Skip to main content

Microwave Properties of Ice and Snow

  • Chapter
Solar System Ices

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 227))

Abstract

The polar ice sheets and glacier ice contain the majority of the terrestrial water-ice mass. Snow, the freshly precipitated form of ice, covers, to a variable degree, very large parts of the terrestrial surface during the winter season. These icy bodies possess spectral and polarimetric signatures in the microwave range which are suitable for both active (radar) and passive (radiometric) remote sensing. The signatures are related to the special dielectric properties on the one hand, and on the other, to the characteristic structural behavior, ranging from microscopic to macroscopic scale, and being different for different parts of the cryosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arcone, S.A., Gow, A.J. and McGrew, S. (1986) Structure and dielectric properties at 4.8 and 9.5 GHz of saline ice, J. Geophys. Res., 91, pp. 14281–14303.

    Article  ADS  Google Scholar 

  • Auty, R.P. and Cole, R.H. (1952) Dielectric properties of ice and solid D 2 O, J. Chem. Phys., 20, pp. 1309–1314.

    Article  ADS  Google Scholar 

  • Bohren, C.F. and Battan, L.J. (1982) Radar backscattering of microwaves by spongy ice spheres, J. Atmosph. Sci, 39, pp. 2623–2628.

    Article  ADS  Google Scholar 

  • Corr, H., Moore, J.C. and Nicholls, K.W. (1993) Radar absorption due to impurities in antarctic ice, Geophys. Res. Letters, 20, pp. 1071–1074.

    Article  ADS  Google Scholar 

  • Denoth, A. (1982) Effect of grain geometry on electrical properties of snow at frequencies up to 100 MHz, J. Appl. Phys., 53, pp. 7496–7501.

    Article  ADS  Google Scholar 

  • Fahnestock, M., Bindschadler, R., Kwok, R. and Jezek, K. (1993) Greenland ice sheet surface properties and ice dynamics from ERS-1 SAR imagery, Science, 262, pp. 1530–1534.

    Article  ADS  Google Scholar 

  • Fujita, S., Shiraishi, M. and Mae, S. (1992) Measurement on the dielectric properties of acid-doped ice at 9.7 GHz, IEEE Trans. Geosci. and Remote Sens., 30, pp. 799–803.

    Article  ADS  Google Scholar 

  • Fujita, S., Matzuoka, T. and Mae, S. (1993) Dielectric anisotropy in ice Ih at 9.7 GHz, Annals of Glaciology, 17, pp. 276–280.

    ADS  Google Scholar 

  • Fujita, S., Surdyk, S., Matzuoka, T., Mae, S. and Hondoh T. (1995) Snow dielectric properties in the 30–40 GHz range: a. measurements with an open resonator, submitted to IEEE Trans. Geosci. Remote Sens.

    Google Scholar 

  • Gough, S.R. (1972) A low temperature dielectric cell and the permittivity of hexagonal ice to 2K, Can. J. Chem., 50, pp. 3046–3051.

    Article  ADS  Google Scholar 

  • Hallikainen M. and Winebrenner, D.P. (1992) The physical basis for sea-ice remote sensing, chapter 3 (p. 29–46) in Carsey F.D. (ed.) Microwave remote sensing of sea ice, Geophysical monograph 68, Am. Geophys. Union, Washington D.C.

    Chapter  Google Scholar 

  • Hufford, G. (1991) A model for the complex permittivity of ice at frequencies below 1 THz, Int. J. Infrared and Millimeter Waves, 12, pp. 677–682.

    Article  ADS  Google Scholar 

  • Lamb, J. (1946) Measurements of the dielectric properties of ice, Trans. Faraday Soc, 42A, pp. 238–244.

    Article  Google Scholar 

  • Matsuoka, T., Fujita, S. and Mae, S. (1993) Dielectric properties of NaCl-doped ice at 9.7 GHz, Proc. Nat. Inst. Polar Res. Symp. on Polar Meteorology and Glaciology, 7, pp. 33–40.

    Google Scholar 

  • Mätzler, C. (1987) Applications of the Interaction of Microwaves with the Natural Snow Cover, Remote Sensing Reviews, 2, pp. 259–392.

    Article  Google Scholar 

  • Mätzler, C. and Wegmüller, U. (1987) Dielectric Properties of freshwater ice at microwave frequencies, /. Phys. D: Applied Phys., 20, pp. 1623–1630; Errata, 21, p. 1660 (1988).

    Article  Google Scholar 

  • Mätzler, C. (1994) Passive microwave signatures of landscapes in winter, Meteorology and Atmospheric Physics, 54, pp. 241–260.

    Article  ADS  Google Scholar 

  • Mätzler, C. (1996) Microwave permittivity of dry snow, IEEE Trans. Geosci. Remote Sens., 34, n°2.

    Google Scholar 

  • Mishima O., Klug, D.D. and Whalley, E. (1983) The far-infrared spectrum of ice Ih in the range 8-25cm-1. Sound waves and difference bands, with application to Saturn’s rings, J. Chem. Phys., 78, pp. 6399–6404.

    Article  ADS  Google Scholar 

  • Moore, J.C. and Fujita, S. (1993) Dielectric properties of ice containing acid and salt impurity at microwave and low frequencies, JGR, 98, pp. 9769–9780.

    Article  ADS  Google Scholar 

  • Petrenko, V.F. (1993) Electrical properties of ice, US Army Corps of Engineers Cold Regions Research and Engineering Laboratory (CRREL) Special Report 93-20, Hanover, New Hampshire.

    Google Scholar 

  • Polder, D. and van Santen, J.H. (1946) The effective permeability of mixtures of solids, Physica, 12,(5), pp. 257–271.

    Article  ADS  Google Scholar 

  • Reber, B., Mätzler, C, Schanda, E. (1987) Microwave Signatures of Snow Crusts: Modelling and Measurements, Intern. J. Remote Sensing, 8, pp. 1649–1665.

    Article  ADS  Google Scholar 

  • Rignot, E.J., Ostro, S.J., van Zyl, J.J. and Jerek, K.C. (1993) Unusual radar echoes from the Greenland ice sheet, Science, 261, pp. 1710–1713.

    Article  ADS  Google Scholar 

  • Rott, H. (1989) Multispectral microwave signatures of the Antarctic ice sheet, in P. Pampaloni (ed.) Microwave radiometry and remote sensing applications, 89–101, VSP, Utrecht, The Netherlands.

    Google Scholar 

  • Rott, H., Miller, H., Sturm, K. and Rack, W. (1994) Application of ERS-1 SAR and scatterometer data for studies of the Antarctic Ice Sheet, Proc. 2nd ERS-1 Symp. Hamburg 11–14 Oct. 1993, ESA SP-361, pp. 133–139.

    Google Scholar 

  • Sihvola, A. and Kong, J.A. (1988) Effective permittivity of dielectric mixtures, IEEE Trans. Geosc. Remote Sens, 26, pp. 420–429; Errata, 27, pp. 101-102 (1989).

    Article  ADS  Google Scholar 

  • Strozzi, T. and Mätzler, C. (1995) In-situ backscattering measurements of snowcover with coherent scatterometers at 5.3 and 35 GHz, Proc. IGARSS’95, Florence, Italy, July 10–14.

    Google Scholar 

  • Surdyk, S. and Fujita, S. (1995) Microwave dielectric properties of snow: modeling and measurements, Geophys. Res. Letters, 22, pp. 965–968.

    Article  ADS  Google Scholar 

  • Tsang, L., Kong, J.A. and Shin, R.T. (1985) Theory of microwave remote sensing, Wiley series in remote sensing, New-York.

    Google Scholar 

  • Tiuri, M.E., Sihvola, A., Nyfors, E.G. and Hallikainen, M.T. (1984) The complex dielectric constant of snow at microwave frequencies, IEEE J. Ocean. Engin, OE-9, pp. 377–382.

    Article  Google Scholar 

  • Ulaby, F.T., Moore, R.K. and Fung, A.K. (1986) Microwave Remote Sensing, Active and Passive, 3, Artech House, Dedham, MA-U.S.A.

    Google Scholar 

  • Walford, M.E.R. (1968) Field measurements of dielectric absorption in Antarctic ice and snow at very high frequencies, J. Glaciol., 7, n°49, pp. 89–94.

    ADS  Google Scholar 

  • Warren, S.T. (1984) Optical constants of ice from the ultraviolet to the microwave, Applied Optics, 23, pp. 1206–1225.

    Article  ADS  Google Scholar 

  • Wegmüller, U. (1986) Signaturen zur Mikrowellenfernerkundung: Bodenrauhigkeit und Permittivität von Eis, Diploma Thesis, Inst. Appl. Phys., University of Bern, CH-3012 Bern.

    Google Scholar 

  • Weise, T. and Mätzler, C. (1995) Radiometric and structural measurements of snow samples, Proc. IGARSS’95, Florence, Italy, July 10–14.

    Google Scholar 

  • Zhang, H., Toudal-Pedersen, L. and Gudmandsen, P. (1989) Microwave brightness temperatures of the Greenland ice sheet, Adv. Space Res., 9, pp. (1)277–(1)287.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Matzler, C. (1998). Microwave Properties of Ice and Snow. In: Schmitt, B., De Bergh, C., Festou, M. (eds) Solar System Ices. Astrophysics and Space Science Library, vol 227. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5252-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5252-5_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6209-1

  • Online ISBN: 978-94-011-5252-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics