Skip to main content

Part of the book series: New ICMI Study Series ((NISS,volume 5))

Abstract

Among all the subjects which are part of the school mathematics curriculum, geometry stands as one which is bound to be influenced most profoundly by the recent progress both in hardware and software development. It is true that to a certain extent all of the mathematics curriculum is affected by the possibilities offered by technological improvement, in particular by the computer capability of handling multiple representations of information (numerical, graphical and symbolic). But the potentialities are most striking in geometry, especially in connection with so-called dynamic geometry software. Explorations can be achieved which otherwise are either inaccessible, or accessible through inordinate efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrougui, H.: Impact de l’environnement Cabri-Géomètre sur les démarches de preuve d’élèves de 5ème dans un problème de construction impossible, Mémoire du DEA de didactique des disciplines scientifiques, Grenoble, Laboratoire IMAG-LSD2, 1995.

    Google Scholar 

  2. Authier, M.: Archimède, le canon du savant, in Serres, M. (Ed), Eléments d’Histoire des Sciences (101–127), Bordas, 1989 (English translation: History of Scientific Thought: Elements of a History of Science. Blackwell, 1995).

    Google Scholar 

  3. Balacheff, N.: Treatment of refutations: Aspects of the complexity of a constructivist approach to mathematics learning, in E. Von Glaserfeld (Ed), Radical Constructivism in Mathematics Education, Reidel, 1988.

    Google Scholar 

  4. Bergue, D.: Une utilisation du logiciel “Cabri-éomètre” en 5ème, Petit x, 29, 5–13, 1992.

    Google Scholar 

  5. Berthelot, R. & Salin, M.H.: L’enseignement de l’espace et de la géométrie dans la scolarité obligatoire, Thèse de l’Université Bordeaux 1, 1992.

    Google Scholar 

  6. Bishop, A.J.: Space and geometry, in Lesh, R. & Landau, M. (Eds), Acquisition of mathematical concepts and processes (173–203), Academic Press, 1983.

    Google Scholar 

  7. Boury, V.: La distinction entre figure et dessin en géométrie: étude d’une “boîte noire” sous Cabri-Géomètre, Rapport de stage du DEA de sciences cognitives, Equipe DidaTech, LSD2 Imag, Université Joseph Fourier, Grenoble, 1993.

    Google Scholar 

  8. Brousseau, G.: Fondements et méthodes de la didactique des mathématiques, Recherches en Didactique des Mathématiques, 7,2, 33–115, 1986.

    Google Scholar 

  9. Chazan, D.: High school geometry students’ justification for their views of empirical evidence and mathematical proof, Educational Studies in Mathematics, 24,4, 359–387, 1993.

    Google Scholar 

  10. Coxeter, H.S.M.: Introduction to Geometry, 2nd ed., Wiley, 1969.

    Google Scholar 

  11. DE Villiers, M.D.: Proof in the mathematics curriculum, Paper accepted for the National Subject Didactics Symposium, University of Stellenbosch, 1990.

    Google Scholar 

  12. DE Villiers, M.D.: The role and function of hierarchical classißcation of quadrilaterals, For the Learning of Mathematics, 14,1, 11–18, 1994.

    Google Scholar 

  13. Di Sessa, A., Hoyles, C., Noss, R. & Edwards, L. (EDS): Computers and exploratory learning, NATO ASI Series, Subseries F, Vol. 146, Springer, 1995.

    Google Scholar 

  14. Dunham, W.: Journey through Genius: The Great Theorems of Mathematics, Wiley, 1990.

    Google Scholar 

  15. FINLOW-Bates, K.: First year mathematics students’notions of the role of informal proof and examples, Proceedings of the Eighteenth International Conference for the Psychology of Mathematics Education, 344–351, 1994.

    Google Scholar 

  16. Fischbein, E.: Intuition and proof, For the Learning of Mathematics, 3,2, 9–18, 1982.

    Google Scholar 

  17. Fischer, W.L.: Der Einsatz von Computern im Geometrieunterricht, in Loska R. & Weigand, H.G. (Eds), Mathematikdidaktik zwischen Forschung und Lehre (254–266), Klinkhardt, 1996.

    Google Scholar 

  18. Fuys, D., Geddes, D., & Tischer, R.: The van Hiele model of thinking in geometry among adolescents., Reston, Va. National Council of Teachers of Mathematics, 1988.

    Google Scholar 

  19. Graf, K.-D.: Using software tools as additional tools in geometry education to ruler and compasses, Education & Computing, 4, 171–178, 1988.

    Google Scholar 

  20. Graf, K.-D.: Mathematics and informatics in old symbols: Tai Chi symbol and hexagrams from the I Ging, in The Fifth Five Nations Conference on Mathematics Education, Osaka. 15–21, 1995.

    Google Scholar 

  21. Graf, K.-D. & HODGSON B.R.: Popularizing geometrical concepts: the case of the kaleidoscope, For the Learning of Mathematics, 10,3, 42–50, 1990.

    Google Scholar 

  22. Graf, K.-D. ET AL.: The effect of computers on the school mathematics curriculum, in Cornu, B. & Ralston, A. (Eds), The Influence of Computers and Informatics on Mathematics and its Teaching. (Science and Technology Education), (57–79), vol. 44, Unesco, 1992.

    Google Scholar 

  23. Guillerault, M.: La gestion des menus dans Cabri-Géomètre: étude d’une variable didactique, Mémoire du DEA de didactique des disciplines scientifiques, Laboratoire LSD2-IMAG, Université Joseph Fourier, Grenoble, 1991.

    Google Scholar 

  24. Hanna, G., & Jahnke, H.N.: Proof and application, Educational Studies in Mathematics, 24,4, 421–438, 1993.

    Google Scholar 

  25. Hanna, G.: Proofs that prove and proofs that explain, Proceedings of the Thirteenth Conference of the International Group for Psychology of Mathematics Education, Vol. 2, 45–51, 1989.

    Google Scholar 

  26. Healy, L., Hölzl, R., Hoyles, C., & Noss, R.: Messing up, Micromath, 10,1, 14–16, 1994.

    Google Scholar 

  27. Heath, T.L. (ED): The Works of Archimedes, Dover, 1953.

    Google Scholar 

  28. Hodgson, B.R.: La géométrie du kaléidoscope, Bulletin de l’Association mathématique du Québec, 27,2, 12–24, 1987. Reprinted in Plot (Supplément: Symétrie-dossier pédagogique), 1988, 42, 25–34.

    Google Scholar 

  29. Hodgson, B.R.: The roles and the needs of mathematics teachers using IT, in Watson, D. & Tinsley, D. (Eds), Integrating Information Technology into Education, (27–37), Chapman & Hall, 1995.

    Google Scholar 

  30. Hölzl, R., Healy, L., Hoyles, C., & Noss, R.: Geometrical relationships and dependencies in Cabri, Micromath, 10,3, 8–11, 1994.

    Google Scholar 

  31. Hoyles, C.: The Curricular shaping of students’ approaches to proof, For the Learning of Mathematics, vol. 17, 7–16, Feb. 1997.

    Google Scholar 

  32. Hoyles, C., & Healy, L.: Justifying and proving, ESRC research study, 1995.

    Google Scholar 

  33. Hoyles, C., &; Noss, R.: Formalizing intuitive descriptions in a parallelogram microworld, Proceedings of the Twelfth International Conference for Psychology of Mathematics Education, 417–424, 1988.

    Google Scholar 

  34. Laborde, C.: Quelques problèmes d’enseignement de la géométrie dans la scolarité obligatoire, For the learning of mathematics, 5, 3, 27–34, 1985.

    Google Scholar 

  35. Laborde, C.: The computer as a part of the learning environment: the case of geometry, in Keitel, C., & Ruthven, K. (Eds), Learning from Computers: Mathematics Education and Technology, (48–67), Springer, 1993.

    Google Scholar 

  36. Laborde, C. & Capponi, B.: Cabri-Géomètre constituant d’un milieu pour l’apprentissage de la notion de figure géométrique, Recherches en Didactique des Mathématiques, 14,1, 165–210, 1994.

    Google Scholar 

  37. Laborde, C. & Laborde, J.M.: What about a learning environment where Euclidean concepts are manipulated with a mouse?, in di Sessa, A., Hoyles, C., Noss, R. & Edwards, L. (Eds), Computers for Exploratory Learning, (241–262), NATO ASI Series, Springer, 1995.

    Google Scholar 

  38. Laborde, C. & Laborde, J.M.: The case of Cabri-géomètre: learning geometry in a computer based environment, in Watson, D. & Tinsley, D. (Eds), Integrating Information Technology into Education, (95–106), Chapman & Hall, 1995.

    Google Scholar 

  39. Lindquist, M.M., & Shulte, A.P. (EDS): Learning and teaching geometry K-12, NCTM 1987 yearbook, 1987.

    Google Scholar 

  40. Martin, W.G., &; Harel, G.: Proof frames of preservice elementary teachers, Journal for Research in Mathematics Education, 20,1, 41–51, 1989.

    Google Scholar 

  41. Noss, R. & Hoyles, C.: Windows on mathematical meanings. Learning cultures and computers, Kluwer, 1996.

    Google Scholar 

  42. Osta, I.: Analyse d’une séquence didactique: Représentations graphiques à J’aide de l’ordinateur comme médiateur dans l’apprentissage de notions de géométrie de l’espace, in Vergnaud, G. (Ed), Didactique et acquisition des connaissances scientifiques, (165–184), Grenoble, La Pensée Sauvage, 1987.

    Google Scholar 

  43. Osta, I.: L’ordinateur comme outil d’aide à l’enseignement. Une séquence didactique pour l’enseignement du repérage dans l’espace a l’aide de logiciels graphiques, Thèse de l’Université Joseph Fourier, Grenoble, 1989.

    Google Scholar 

  44. Osta, I.: Graphie constructions with computer to learn 3D reference system, Proceedings of the Thirteenth International Conference for the Psychology of Mathematics Education, vol. Iii, 65–73, 1989.

    Google Scholar 

  45. Pea, R.: Cognitive technologies for mathematics education, in Schoenfeld, A. (Ed), Cognitive Science and Mathematical Education, (89–122), Hillsdale, N.J., LEA Publishers, 1987.

    Google Scholar 

  46. PORTEOUS K.: What do children really believe ?, Educational Studies in Mathematics, 21,6, (589–598), 1990.

    Google Scholar 

  47. Tall, D.: The transition to advanced mathematical thinking: Functions, limits, infinity, and proof, in Grouws, D.A. (Ed), Handbook of Research on Mathematics Teaching and Learning, (495–514), a project of the National Council of Teachers of Mathematics, New York, Macmillan, 1992.

    Google Scholar 

  48. WEILL-Fassina, A. & Rabardel, P.: Le dessin technique. un instrument graphique de pensée et de communication professionnelle; points de repère, Le Travail Humain, 48,4, 301–305, 1985.

    Google Scholar 

  49. Williams, E.: An investigation of senior high school students’ understanding of the nature of mathematical proof, Doctoral dissertation, University of Alberta, Edmonton, Canada, 1979.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Osta, I., Laborde, C., Hoyles, C., Jones, K., Graf, KD., Hodgson, B. (1998). Computer Technology and the Teaching of Geometry. In: Mammana, C., Villani, V. (eds) Perspectives on the Teaching of Geometry for the 21st Century. New ICMI Study Series, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5226-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5226-6_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-4991-4

  • Online ISBN: 978-94-011-5226-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics