Skip to main content

The Interaction of Alternaria Alternata F.Sp. Lycopersici and its AAL-Toxins with Tomato

  • Chapter
Molecular Genetics of Host-Specific Toxins in Plant Disease

Part of the book series: Developments in Plant Pathology ((DIPP,volume 13))

Abstract

The Alternaria alternata f.sp. lycopersici-tomato (Lycopersicon esculentum) interaction was studied to characterise AAL-toxins mediated plant cell death. The Alternaria stem canker disease in tomato is controlled by a single locus (Asc) with three alleles on chromosome 3 that determines resistance (Ascl 1 and Ascl 2) or susceptibility (asc) to the fungus and its AAL-toxins. The toxicity of AAL-toxins and related fumonisins is generally explained by inhibition of sphingolipid biosynthesis, but no cellular targets of the toxins have been identified yet. Thus, molecular genetic strategies were employed to study and isolate the Asc locus. By EMS mutagenesis of asc and Ascl 1 it was found that only asc could be mutagenised to Ascl 1. Three independent targeted transposon tagging experiments to inactivate asc and Ascl 1 did not result in transposon induced mutants. Map-based isolation of Asc from yeast artificial chromosome clones by the production of a contig of Lambda clones is in progress. By subsequent complementation it should be possible to capture the gene(s) governing sensitivity and resistance and to show the biochemical principle behind the differential response to AAL-toxins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Johal, G.S., Gray, J., Gruis, D., and Briggs, S.P. (1994) ‘Convergent insights into mechanisms determining disease and resistance response in plant-fungal interactions’, Can. J. Bot. 73(Suppl. 1), S468–S474.

    Google Scholar 

  2. Bent, A.F. (1996) ‘Plant disease resistance genes: Function meets structure’, Plant Cell 8(10), 1757–1771.

    PubMed  CAS  Google Scholar 

  3. Johal, G.S. and Briggs, S.P. (1992) ‘Reductase activity encoded by the HM1 disease resistance gene in maize’, Science 258, 985–987.

    Article  PubMed  CAS  Google Scholar 

  4. Navarre, D.A. and Wolpert, T.J. (1995) ‘Inhibition of the glycine decarboxylase multienzyme complex by the host selective toxin victorin’, Plant Cell 7, 463–471.

    PubMed  CAS  Google Scholar 

  5. Dewey, R.E., Siedow, J.N., Timothy, D.H., and Levings III, C.S. (1988) ‘A 13-kilodalton maize mitochondrial protein in E.coli confers sensitivity to Bipolaris maydis toxin’, Science 239, 293–295.

    Article  PubMed  CAS  Google Scholar 

  6. Desjardins, A.E., and Hohn, T.M. (1997) ‘Mycotoxins in plant pathogenesis’, Mol. Pl.-Micr. Interac. 10(2), 147–152.

    Article  CAS  Google Scholar 

  7. Walton, J.D. (1996) ‘Host-selective toxins: agents of compatibility’, Plant Cell 8(10), 1723–1733.

    PubMed  CAS  Google Scholar 

  8. Otani, H., Kohmoto, K., and Kodama, M. (1994) ‘Alternaria toxins and their effects on host plants’, Can. J. Bot. 73(Suppl 1), S453-S458.

    Google Scholar 

  9. Cassol, T. and St. Clair, D.A. (1994) ‘Inheritance of resistance to blackmold (Alternaria alternata (Fr.) Keissler) in two interspecific crosses of tomato (Lycopersicon esculentum x L. cheesmanii f. typicum)’, Theor. Appl. Genet. 88, 581–588.

    Article  Google Scholar 

  10. Grogan, R.G., Kimble, K.A., and Misaghi, I. (1975) ‘A stem canker disease of tomato caused by Alternaria alternata f.sp. lycopersici’, Phytopathology 65, 880–886.

    Article  Google Scholar 

  11. Clouse, S.D. and Gilchrist, D.G. (1987) ‘Interaction of the asc locus in F8 paired lines of tomato with Alternaria alternata f.sp. lycopersici and AAL-toxin’, Phytopathology 77, 80–82.

    Article  CAS  Google Scholar 

  12. van der Biezen, E.A., Overduin, B., Kneppers, T.J.A., Mesbah, L.A., Nijkamp, H.J.J., and Hille, J. (1994) ‘Molecular genetic characterisation of the Asc locus of tomato conferring resistance to the fungal pathogen Alternaria alternata f. sp. lycopersici’, Euphytica 79(3), 205–217.

    Article  CAS  Google Scholar 

  13. Gilchrist, D.G., Wang, H., and Bostock, R.M. (1995) ‘Sphingosine-related mycotoxins in plant and animal diseases’, Can. J. of Botany 73(Suppl. 1), S459–S467.

    Article  CAS  Google Scholar 

  14. van der Biezen, E.A., Glagotskaya, T., Overduin, B., Nijkamp, H.J., and Hille, J. (1995) ‘Inheritance and genetic mapping of resistance to Alternaria alternata f. sp. lycopersici in Lycopersicon pennellii’, Mol. Gen. Genet. 247(4), 453–461.

    Article  PubMed  Google Scholar 

  15. Abbas, H.K., Tanaka, T., Duke, S.O., and Boyette, CD. (1995) ‘Susceptibility of various crop and weed species to AAL-toxin, a natural herbicide’, Weed Technol. 9, 125–130.

    CAS  Google Scholar 

  16. Witsenboer, H.M.A., van Schaik, C.E., Bino, R.J., Löffler, H.J.M., Nijkamp, H.J.J., and Hille, J. (1988) ‘Effects of the Alternaria alternata sp. lycopersici toxins at different levels of tomato plant cell development.’, Plant Sci. 56, 253–260.

    Article  CAS  Google Scholar 

  17. Bino, R.J., Franken, J., Hille, J., Witsenboer, H.M.A., and Dons, J.J.M. (1988) ‘Effects of the Alternaria alternata fsp. lycopersici toxins on pollen.’, Theor. Appl. Genet. 76, 204–208.

    Article  CAS  Google Scholar 

  18. Witsenboer, H.M.A., van de Griend, E.G., Tiersma, J.B., Nijkamp, H.J.J., and Hille, J. (1989) ‘Tomato resistance to Alternaria stem canker: Localization in host genotypes and functional expression compared to non-host resistance.’, Theor. Appl. Genet. 78, 457–462.

    Article  Google Scholar 

  19. Moussatos, V., Witsenboer, H., Hille, J., and Gilchrist, D.G. (1993) ‘Behaviour of the disease resistance gene Asc in protoplasts of Lycopersicon esculentum Mill’, Physiol. Mol. Plant. Pathol. 43, 255–263.

    Article  CAS  Google Scholar 

  20. Moussatos, V.V., Yang, S.F., Ward, B., and Gilchrist, D.G. (1994) ‘AAL-toxin induced physiological changes in Lycopersicon esculentum Mill: roles for ethylene and pyrimidine intermediates in necrosis’, Physiol. Mol. Plant Pathol. 44, 455–468.

    Article  CAS  Google Scholar 

  21. Park, P., Nishimura, K., Kohmoto, K., and Otani, H. (1981) ‘Comparitive effects of host-specific toxins from four pathotypes of Alternaria alternata, Ann. Phytopathol. Soc. Jpn. 47, 488–500.

    Article  Google Scholar 

  22. Bezuidenhout, S.C., Gelderblom, W.C.A., Gorst-Allmann, R.M.M., Marasas, W.F.O., Spiteller, G., and Vleggaar, R. (1988) ‘Structure elucidation of the fumonisins, mycotoxins from Fusarium moniliforme’, J. Chem. Soc. Chem. Commun. 11, 743–745.

    Article  Google Scholar 

  23. Gilchrist, D.G., Ward, B., Moussatos, V. and Mirocha, C.J. (1992) ‘Genetic and physiological response to fumonisin and AAL-toxin by intact tissue of a higher plant’, Mycopathologia 117, 57–64.

    Article  CAS  Google Scholar 

  24. Lamprecht, S.C., Marasas, W.F.O., Alberts, J.F., Cawood, M.E., Gelderblom, W.C.A., Shepard, G.S., Thiel, P.G., and Calitz, F.J. (1994) ‘Phytotoxicity of fumonisins and TA-toxin to corn and tomato’, Phytopathology 84, 383–391.

    Article  CAS  Google Scholar 

  25. Chen, J.P., Mirocha, C.J., Xie, W.P., Hogge, L., and Olson, D. (1992) ‘Production of the mycotoxin fumonisin B1 by Alternaria alternata f.sp. lycopersici’, Appl. Environ. Microbiol. 58(12), 3928–3931.

    PubMed  CAS  Google Scholar 

  26. Dutton, M.F. (1996) ‘Fumonisins, mycotoxins of increasing importance: Their nature and their effects’, Pharmacol. Ther. 70(2), 137–161.

    Article  PubMed  CAS  Google Scholar 

  27. Tolleson, W.H., Melchior, W.B., Morris, S.M., Mcgarrity, L.J., Domon, O.E., Muskhelishvili, L., James, S.J., and Howard, P.C. (1996) ‘Apoptotic and anti-proliferative effects of fumonisin B-1 in human keratinocytes, fibroblasts, esophageal epithelial cells and hepatoma cells’, Carcinogenesis 17(2), 239–249.

    Article  PubMed  CAS  Google Scholar 

  28. Wang, H., Jones, C., Ciaccizanella, J., Holt, T., Gilchrist, D.G., and Dickman, M.B. (1996) ‘Fumonisins and Alternaria alternata lycopersici toxins: Sphinganine analog mycotoxins induce apoptosis in monkey kidney cells’, Proc. Natl. Acad. Sci. USA 93(8), 3461–3465.

    Article  PubMed  CAS  Google Scholar 

  29. Wang, H., Li, J., Bostock, R.M., and Gilchrist, D.G. (1996) ‘Apoptosis: A functional paradigm for programmed plant cell death induced by a host-selective phytotoxin and invoked during development’, Plant Cell 8(3), 375–391.

    PubMed  CAS  Google Scholar 

  30. Wang, E., Norred, W.P., Bacon, C.W., Riley, R.T., and Merrill, A.H., Jr. (1991) ‘Inhibition of sphingolipid biosynthesis by fumonisins. Implications for diseases associated with Fusarium moniliforme’, J. Biol. Chem. 266(22), 14486–14490.

    PubMed  CAS  Google Scholar 

  31. Kaneshiro, T., Vesonder, R.F., Peterson, R.E., and Bagby, M.O. (1993) ‘2-Hydroxyhexadecanoic and 8,9,13-trihydroxydocosanoic acid accumulation by yeasts treated with fumonisin Bl’, Lipids 28(5), 397–401.

    Article  PubMed  CAS  Google Scholar 

  32. Wu, W.I., Mcdonough, V.M., Nickels, J.T., Ko, J.S., Fischl, A.S., Vales, T.R., Merrill, A.H., and Carman, G.M. (1995) ‘Regulation of lipid biosynthesis in Saccharomyces cerevisiae by fumonisin B-l’, J. Biol. Chem. 270(22), 13171–13178.

    Article  PubMed  CAS  Google Scholar 

  33. Merrill, A.H., Liotta, D.C., and Riley, R.T. (1996) ‘Fumonisins: Fungal toxins that shed light on sphingolipid function’, Tr. Cell Biol. 6(6), 218–223.

    Article  CAS  Google Scholar 

  34. Fukuda, H., Shima, H., Vesonder, R.F., Tokuda, H., Nishino, H., Katoh, S., Tamura, S., Sugimura, T., and Nagao, M. (1996) ‘Inhibition of protein serine threoninc phosphatases by fumonisin B-1, a mycotoxin’, Biochem. Biophys. Res. Commun. 220(1), 160–165.

    Article  PubMed  CAS  Google Scholar 

  35. Wattenberg, E.V., Badria, F.A., and Shier, W.T. (1996) ‘Activation of mitogen-activated protein kinase by the carcinogenic mycotoxin fumonisin B1’, Biochem. Biophys. Res. Comm. 227(2), 622–627.

    Article  PubMed  CAS  Google Scholar 

  36. Merrill, A.H., Jr., Schmelz, E.M., Dillehay, D.L., Spiegel, S., Shayman, J.A., Schroeder, J.J., Riley, R.T., Voss, K.A., and Wang, E. (1997) ‘Sphingolipids-the enigmatic lipid class: biochemistry, physiology, and pathophysiology’, Toxicol. Appl. Pharmacol. 142(1), 208–225.

    Article  PubMed  CAS  Google Scholar 

  37. Yeung, J.M., Wang, H.Y., and Prelusky, D.B. (1996) ‘Fumonisin B-l induces protein kinase C translocation via direct interaction with diacylglycerol binding site’, Toxicol. Appl. Pharmacol. 141(1), 178–184.

    PubMed  CAS  Google Scholar 

  38. Abbas, H.K., Tanaka, T., Duke, S.O., Porter, J.K., Wray, E.M., Hodges, L., Sessions, A.E., Wang, E., Merrill, A.H., and Riley, R.T. (1994) ‘Fumonisin-and AAL-toxin-induced disruption of sphingolipid metabolism with accumulation of free sphingoid bases’, Plant Physiol 106(3), 1085–1093.

    PubMed  CAS  Google Scholar 

  39. Winter, C.K., Gilchrist, D.G., Dickman, M.B., and Jones, C. (1996) ‘Chemistry and biological activity of AAL toxins’, Adv. Exp. Med. Biol. 392, 307–316.

    PubMed  CAS  Google Scholar 

  40. Spiegel, S., Foster, D., and Kolesnick, R. (1996) ‘Signal transduction through lipid second messengers’, Curr. Op. Cell Biol. 8(2), 159–167.

    Article  PubMed  CAS  Google Scholar 

  41. van Koppen, C., Meyer zu Heringdorf, M., Laser, K.T., Zhang, C., Jakobs, K.H., Bunemann, M., and Pott, L. (1996) ‘Activation of a high affinity Gi protein-coupled plasma membrane receptor by sphingosine-1-phosphate’, J. Biol. Chem. 271(4), 2082–2087.

    Article  PubMed  Google Scholar 

  42. Beier, R.C., Elissalde, M.H., and Stanker, L.H. (1995) ‘Calculated three dimensional structures of the fumonisin B-1-4 mycotoxins’, Bull. Environ. Contam. Toxicol. 54(4), 479–487.

    Article  PubMed  CAS  Google Scholar 

  43. Caldas, E.D., Jones, A.D., Ward, B., Winter, C.K., and Gilchrist, D.G. (1994) ‘Structural characterization of three new AAL toxins produced by Alternaria alternata f.sp. Lycopersici’, J. Agr. Food Chem. 42(2), 327–333.

    Article  CAS  Google Scholar 

  44. Abbas, H.K., Tanaka, T., and Shier, W.T. (1995) ‘Biological activities of synthetic analogues of Alternaria alternata toxin (AAL-toxin) and fumonisin in plant and mammalian cell cultures’, Phytochemistry 40(6), 1681–1689.

    Article  PubMed  CAS  Google Scholar 

  45. Tanaka, T., Abbas, H.K., and Duke, S.O. (1993) ‘Structure-dependent phytotoxicity of fumonisins and related compounds in a duckweed bioassay’, Phytochemistry 33(4), 779–785.

    Article  CAS  Google Scholar 

  46. Merrill, A.H., Jr., Wang, E., Vales, T.R., Smith, E.R., Schroeder, J.J., Menaldino, D.S., Alexander, C., Crane, H.M., Xia, J., Liotta, D.C., Meredith, F.I., and Riley, R.T. (1996) ‘Fumonisin toxicity and sphingolipid biosynthesis’, Adv. Exp. Med. Biol. 392, 297–306.

    PubMed  CAS  Google Scholar 

  47. Kimura, N. and Tsuge, T. (1993) ‘Gene cluster involved in melanin biosynthesis of the filamentous fungus Alternaria alternata’, J. Bacteriol. 175(14), 4427–4435.

    PubMed  CAS  Google Scholar 

  48. Desjardins, A.E., Plattner, R.D., and Proctor, R.H. (1996) ‘Genetic and biochemical aspects of fumonisin production’, Adv. Exp. Med. Biol. 392, 165–173.

    PubMed  CAS  Google Scholar 

  49. Jasalavich, C.A., Morales, V.M., Pelcher, L.E., and Seguin-Swartz, G. (1995) ‘Comparison of nuclear ribosomal DNA sequences from Alternaria species pathogenic to crucifers’, Mycol. Res. 99(5), 604–614.

    Article  CAS  Google Scholar 

  50. Tsuge, T., Nishimura, S., and Kobayashi, H. (1990) ‘Efficient integrative transformation of the phytopathogenic fungus Alternaria alternata mediated by the repetitive rDNA sequences’, Gene 90, 207–214.

    Article  PubMed  CAS  Google Scholar 

  51. Shiotani, H. and Tsuge, T. (1995) ‘Efficient gene targeting in the filamentous fungus Alternaria alternata’, Mol. Gen. Genet. 248(2), 142–150.

    Article  PubMed  CAS  Google Scholar 

  52. Yang, G., Rose, M.S., Turgeon, B.G., and Yoder, O.C. (1996) ‘A polyketide synthase is required for fungal virulence and production of the polyketide T-toxin’, Plant Cell 8(11), 2139–2150.

    PubMed  CAS  Google Scholar 

  53. Akamatsu, H., Itoh, Y., Kodama, M., Otani, H., and Kohmoto, K, (1996) ‘AAL-toxin deficient mutants of Alternaria alternata tomato pathotype by restriction enzyme-mediated integration’, Phytopathology, in press.

    Google Scholar 

  54. Gilchrist, D.G., (1983) ‘Molecular modes of action’ in Toxins and plant pathogenesis, Daly, J.M. and Deverall, B.J., Editor. 1983, Academic Press: Sydney, pp. 81–136.

    Google Scholar 

  55. Overduin, B., Hogenhout, S.A., van der Biezen, E.A., Haring, M.A., Nijkamp, H.J.J., and Hille, J. (1993) ‘The Asc locus for resistance to Alternaria stem canker in tomato does not encode the enzyme aspartate carbamoyltransferase’, Mol. Gen. Genet. 240, 43–48.

    Article  PubMed  CAS  Google Scholar 

  56. Korthout, H.A. and de Boer, A.H. (1994) ‘A fusicoccin binding protein belongs to the family of 14-3-3 brain protein homologs’, Plant Cell 6(11), 1681–1692.

    PubMed  CAS  Google Scholar 

  57. van der Biezen, E.A., Nijkamp, H.J.J., and Hille, J. (1996) ‘Mutations at the Asc locus of tomato confer resistance to the fungal pathogen Alternaria alternata f sp lycopersici’, Theor. Appl. Genet. 92(7), 898–904.

    Article  Google Scholar 

  58. van den Bulk, R.W., Löffler, H.J.M., Lindhout, W.H., and Koornneef, M. (1990) ‘Somaclonal variation in tomato: effect of the expiant source and a comparison with chemical mutagenesis’, Theor. Appl. Genet. 80, 817–825.

    Article  Google Scholar 

  59. Knapp, S., Larondellle, Y., RoBberg, M., Furtek, D. and Theres, K. (1994) ‘Transgenic tomato lines containing Ds elements at defined genomic positions as tools for targeted transposon tagging.’, Mol. Gen. Genet. 243, 666–673.

    PubMed  CAS  Google Scholar 

  60. van der Biezen, E.A. (1995) ‘Resistance and susceptibility of tomato to the fungal pathogen Alternaria alternata f. sp. lycopersici’, Thesis, Vrije Universiteit, Amsterdam.

    Google Scholar 

  61. Overduin, B. (1994) ‘The Alternaria stem canker resistance locus of tomato: transposon tagging as a tool to isolate genes involved in plant fungus interactions.’, Thesis, Vrije Universiteit, Amsterdam.

    Google Scholar 

  62. Koornneef, M., et al. (1989) ‘Chromosomal instability in cell and tissue cultures of tomato haploids and diploids’, Euphytica 43, 179–186.

    Article  Google Scholar 

  63. Bottini, A.T. and Gilchrist, D.G. (1981) ‘Phytotoxins. I. A 1-aminodimethylheptadecapentol from Alternaria alternata f.sp. lycopersici’, Tetrahedron Lett. 22(29), 2719–2722.

    Article  CAS  Google Scholar 

  64. Bottini, A.T., Bowen, J.R., and Gilchrist, D.G. (1981) ‘Phytotoxins. II. Characterization of a phytotoxic fraction from Alternaria alternata f.sp. lycopersici’, Tetrahedron Lett. 22(29), 2723–2726.

    Article  CAS  Google Scholar 

  65. Shier, W.T., Abbas, H.K., and Badria, F.A. (1995) ‘Complete structures of the sphingosine analog mycotoxins fumonisin B-1 and AAL toxin T-1: Absolute configuration of the side chains’, Tetrahedron Lett. 36(10), 1571–1574.

    Article  CAS  Google Scholar 

  66. Mandala, S.M., Thornton, R.A., Frommer, B.R., Curotto, J.E., Rozdilsky, W., Kurtz, M.B., Giacobbe, R.A., Bills, G.F., Cabello, M.A., Martin, I., Pelaez, F., and Harris, G.H. (1995) ‘The discovery of australifungin, a novel inhibitor of sphinganine N-acyltransferase from Sporormiella australis — Producing organism, fermentation, isolation, and biological activity’, J. Antibiot. 48(5), 349–356.

    Article  PubMed  CAS  Google Scholar 

  67. Sweeley, C.C., (1991) ‘Sphingolipids’ in Biochemistry of lipids. Lipoproteins and membranes, Vance, D.E. and Vance, J., Editor. 1991, Elsevier Science Publishers: Amsterdam, The Netherlands, pp. 327–361.

    Google Scholar 

  68. Skrzypek, M., Lester, R.L., and Dickson, R.C. (1997) ‘Suppressor gene analysis reveals an essential role for sphingolipids in transport of glycosylphosphatidylinositol-anchored proteins in Saccharomyces cerevisiae’, J. Bacteriol. 179(5), 1513–1520.

    PubMed  CAS  Google Scholar 

  69. Meivar-Levy, I., Sabanay, H., Bershadsky, A.D., and Futerman, A.H. (1997) ‘The role of sphingolipids in the maintenance of fibroblast morphology. The inhibition of protrusional activity, cell spreading, and cytokinesis induced by fumonisin B1 can be reversed by ganglioside GM3’, J. Biol. Chem. 272(3), 1558–1564.

    Article  PubMed  CAS  Google Scholar 

  70. Lynch, D.V., Cahoon, E.B., Fairfield, S.R., and Tannishata, (1990) ‘Glycosphingolipids of plant membranes’ in Plant lipid biochemistry. Structure and utilization, Quinn, P.J. and Harwood, J.L., Editor. 1990, Portland press: London, pp. 47–52.

    Google Scholar 

  71. van der Biezen, E.A., Overduin, B., Nijkamp, H.J.J., and Hille, J. (1994) ‘Integrated genetic map of tomato chromosome 3’, Tomato Genetic. Coop. Rep. 44, 8–10.

    Google Scholar 

  72. Liakopoulou-Kyriakides, M., Lagopodi, A.L., Thanassoulopoulos, C.C., Stravropoulos, G.S., and Magafa, V. (1997) ‘Isolation and synthesis of a host-selective toxin produced by Alternaria alternata’, Phytochemistry 45(1), 37–40.

    Article  CAS  Google Scholar 

  73. Stierle, C.S., Cardelinna, J.H.I., and Strobel, G.A. (1988) ‘Maculosin, a host-specific phytotoxin for spotted knapweed from Alternaria alternata’, Proc. Natl. Acad. Sci. USA 85, 8008–8011.

    Article  PubMed  CAS  Google Scholar 

  74. Clouse, S.D. and Gilchrist, D.G. (1987) ‘Interaction of the asc locus in F8 paired lines of tomato with Alternaria alternata f.sp. lycopersici and AAL-toxin’, Phytopathology 77, 80–82.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brandwagt, B. et al. (1998). The Interaction of Alternaria Alternata F.Sp. Lycopersici and its AAL-Toxins with Tomato. In: Kohmoto, K., Yoder, O.C. (eds) Molecular Genetics of Host-Specific Toxins in Plant Disease. Developments in Plant Pathology, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5218-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5218-1_36

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6197-1

  • Online ISBN: 978-94-011-5218-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics