Skip to main content

Deterministic and Stochastic Aspects of Strain Localization in the Fatigue of Metals

  • Chapter
PROBAMAT-21st Century: Probabilities and Materials

Part of the book series: NATO ASI Series ((ASHT,volume 46))

  • 195 Accesses

Abstract

In recent years, a long-standing issue is the understanding of the localization and postlocalization behaviour of plastic deformation in materials that exhibit non-monotonic stress-strain relationships (hardening, softening and possible rehardening). Such type of non-convex stress-strain graph implies that there is an unstable region where the flow stress required for further plastic flow decreases with increasing plastic strain. Several reasons for such type of behaviour may be envisaged: (i) multiplication softening arising from a rapid increase in the density of mobile dislocations after yield [1]; (ii) structural softening resulting either from a dislocation glide resistance that decreases in the course of straining due to dislocations destroying or sweeping obstacles to their motion (for an overview, see [2]) or from a transition between different types of dislocation arrangements; (iii) geometrical softening commonly caused by lattice rotation [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Estrin, Y and Kubin, L. P. (1986) Local strain hardening and nonuniformity of plastic deformation, Acta Metall. 34, 2455–2464.

    Article  Google Scholar 

  2. Luft, A. (1991) Microstructural Processes of Plastic Instabilities in Strengthened Metals, Progr. Mater. Sci. 35, 97–204.

    Article  CAS  Google Scholar 

  3. Deve, H. E. and Asaro, R. J. (1989) The developement of plastic failure modes in crystalline materials: shear bands in fcc polycrystals, Metall. Trans. A 20, 579–593.

    Article  Google Scholar 

  4. Estrin, Y., Kubin, L. P. and Aifantis, E. C. (1993) Viewpoint set on propagative plastic instabilities, Scripta Metall. 29, 1147–1150.

    Article  CAS  Google Scholar 

  5. Zbib, H. M. and Aifantis, E. C. (1988) On the Localization and Postlocalization Behaviour of Plastic Deformation I-III, Res Mechanica 23, 261–305.

    Google Scholar 

  6. Aifantis, E. C. (1984) On the microstructural origin of certain inelastic models, Trans ASME, J. Eng. Mat. Techn. 106, 326–330.

    Article  CAS  Google Scholar 

  7. . Aifantis, E. C. (1987) The physics of plastic deformation, Int. J. Plasticity 3, 211–247.

    Article  Google Scholar 

  8. Aifantis, E. C. (1983) Dislocation kinetics and the formation of deformation bands, in: Defects, Fracture and Fatigue, G. C. Sih and J. W. Provan ( Eds. ), Martinus-Nijhoff, 75–84.

    Chapter  Google Scholar 

  9. . Zaiser, M. and Hähner, P., (1996) A theory of the formation of slip channels in cold-worked bcc metals, Phil. Mag. A 74, 287–298.

    Article  CAS  Google Scholar 

  10. . Zaiser, M. and Bay, K. (1997) Microstructural slip localization in strain softening materials, phys. stat.sol (b) 203, 29–42.

    Article  CAS  Google Scholar 

  11. . Hähner, P. (1996) On the foundations of stochastic dislocation dynamics, Appl. Phys. A 62, 473–481.

    Article  Google Scholar 

  12. . Basinski, Z. S. and Basinski, S. J. (1992) Fundamental aspects of low-amplitude cyclic deformation in face-centered cubic crystals, Progr. Mater. Sci. 36, 89–148.

    Article  CAS  Google Scholar 

  13. . Holzwarth, U. and Essmann, U. (1993) Transformation of dislocation patterns in fatigued copper single crystals, Mater. Sci. Engng. A 164, 206–210.

    Article  Google Scholar 

  14. . Winter, A. T. (1974) A model for the fatigue of copper at low plastic strain amplitudes, Phil. Mag. 30, 719–738.

    Article  CAS  Google Scholar 

  15. . Mughrabi, H. (1978) The cyclic hardening and saturation behaviour of copper single crystals, Mater. Sci. Engng.33, 207–223.

    Article  CAS  Google Scholar 

  16. . Essmann, U. and Differt, K. (1996) Dynamic model of the wall structure in persistent slip bands of fatigued metals, Mater. Sci. Engng. A 208, 56–68.

    Article  Google Scholar 

  17. . Pedersen, O. B. (1996) A static-dynamic model for the process of cyclic saturation in fatigue of metals, Phil. Mag. A 73, 829–858.

    Article  CAS  Google Scholar 

  18. . Walgraef, D. and Aifantis, E. C. (1985) Dislocation patterning in fatigued metals as a result of dynamical instabilities, J. Appl. Phys.58, 688–691.

    Article  CAS  Google Scholar 

  19. . Glazov, M., Lanes, L. M., and Laird, C. (1995) Self-organized dislocation structures in fatigued metals, phys. status solidi (b) 149, 295–321.

    Google Scholar 

  20. . Hähner, P. (1996) Stochastic dislocation patterning during cyclic plastic deformation, Appl. Phys. A 63, 45–55.

    Google Scholar 

  21. Zaiser, M. and Aifantis, E. C. (1997) On the dynamic interaction between moving dislocations, Appl. Phys. A, to be published.

    Google Scholar 

  22. . Holzwarth, U. and Hähner, H. (1995) Temperature dependence of the strain-rate sensitivity of persistent slip bands in copper single crystals Phil. Mag. A 72, 691–705.

    Article  CAS  Google Scholar 

  23. . Aifantis, E. C. and Serrin, J. B. (1983) The mechanical theory of fluid interfaces and Maxwell’s rule, J. Colloid Interface Sci 96, 517–529.

    Article  CAS  Google Scholar 

  24. . Haken, H. (1983) Synergetics, Springer, Heidelberg-New York-Tokyo.

    Book  Google Scholar 

  25. . Hänggi, P., Talkner, P. and Borkovec, M. (1990) Reaction-rate theory: fifty years after Kramers, Rev. Mod. Physics 62, 251–341.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zaiser, M., Avlonitis, M., Aifantis, E.C. (1998). Deterministic and Stochastic Aspects of Strain Localization in the Fatigue of Metals. In: Frantziskonis, G.N. (eds) PROBAMAT-21st Century: Probabilities and Materials. NATO ASI Series, vol 46. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5216-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5216-7_32

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6196-4

  • Online ISBN: 978-94-011-5216-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics