Skip to main content

Response of the Polar Cap Ionosphere to Changes in (Solar Wind) IMF

  • Chapter
Polar Cap Boundary Phenomena

Part of the book series: NATO ASI Series ((ASIC,volume 509))

Abstract

The character of the polar cap ionosphere is dominated by the component of the solar wind IMF (Interplanetary Magnetic Field) that is parallel/anti-parallel to earth’s magnetic field. Changes in the polar cap ionosphere properties, driven by changes in the IMF, necessarily drive changes in both the polar thermosphere and in growth rates of plasma instabilities and polar plasma structuring over a range of scale sizes exceeding 104. The physical processes determining this character are mutually interactive. Selected interactive physical processes are reviewed, to help clarify what is known, and suggest where important new findings may be found, particularly at Svalbard. The ionosphere/ thermosphere transient response to IMF reversals should clarify magnetospheric topology for northward IMF. The cusp thermosphere should exhibit transient upwelling and molecular enrichments. Certain cusp aurora should be excited by thermal electrons; their greater altitude may impact understanding of polar ionospheric convection. Polar ionospheric patch research requires more rigor in specific areas. A number of clear signatures are suggested for polar cap arcs, cusp reconnection events, and related phenomena. The thermosphere, as the rest frame for plasma response to electric fields (currents, heating, chemical loss, instabilities), can have transpolar winds order a km/s, which require measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roble R. G. (1977) The Thermosphere: The Upper Atmosphere and Magnetosphere National Research Council Monograph Nat. Acad. Sci.

    Google Scholar 

  2. Reiff, P. H. and Burch, J. L. (1985) IMF By-dependent plasma flow and Birkeland currents in the dayside magnetosphere, 2, A global model for northward and southward IMF, J. Geophys. Res, 90 1595–1609.

    Article  ADS  Google Scholar 

  3. Cowley, S. W. H. and Lockwood, M. (1992) Excitation and decay of solar-wind driven flows in the magnetosphere-ionosphere system, Ann. Geophys, 10, 103.

    ADS  Google Scholar 

  4. Carlson, H C. (1994) The dark polar ionosphere: Progress and future challenges, Radio Sci, 29 157–165.

    Article  ADS  Google Scholar 

  5. Richmond, A. D., and Roble, R. G. (1987) Electrodynamic effects of thermospheric winds from the NCAR thermospheric general circulation model, J. Geophys. Res, 92 12365.

    Article  ADS  Google Scholar 

  6. Carlson, H. C., and Crowley, G. (1989) The equinox transition study: an overview, J. Geophys. Res, 94 16861–16868.

    Article  ADS  Google Scholar 

  7. Carlson, H. C., Heelis, R. A., Weber, E. J., Sharber, J. R. (1988) Coherent mesoscale patterns during northward IMF, J. Geophys. Res, 93 14,501–14514.

    Google Scholar 

  8. Carlson, H. C. (1996) Incoherent scatter radar mapping of polar electrodynamics, J. Atmos. Terr. Phys, 58 37–56.

    Article  ADS  Google Scholar 

  9. Heelis, R. A., Lowell, J. K., and Spiro, R. W. (1982) A model of the high-latitude ionospheric convection pattern, J. Geophys. Res., 87, 6339–6345.

    Article  ADS  Google Scholar 

  10. Ismail, S., Wallis, D. D., and Cogger, L. L. (1977) Characteristics of polar cap sun-aligned arcs, J. Geophys. Res, 82 4741.

    Article  ADS  Google Scholar 

  11. Burke, W. J., Gussenhoven, M. S., Kelley, M. C., Hardy, D. A., and Rich, F. J. (1982) Electric and magnetic field characteristics of discrete arcs in the polar cap, J. Geophys. Res, 87 2431–2443.

    Article  ADS  Google Scholar 

  12. Weber, E. W., Klobuchar, J. A., Buchau, J., Carlson, H. C., Livingston, R. C., de la Beaujaudiere, O., McCready, M., Moore, J. G., Bishop, G. J. (1986) Polar cap F layer patches: Structure and dynamics, J. Geophys. Res., 91 12,121–12,129.

    Article  ADS  Google Scholar 

  13. Weber, E. W. and Buchau, J. (1981) Polar cap F layer auroras, Geophys. Res. Lett, 8 125–128.

    Article  ADS  Google Scholar 

  14. Heppner, J. P. and Maynard, N. C. (1987) Empirical high-latitude electric field models, J. Geophys. Res, 92 4467.

    Article  ADS  Google Scholar 

  15. Heelis, R. A., (1984) The effects of interplanetary magnetic field orientation on dayside high-latitude convection, J. Geophys. Res, 89 2873.

    Article  ADS  Google Scholar 

  16. Rodriguez, J. et al (in press, 1996) Decay of polar cap arcs after a southward turning of IMF, J. Geophys. Res

    Google Scholar 

  17. Lyons, L. R. (1980) Generation of large scale regions of auroral currents, electric potentials, and precipitation by the divergence of convection electric field, J. Geophys. Res, 85 17–24.

    Article  ADS  Google Scholar 

  18. Schunk, R. W. and Sojka, J. J. (1987) A theoretical study of the lifetime and transport of large ionospheric density structures, J. Geophys. Res, 92 12343.

    Article  ADS  Google Scholar 

  19. Weber, E. J., Buchau, J., Moore, J. G., Sharber, J. R., Livingstone, R. C., Winningham J. D., and Reinisch, B. W. (1984) F-layer ionization patches in the polar cap, J. Geophys. Res, 89 1683–1694.

    Article  ADS  Google Scholar 

  20. Buchau, J., Weber, E. J., Anderson, D. N., Carlson, H C., and Moore, J. G. (1985) Ionospheric structures in the polar cap: their origin and relation to 250 MHz scintillation, Radio Sci, 20 325–338.

    Article  ADS  Google Scholar 

  21. Anderson, D. N., Buchau, J., and Heelis, R. A. (1988) Origin of density enhancements in the winter polar cap ionosphere, Radio Sci,23 513–519.

    Article  ADS  Google Scholar 

  22. Crowley, G. (1996) Critical review of ionospheric patches and blobs, Chapter 27, Review of Radio Science 1993–1996, URSI, Oxford Sci. Publ., Editor W. R. Stone, 619–648.

    Google Scholar 

  23. Lockwood, M. and Carlson, H. C. (1992) The production of polar cap electron density patches by transient magnetopause reconnection, Geophys. Res. Lett, 19 1731–1734.

    Article  ADS  Google Scholar 

  24. Carlson, H. C. (1993) High power HF modification: Geophysics span of EM effects, and energy budget, Adv. Space Res, 13 1015–1024.

    Article  Google Scholar 

  25. Mantas, G. P. and Carlson, H. C. (1996) Reinterpretation of the 6300-A airglow enhancements observed in the ionosphere heating experiments based on analysis of Platteville, Colorado, data, J. Geophys. Res, 101 195–209.

    Article  ADS  Google Scholar 

  26. Kozyra, J. U., Valladares, C. E., Carlson, H. C., Buonsanto, M. J., and Slater, D. W. (1990) A theoretical study of the seasonal and solar cycle variations of stable auroral red arcs, J. Geophys. Res, 95 12219–12234.

    Article  ADS  Google Scholar 

  27. Kozyra, J. U., Chandler, M. O., Hamilton, D. C., Peterson, W. K., Klumpar, D. M., Slater, D. W., Buonsanto, M. J., and Carlson, H. C. (1993) The role of ring current nose events in producing stable auroral red arc intensifications during the main phase: observations during the September 19–24 1984 storm, J. Geophys. Res, 98 9267–9283.

    Article  ADS  Google Scholar 

  28. Lockwood, M., Carlson, H. C., and Sandholt, P. E. (1993) Implications of the altitude of transient 630-nm dayside auroral emissions, J. Geophys. Res, 98 15571–15587.

    Article  ADS  Google Scholar 

  29. Bums, A. G., T. L. Killeen, G. Crowley, B. A. Emery, and R. G. Roble, (1989) On the mechanisms responsible for high-latitude thermospheric composition variations during the recovery phase of a geomagnetic storm, J. Geophys. Res, 94 16961–16968.

    Article  ADS  Google Scholar 

  30. Bums, A. G., Killeen, T. L., and Roble, R. G. (1991) A theoretical study of thermospheric composition perturbations during an impulsive geomagnetic storm, J. Geophys. Res, 96 14153–14167.

    Article  ADS  Google Scholar 

  31. Crowley, G., Emery, B. A., Roble, R. G., Carlson, H. C., and Knipp, D. J. (1989a) Thermospheric dynamics during September 18–19, 1984, 1, Model simulations, J. Geophys. Res, 94, 16925–16944.

    Article  ADS  Google Scholar 

  32. Crowley, G., Emery, B. A., Roble, R. G., Carlson, H. C., Salah, J. E., Wickwar, V. B., Miller, K. L., Oliver, W. L., Burnside, R. G., and Marcos, F. A. (1989b) Thermospheric dynamics during September 18–19, 1984, 2, Validation of the NCAR thermospheric general circulation model, J. Geophys. Res, 94 16945–16959.

    Article  ADS  Google Scholar 

  33. Valladares, C. E. and Carlson, H. C. (1991) The electrodynamics, thermal, and energetic character of intense sun-aligned arcs in the polar cap, J. Geophys. Res, 96 1379–1400.

    Article  ADS  Google Scholar 

  34. Basu, Su., Basu, Sa, MacKenzie, E., Coley, W. R., Sharber, J. R., and Hoegy, W. R. (1990) Plasma structuring by the gradient drift instability at high latitudes and comparison with velocity shear driven processes, J. Geophys. Res, 95 7799.

    Article  ADS  Google Scholar 

  35. Basu, Su., Basu, Sa., MacKenzie, E., Fougere, P. F., Coley, W. R., Maynard, N., Winningham, J. D., Sugiura, M., Hanson, W. B., and Hogey, W. R. (1988), Simultaneous density and electric field fluctuation spectra associated with velocity shears in the auroral oval, J. Geophys. Res, 93 115.

    Article  ADS  Google Scholar 

  36. Keskinen, M. J., and Huba, J. D. (1990) Nonlinear evolution of high latitude ionospheric interchange instabilities with scale-size dependent magnetospheric coupling, J Geophys. Res,95 15157.

    Article  ADS  Google Scholar 

  37. Basu, Sa., Basu, Su., Chaturvedi, P. K., and Bryant, C. M. (1994) Irregularity structures in the cusp-cleft and polar cap regions, Radio Sci, 29 195–208.

    Article  ADS  Google Scholar 

  38. Clauer, R. C. and Friis-Christensen, E. (1988) High-latitude dayside electric fields and currents during strong northward IMF: observations and model simulation, J. Geophys. Res, 93 2749–2757.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Carlson, H.C. (1998). Response of the Polar Cap Ionosphere to Changes in (Solar Wind) IMF. In: Moen, J., Egeland, A., Lockwood, M. (eds) Polar Cap Boundary Phenomena. NATO ASI Series, vol 509. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5214-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5214-3_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6195-7

  • Online ISBN: 978-94-011-5214-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics