Skip to main content

Solar Wind He2+ and H+ Distributions in the Cusp for Southward IMF

  • Chapter
Polar Cap Boundary Phenomena

Part of the book series: NATO ASI Series ((ASIC,volume 509))

Abstract

For southward Interplanetary Magnetic Field (IMF), the He2+/H+ density ratio in the cusp can be several times higher than the ratio in the solar wind. Proceeding poleward from the equatorial edge of the cusp, the ratio first increases to well above the solar wind value, then decreases to values at or below that in the solar wind. Superposed on this overall change are more rapid (2–3 minute) variations in the density ratio. A model for the magnetosheath ion distributions is used to explain both the overall change and the variations in the cusp density ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shelley, E. G., et al. (1995) The toroidal imaging mass-angle spectrograph (TIMAS) for the polar mission, Space Sci. Rev. 71, 497.

    Article  ADS  Google Scholar 

  2. Ogilvie, K., et al. (1995) A comprehensive plasma instrument for the wind spacecraft, Space Sci. Rev. 71, 55.

    Article  ADS  Google Scholar 

  3. Shelley, E. G., Sharp, R. D., and Johnson R. G. (1976) He2+ and H+ flux measurements in the dayside cusp: Estimates of convection electric field, J. Geophys. Res.,.81, 2363.

    Article  ADS  Google Scholar 

  4. Rosenbauer, H.,et al. (1975) Heos 2 plasma observations in the distant polar magnetosphere: The plasma mantle, J. Geophys. Res. 80, 2723.

    Article  ADS  Google Scholar 

  5. Lockwood, M. and Smith, M. F. (1992) The variation of reconnection rate at the dayside magnetopause and cusp ion precipitation, J. Geophys. Res. 97, 14,841.

    Google Scholar 

  6. Onsager, T. G., Kletzing, C. A., Austin, J. B., and MacKiernan, H. (1993) Model of magnetosheath plasma in the magnetosphere: Cusp and mantle particles at low-altitudes, Geophys. Res. Lett. 20, 479.

    Article  ADS  Google Scholar 

  7. Peterson, W. K., et al. (1979) H+ and He++ in the dawnside magnetosheath, Geophys. Res. Lett. 6, 667.

    Article  ADS  Google Scholar 

  8. Fuselier, S. A., Shelley, E. G., and Klumpar, D. M. (1988) AMPTFJCCE observations of shell-like He2+ and O6+ distributions in the magnetosheath, Geophys. Res. Lett. 15, 1333.

    Article  ADS  Google Scholar 

  9. Paschmann, G. Fuselier, S. A., and Klumpar, D. M., (1989) High speed flows of H+ and He++ ions at the Earth’s magnetopause, Geophys. Res. Lett., 16, 56.

    Article  Google Scholar 

  10. Fuselier, S. A., Shelley, E. G., and Klumpar, D. M. (1993) Mass density and pressure changes across the dayside magnetopause, J. Geophys. Res. 98, 3935.

    Article  ADS  Google Scholar 

  11. Gosling, J. T., Thomsen, M. F., Bame, S. J.,and Russell, C. T. (1989) Ion reflection and downstream thermalization at the quasi-parallel bow shock, J. Geophys. Res. 94, 10,027.

    Google Scholar 

  12. Sckopke, N., et al. (1983) Evolution of ion distributions across a nearly perpendicular bow shock: Specularly and non-specularly reflected-gyrating ions, J. Geophys. Res., 88, 6,121.

    Google Scholar 

  13. Fuselier, S. A., and Schmidt, W. K. H. (1994) H+ and He2+ heating at the Earth’s bow shock, J. Geophys. Res. 99, 11,539.

    Google Scholar 

  14. Gosling, J. T., and Robson, A. E. (1985) Ion reflection, gyration, and dissipation at super-critical shocks, in B. T. Tsurutani and R. G. Stone (eds.), Collisionless Shocks in the Heliosphere: Reviews of Current Research, Geophys. Monogr. Ser. vol. 35, AGU, Washington D. C., p. 153.

    Chapter  Google Scholar 

  15. Fuselier, S. A., and Schmidt, W. K. H. (1997) Solar wind He2+ ring-beam distributions downstream from the Earth’s bow shock, J. Geophys. Res. 102, 11,273.

    ADS  Google Scholar 

  16. Motschmann, J., and Raeder, J. (1992) A simulation study of multiple ion wave generation downstream of low mach number quasi-perpendicular shocks, Geophys. Res. Lett. 19, 1619.

    Article  ADS  Google Scholar 

  17. Gloeckler, G., et al. (1986) Solar wind carbon, nitrogen, and oxygen abundances measured in the Earth’s magnetosheath with AMPTE, Geophys. Res. Lett. 13, 793.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fuselier, S.A., Shelley, E.G., Peterson, W.K., Lennartsson, O.W. (1998). Solar Wind He2+ and H+ Distributions in the Cusp for Southward IMF. In: Moen, J., Egeland, A., Lockwood, M. (eds) Polar Cap Boundary Phenomena. NATO ASI Series, vol 509. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5214-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5214-3_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6195-7

  • Online ISBN: 978-94-011-5214-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics