144–162.

    Article  ADS  Google Scholar 

  • Coustenis, A., Lellouch, E., Maillard, J.P. and McKay, C.P. (1995) Titan’s surface: Composition and variability from the near-infrared albedo, Icarus, submitted.

    Google Scholar 

  • Cynn, H.C., Boone, S., Koumvakalis, A., Nicol, M. and Stevenson, D.J. (1989) Phase diagram for ammonia-water at high pressures: Implications for icy satellites, Proc. Lunar Pianet. sci. Conf., 19, pp. 433–441.

    ADS  Google Scholar 

  • Dermott, S.F. and Sagan, C. (1995) Tidal effects of disconnected hydrocarbon seas on Titan, Nature, 374, pp. 238–240.

    Article  ADS  Google Scholar 

  • Dubouloz, N., Raulin, F., Lellouch, E. and Gautier, D. (1989) Titan’s hypothesized ocean properties: The influence of surface temperature and atmospheric composition uncertainties, Icarus, 82, pp. 81–96.

    Article  ADS  Google Scholar 

  • Engel, S., Lunine, J.I. and Norton, D.L. (1994). Silicate interactions with ammonia-water fluids on early Titan. J. Geophys. Res., 99, pp. 3745–3752.

    Article  ADS  Google Scholar 

  • Engel, S., Lunine, J.I. and Hartmann, W.K. (1995). Cratering on Titan and implications for Titan’s atmospheric history. Planet. Space sci., in press.

    Google Scholar 

  • Farinella, P., Paolicchi, P., Strom, R.G., Kargel, J.S. and Zappala, V. (1990) The fate of Hyperion’s fragments, Icarus, 83, pp. 186–204.

    Article  ADS  Google Scholar 

  • Griffith, C.A. (1993) Evidence for surface heterogeneity on Titan, Nature, 364, pp. 511–514.

    Article  ADS  Google Scholar 

  • Khare, B.N., Sagan, C., Arakawa, E.T., Suits, F., Calicott, T.A. and Williams, M.W. (1984) Optical constants of organic tholins produced in a simulated Titanian atmosphere: From soft x-ray to microwave frequencies, Icarus, 60, pp. 127–137.

    Article  ADS  Google Scholar 

  • Kossacki, K.J. and Lorenz, R.D. (1995) Hiding Titan’s ocean: densification and hydrocarbon storage in an icy regolith, Planet. Space sci., submitted.

    Google Scholar 

  • Lara, L.M., Lorenz, R.D. and Rodrigo, R. (1994) Liquids and solids on the surface of Titan: results of a new photochemical model, Planet. Space sci., 42, pp. 5–14.

    Article  ADS  Google Scholar 

  • Lebreton, J.P. (1992) The Huygens probe, in Proceedings Symposium on Titan, ESA SP-338, Noordwijk, pp. 287–292.

    Google Scholar 

  • Lemmon, M.T., Karkoschka, E. and Tomasko, M. (1995) Titan’s rotational light-curve, Icarus, 113, pp. 27–38.

    Article  ADS  Google Scholar 

  • Lorenz, R.D. (1993a). The surface of Titan in the context of ESA’s Huygens probe, ESA Journal, 17, pp. 275–292.

    ADS  Google Scholar 

  • Lorenz, R.D. (1993b). The life, death and afterlife of a raindrop on Titan, Planet. Space sci., 41, pp. 647–655.

    Article  ADS  Google Scholar 

  • Lorenz, R.D. (1995a) Pillow lava on Titan: Expectations and constraints on current cryovolcanic activity, Planetary and Space Science, submitted.

    Google Scholar 

  • Lorenz, R.D. (1995b) Cassini mission: radar sensing of craters on Titan. Lunar Planet. sci. Conf., 26, pp. 863–864.

    ADS  Google Scholar 

  • Lorenz, R.D., Lunine, J.I., Grier, J. and Fisher, M. (1995) Prediction of aeolian features on planets: Application to Titan paleoclimatology, J. Geophys. Res., submitted.

    Google Scholar 

  • Lunine, J.I. (1992) Plausible surface models for Titan, in Proceedings Symposium on Titan, ESA SP-338, Noordwijk, pp. 233–239.

    Google Scholar 

  • Lunine, J.I. (1993) Does Titan have an ocean? A review of current understanding of Titan’s surface. Rev. Geophysics, 31, pp. 133–149 [Erratum 31, p. 355]

    Article  ADS  Google Scholar 

  • Lunine, J.I. and Stevenson, D. J. (1987) Clathrate and ammonia hydrates at high pressure: Application to the origin of methane on Titan, Icarus, 70, pp. 61–77.

    Article  ADS  Google Scholar 

  • Lunine, J.I., Atreya, S.K. and Pollack, J.B. (1989) Present state and chemical evolution of the atmospheres of Titan, Triton and Pluto, in Origin and Evolution of Planetary and Satellite Atmospheres, eds. S.K. Atreya, J.B. Pollack and M.S. Matthews, Univ. Arizona Press, Tucson, pp. 605–665.

    Google Scholar 

  • Lunine, J.I. and McKay, C.P. (1995) Surface-atmosphere interactions on Titan compared with those on the pre-biotic Earth, Adv. Space Res., 15, pp. 303–311.

    Article  ADS  Google Scholar 

  • Lunine, J.I. and Rizk, B. (1989) Thermal evolution of Titan’s atmosphere, Icarus, 80, pp. 370–389.

    Article  ADS  Google Scholar 

  • Matson, D.L. (1992) Cassini-a mission to Saturn and Titan, in Proceedings Symposium on Titan, ESA SP-338, Noordwijk, pp. 281–286.

    Google Scholar 

  • McKay, C.P., Pollack, J.B. and Courtin, R. (1989) The thermal structure of Titan’s atmosphere, Icarus, 80, pp. 23–53.

    Article  ADS  Google Scholar 

  • McKay, C.P., Pollack, J.B., Lunine, J.I. and Courtin, R. (1993) Coupled atmosphere-ocean models of Titan’s past, Icarus, 102, pp. 88–98.

    Article  ADS  Google Scholar 

  • McKay, C.P., Martin, S.O., Griffith, C.A. and Keller, R.M. (1996) Temperature lapse rate and methane in Titan’s troposphere, Icarus, in press.

    Google Scholar 

  • Muhleman, D.O., Grossman, A.W., Butler, B.J. and Slade, M.A. (1995) Radar investigations of Mars, Mercury and Titan, Ann. Rev. Earth and Planetary sci., 23, pp. 337–374.

    Article  ADS  Google Scholar 

  • Rinaldo, A., Dietrich, W.E., Rigon, R., Vogel, G.K. and Rodriquez-Iturbe, I. (1995) Geomorphological signatures of varying climate, Nature,374, pp. 632–635.

    Article  ADS  Google Scholar 

  • Sagan, C. and Dermott, S.F. (1982) The tides in the seas of Titan, Nature, 300, pp. 731–733.

    Article  ADS  Google Scholar 

  • Sears, W.D. (1995) Tidal dissipation in oceans on Titan, Icarus, 113, pp. 39–56.

    Article  ADS  Google Scholar 

  • Smith, P.H., Lemmon, M.T., Lorenz, R.D., Sromovsky, L.A., Caldwell, J.J. and Allison, M.D. (1995) Titan’s surface, revealed by HST imaging, Icarus, submitted.

    Google Scholar 

  • Strobel, D.F., Hall, D.T., Zhu, X. and Summers, M.E. (1993) Upper limit on Titan’satmospheric argon abundance, Icarus, 103, pp. 333–336.

    Article  ADS  Google Scholar 

  • Stevenson, D.J. (1992) Interior of Titan, in Proceedings Symposium on Titan, ESA SP-338, Noordwijk, pp. 29–33.

    Google Scholar 

  • Toublanc, D., Parisot, J.P., Brillet, J., Gautier, D., Raulin, F. and McKay, O.P. (1995) Photochemical modeling of Titan’s atmosphere. Icarus. 113, pp. 2–26. (Erratum in press).

    Article  ADS  Google Scholar 

  • Yung, Y.L., Allen, M. and Pinto, J.P. (1984). Photochemistry of the atmosphere of Titan: comparison between model and observations. Astrophys. J., 55, pp. 465–506.

    Article  ADS  Google Scholar 

  • Zahnle, K.J. (1992). Airburst origin of dark shadows on Venus. J. Geophys. Res., 97, pp. 10243–10255.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lunine, J.I. (1998). Surface-Atmosphere Interactions on Titan. In: Schmitt, B., De Bergh, C., Festou, M. (eds) Solar System Ices. Astrophysics and Space Science Library, vol 227. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5252-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5252-5_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6209-1

  • Online ISBN: 978-94-011-5252-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics