Skip to main content

Open and Closed Low Latitude Boundary Layer

  • Chapter
Book cover Polar Cap Boundary Phenomena

Part of the book series: NATO ASI Series ((ASIC,volume 509))

Abstract

We review and summarize the evidence that a closed LLBL exists, at least away from noon. We also emphasize the observation that just equatorward of the LLBL, overlapping magnetosheath and magnetospheric electrons exist on sunward convecting field lines which have no low-energy ion cutoff (i.e., closed field lines). Therefore it is inescapable to conclude that sheath plasma is introduced onto closed field lines. The dropoff of the high-energy electrons is identified not necessarily with the open/closed boundary but rather with the convection reversal boundary, since these electrons originate on the nightside and convect towards the dayside (hence they cannot exist on anti-sunward convecting field lines, even if the latter are closed). A model is discussed wherein diffusion introduces sheath plasma onto closed field lines, but merging removes these same field lines from the dayside. The competition between these two effects explains why the LLBL is thinnest at noon, where open LLBL signatures dominate (perhaps exclusively), and why the LLBL is thicker for northward IMF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rosenbauer, H., H. Grunwaldt, M. D. Montgomery, G. Paschmann, and N. Sckopke (1975) J. Geophys. Res., 80, 2723.

    Article  ADS  Google Scholar 

  2. Eastman, T. E., E. W. Hones, S. J. Bame, and J. R. Asbridge (1976) Geophys. Res. Let., 3, 685.

    Article  ADS  Google Scholar 

  3. Haerendel, G., G. Paschmann, N. Sckopke, H. Rosenbauer, and P. C. Hedgecock (1978) J. Geophys. Res., 83, 3195.

    Article  ADS  Google Scholar 

  4. Eastman, T. E., B. Popielawska, and L. A. Frank (1985) J. Geophys. Res., 90, 9519.

    Article  ADS  Google Scholar 

  5. Sanchez, E. R., and G. L. Siscoe (1990) J. Geophys. Res., 95, 20771.

    Article  ADS  Google Scholar 

  6. Mitchell, D. G., F. Kutchko, D. J. Williams, T. E. Eastman, L. A. Frank, and C. T. Russell (1987) J. Geophys. Res., 92, 7394.

    Article  ADS  Google Scholar 

  7. Fuselier, S. A, B. J. Anderson, and T. G. Onsager (1995) J. Geophys. Res., 100, 11805.

    Article  ADS  Google Scholar 

  8. Lockwood, M., and J. Moen (1996) Geophys. Res. Lett., 23, 2895.

    Article  ADS  Google Scholar 

  9. Lockwood, M., W. F. Denig, A. D. Farmer, V. N. Davda, S. W. H. Cowley, and H. Lühr (1993) Nature, 361, 424.

    Article  ADS  Google Scholar 

  10. Newell, P. T., and C.-I. Meng (1995) J. Geophys. Res., 100, 21943.

    Article  ADS  Google Scholar 

  11. Yamauchi, M., J. Woch, R. Lundin, M. Shapshak, R. Elphinstone (1993) Geophys Res. Lett., 20, 795.

    Article  ADS  Google Scholar 

  12. Formisano, V. (1980) Planet. Space Sci., 28, 245.

    Article  ADS  Google Scholar 

  13. Newell, P. T., W. J. Burke, E. R. Sánchez, C.-I. Meng, M. E. Greenspan, and C. R. Clauer (1991) J. Geophys. Res., 96, 21013.

    Article  ADS  Google Scholar 

  14. Clemmons, J. H., C. W. Carlson, and M. H. Boehm (1995) J. Geophys. Res., 100, 12133.

    Article  ADS  Google Scholar 

  15. Onsager, T. G., C. A. Kletzing, J. B. Austin, and H. MacKiernan (1993) Geophys. Res. Lett., 20, 479.

    Article  ADS  Google Scholar 

  16. Wing, S., P. T. Newell, and T. G. Onsager (1996) J. Geophys. Res., 101, 13155.

    Article  ADS  Google Scholar 

  17. Newell, P. T., S. Wing, C.-I. Meng, and V. Sigillito (1991) J. Geophys. Res., 96, 5877.

    Article  ADS  Google Scholar 

  18. Alem, F. and D. C. Delcourt (1995) J. Geophys. Res., 100, 19321.

    Article  ADS  Google Scholar 

  19. Sergeev, V. A., G. R. Bikkuzina, and P. T. Newell (1997) Annales. Geophys.

    Google Scholar 

  20. Grande, M., J. Fennell, S. Livi, B. Kellett, C. H. Perry, P. Anderson, J. Roeder, H. Spence, T. Fritz, and B. Wilken (1997) Geophys Res. Lett., 24.

    Google Scholar 

  21. Woch, J., and R. Lundin (1992) J. Geophys. Res., 97, 1421.

    Article  ADS  Google Scholar 

  22. Omidi, N., and D. Winske (1995) J. Geophys. Res., 100, 11935.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Newell, P.T., Meng, CI. (1998). Open and Closed Low Latitude Boundary Layer. In: Moen, J., Egeland, A., Lockwood, M. (eds) Polar Cap Boundary Phenomena. NATO ASI Series, vol 509. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5214-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5214-3_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6195-7

  • Online ISBN: 978-94-011-5214-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics