Skip to main content

Identification of plant growth hormones produced by bacterial isolates from rice, wheat and kallar grass

  • Chapter
Nitrogen Fixation with Non-Legumes

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 79))

Abstract

Identification and quantification of the plant growth hormones indoleacetic acid and gibberellic acid, produced by plant growth-promoting rhizobacteria (PGPR), was carried out by using high-pressure liquid chromatography (HPLC). The PGPR strains were isolated from roots of rice, wheat and kallar grass and belonged to the genera Azoarcus, Azospirillum, Enterobacter, Pseudomonas and Zoogloea. For these studies, bacteria were grown in liquid nitrogen free malate (NFM) or combined carbon medium (CCM) containing tryptophan and combined nitrogen. Some Azospirillum strains produced both indoleacetic acid and gibberellic acid, while none of the Enterobacter spp. tested produced these growth hormones. Azoarcus strain K-1 produced higher amounts of gibberellic acid and Azospirillum strain ER-2 produced higher amounts of indoleacetic acid. Indoleacetic acid production increased with the age of bacterial cultures while a decrease in the production of gibberellic acid was noted at later growth stages. Pure indoleacetic acid and gibberellic acid in the concentration range 1–2 µg/ml increased root area and plant biomass of rice and wheat. Among PGPR strains tested, Pseudomonas 96–51 and its extract containing growth hormones increased root area, root length and plant biomass of rice and wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barea J M, Brown M E 1974. Effects on plant growth produced by Azotobacter paspali related to synthesis of plant growth regulating substances. J. Appl. Bacteriol., 37, 583–593.

    Article  PubMed  CAS  Google Scholar 

  • Bilal R, Malik K A 1987. Isolation and identification of a N2 -fixing zoogloea-forming bacterium from kallar grass histoplane. J. Appl. Bacteriol., 62, 289–294.

    Article  CAS  Google Scholar 

  • Bilal R, Rasul G, Qureshi J A, Malik K A 1990. Characterization of Azospirillum and related diazotrophs associated with roots of plants growing in saline soils. World J Microbiol. Biotechnol., 6, 46–52.

    Article  Google Scholar 

  • Bric J M, Bostock R M, Silverstone S E 1991. Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl. Environ. Microbiol., 57, 535–553.

    PubMed  CAS  Google Scholar 

  • Brown M E, Burlingham S K 1968. Production of plant growth substances by Azotobacter chroococcum. J. Gen. Microbiol., 53, 135–144.

    Article  PubMed  CAS  Google Scholar 

  • Brown, M E, Walker N 1970. Indolyl-3-acetic acid formation by Azotobacter chroococcum. Plant Soil, 32, 250–253.

    Article  CAS  Google Scholar 

  • Costacurta A, Keijers V, Vanderleyden J 1994. Molecular cloning and sequence analysis of an Azospirillum brasilense indole-3-pyruvate decarboxylase gene. Mol. Gen. Genet., 243, 463—472.

    PubMed  Google Scholar 

  • Crouch I J, Smith M T, Van Staden J, Lewis M J, Hoad G V 1992. Identification of auxins in a commercial seaweed concentrate. J Plant Physiol., 139, 590–594.

    Article  CAS  Google Scholar 

  • Fett W F, Osman S F, Dunn M F 1987. Auxin production by plant pathogenic Pseudomonas and Xanthomonas. Appl. Environ. Microbiol., 53, 1839–1845.

    PubMed  CAS  Google Scholar 

  • Fuentes-Ramirez L E, Jimenez-Salgado T, Abaca-Ocampo I R, Caballero-Mellado J 1993. Azotobacter diazotrophicus, an indoleacetic acid producing bacterium isolated from sugar cane cultivars of Mexico. Plant Soil, 154, 145–150.

    Article  CAS  Google Scholar 

  • Gonzalez-Lopez J, Salmeron V, Martinez-Toledo M V, Ballesteros F, Ramos-Cormenzana A 1986. Production of auxin, gibberellins and cytokinins by Azotobacter vinelandii ATCC 12837 in chemically defined media and dialysed soil media. Soil Biol. Biochem., 18, 119–120.

    Article  CAS  Google Scholar 

  • Gordon S A, Weber R P 1951. Colorimetric estimation of indoleacetic acid. Plant Physiol., 26, 192–195.

    Article  PubMed  CAS  Google Scholar 

  • Harari A, Kigel J, Okon Y 1989. Involvement of IAA in the interaction between Azospirillum brasilense and Panicum miliaceum root. In: Skinner F A, Body R M, Fendrik J, eds. Nitrogen Fixation with Non-Legumes. Kluwer, Dordrecht, Academic Publishers. 227–234.

    Chapter  Google Scholar 

  • Hartmann A, Singh M, Klingmuller W 1983. Isolation and characterization of Azospirillum mutants excreting high amounts of indoleacetic acid. Can. J. Microbiol., 29, 916–923.

    Article  CAS  Google Scholar 

  • Hennequin J R, Blachere H, Tabareau A M 1966. Recherches sur la synthèse de phytohormones et de composes phenoliques par Azotobacter et des bactéries de la rhizosphere. Ann. Inst. Pasteur Suppl. 3, 111, 89–101.

    Google Scholar 

  • Kobayashi M, Izui H, Nagasawa T, Yamada H 1993. Nitrilase in biosynthesis of the plant hormones indole-3-acetic acid from indole-3-acetonitrile: cloning of Alcaligenes gene and site directed mutagenesis of cysteine residues, Proc. Natl. Acad. Sci. USA, 90, 247–251.

    Article  PubMed  CAS  Google Scholar 

  • Koga J, Adachi T, Hidaka H 1991. IAA biosynthetic pathway from tryptophan via indole-3-pyruvic acid in Enterobacter cloacae. Agrie. Biol. Chem., 55: 701–706.

    Article  CAS  Google Scholar 

  • Lee M, Breekenridge C, Knowles R 1970. Effect of some culture conditions on the production of indole-3-acetic acid and a gibberellin-like substance by Azotobacter vinelandii. Can. J. Microbiol., 16, 1325–1330.

    Article  PubMed  CAS  Google Scholar 

  • Malik K A, Bial R, Rasul G, Mahmood K, Sajjad M I 1991. Associative N2-fixation in plants growing in saline sodic soils and its quantification based on 15N natural abundance. Plant Soil, 137, 67–74.

    Article  Google Scholar 

  • Malik K A, Rasul G, Hassan U, Mehnaz S, Ashraf M 1994. Role of N2- fixing and growth hormones producing bacteria in improving growth of wheat and rice. In: Hegazi N A, Fayez M, Monib M, eds. Nitrogen Fixation with Non-Legumes. Proceedings of The Sixth International Symposium with Non-Legumes, Ismailia, Egypt, 6–10 September 1993. Cairo University, Giza, Egypt, 409–422.

    Google Scholar 

  • Minamisawa K, Fukai K 1991. Production of indole-3-acetic acid by Bradyrhizobium japonicum: a correlation with genotype grouping and rhizobitoxine production. Plant Cell Physiol., 32, 1–9.

    CAS  Google Scholar 

  • Okon Y 1985. Azospirillum as a potential inoculant for agriculture. Trends Biotechnol., 3, 223–228.

    Article  Google Scholar 

  • Okon Y, Kapulnik Y 1986. Development and function of Azospirillum inoculated roots. Plant Soil, 90, 3–16.

    Article  CAS  Google Scholar 

  • Okon Y, Albercht S L, Burris R H 1977. Methods for growing Spirillum lipoferum and for counting it in pure culture and in association with plants. Appl. Environ. Microbiol., 33, 85–88.

    PubMed  CAS  Google Scholar 

  • Rennie R J 1981. A single medium for the isolation of acetylene reducing (dinitrogen fixing) bacteria from soil. Plant Soil, 27, 8–14.

    CAS  Google Scholar 

  • Reynders L, Vlassak K 1979. Conversion of tryptophan to indoleacetic acid by Azospirillum brasilense. Soil Biol. Biochem., 11, 557–558.

    Article  Google Scholar 

  • Tien T M, Gaskins M H, Hubbell D H 1979. Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.) Appl. Environ. Microbiol., 37, 1016–1024.

    PubMed  CAS  Google Scholar 

  • Umali-Garcia M, Hubbell D H, Gaskin M H, Dazzo F B 1980. Association of Azospirillum with grass roots. Appl. Environ. Microbiol., 39, 219–226.

    PubMed  CAS  Google Scholar 

  • Vancura V 1961. Detection of gibberellic acid in Azotobacter culture. Nature, 192, 88–89.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rasul, G., Mirza, M.S., Latif, F., Malik, K.A. (1998). Identification of plant growth hormones produced by bacterial isolates from rice, wheat and kallar grass. In: Malik, K.A., Mirza, M.S., Ladha, J.K. (eds) Nitrogen Fixation with Non-Legumes. Developments in Plant and Soil Sciences, vol 79. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5232-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5232-7_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6202-2

  • Online ISBN: 978-94-011-5232-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics