Skip to main content

Deleterious mutations in animal mitochondrial DNA

  • Chapter
Book cover Mutation and Evolution

Part of the book series: Contemporary Issues in Genetics and Evolution ((CIGE,volume 7))

Abstract

A simple neutral model predicts that the ratio of non-synonymous to synonymous fixed differences between species will be the same as the ratio of non-synonymous to synonymous polymorphisms within species. This prediction is tested with existing mitochondrial datasets from 25 animal species. In slightly over half of the studies, the ratio of replacement to silent polymorphisms within species is significantly greater than the ratio of replacement to silent fixed differences between species. These observations are best explained by a substantial number of mildly deleterious amino acid mutations that contribute to heterozygosity but rarely become fixed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akashi, H., 1995. Inferring weak selection from patterns of polymorphism and divergence at’ silent’ sites in Drosophila DNA. Genetics 139: 1067–1076.

    PubMed  CAS  Google Scholar 

  • Ballard, J.W.O. & M. Kreitman, 1994. Unraveling selection in the mitochondrial genome of Drosophila. Genetics 138: 757–772.

    PubMed  CAS  Google Scholar 

  • Baker, R.J., R.A. Van Den Bussche, A.J. Wright, L.E. Wiggins, M.J. Hamilton, E.P. Reat, M.H. Smith, M.D. Lomakin & R.K. Chesser, 1996. High levels of genetic change on rodents of Chernobyl. Nature 380: 707–708.

    Article  PubMed  CAS  Google Scholar 

  • Brookfield, J.F.Y. & P.M. Sharp, 1994. Neutralism and selection face up to DNA data. Trends Genet. 10: 109–111.

    Article  PubMed  CAS  Google Scholar 

  • Brower, A.V.Z., 1994. Rapid morphological radiation and conver gence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proc. Nat. Acad. Sci. USA 91: 6491–6495.

    Article  PubMed  CAS  Google Scholar 

  • Bruna, E.M., R.N. Fisher & T.J. Case, 1996. Morphological and genetic evolution appear decoupled in Pacific skinks (Squamata: Scincidae: Emoia). Proc. R. Soc. Lond. B 263: 681–688.

    Article  Google Scholar 

  • Carr, S.M., A.J. Snellen, K.A. Howse & J.S. Wroblewski, 1995. Mitochondrial DNA sequence variation and genetic stock struc ture of Atlantic cod (Gadus morhua) from bay and offshore loca tions on the Newfoundland continental shelf. Mol. Ecology 4: 79–88.

    Article  CAS  Google Scholar 

  • Charlesworth, B., 1994. The effect of background selection against deleterious mutations on weakly selected, linked variants. Genet. Res. Camb. 63: 213–227.

    Article  CAS  Google Scholar 

  • Charlesworth, B., M.T. Morgan & D. Charlesworth, 1993. The effect of deleterious mutations on neutral molecular variation. Genetics 134: 1289–1303.

    PubMed  CAS  Google Scholar 

  • Charlesworth, D., B. Charlesworth & M.T. Morgan, 1995. The pat tern of neutral molecular variation under the background selection model. Genetics 141: 1619–1632.

    PubMed  CAS  Google Scholar 

  • Clark, A.J., 1984. Natural selection with nuclear and cytoplasmic transmission. I. A deterministic model. Genetics 107: 679–701.

    CAS  Google Scholar 

  • DaSilva, M.N.F. & J.L. Patton, 1993. Amazonian phylogeogra-phy: mtDNA sequence variation in arboreal echimyid rodents (Caviomorpha). Mol. Phylogenet. Evol. 2: 243–255.

    Article  CAS  Google Scholar 

  • Edwards, S.V. & A.C. Wilson, 1990. Phylogenetically informative length polymorphism and sequence variability in mitochondri al DNA of Australian songbirds (Pomatostomus). Genetics 126: 695–711.

    PubMed  CAS  Google Scholar 

  • Fisher, R.A., 1958. The Genetical Theory of Natural Selection, 2nd ed. Dover Publications, Inc., New York.

    Google Scholar 

  • Fu, Y.X. & W.H. Li, 1993. Statistical tests of neutrality of mutations. Genetics 133: 693–709.

    PubMed  CAS  Google Scholar 

  • Gaut, B.S. & M.T. Clegg, 1993a. Nucleotide polymorphism in theAdhl locus of pearl millet (Pennisetum glaucum)(Poaceae). Genetics 135: 1091–1097.

    PubMed  CAS  Google Scholar 

  • Gaut, B.S. & M.T. Clegg, 1993b. Molecular evolution of the Adhl locus in the genus Zea. Proc. Nat. Acad. Sci. 90: 5095–5099.

    Article  PubMed  CAS  Google Scholar 

  • Gillespie, J.H., 1991. The Causes of Molecular Evolution. Oxford University Press, Oxford.

    Google Scholar 

  • Gillespie, J.H., 1994. Substitution processes in molecular evolution. III. Deleterious alleles. Genetics 138: 943–952.

    PubMed  CAS  Google Scholar 

  • Gillespie, J.H., 1994. Alternatives to the neutral theory, pp. 1–17 in Non-neutral Evolution. Theories and Molecular Data, edited by B. Golding. Chapman and Hall, New York.

    Chapter  Google Scholar 

  • Gillespie, J.H., 1995. On Ohta’s hypothesis: most amino acid sub stitutions are deleterious. J. Mol. Evol. 40: 64–69.

    Article  CAS  Google Scholar 

  • Guttman, D.S. & D.E. Dykhuizen, 1994. Detecting selective sweeps in naturally occurring Escherichia coli. Genetics 138: 993–1003.

    PubMed  CAS  Google Scholar 

  • Hammer, M., 1995. A recent common ancestry for human Y Chromosomes. Nature 378: 376–378.

    Article  PubMed  CAS  Google Scholar 

  • Hedges, S.B., J.P. Bogart & L.R. Maxson, 1992. Ancestry of uni sexual salamanders. Nature 356: 708–710.

    Article  PubMed  CAS  Google Scholar 

  • Hey, J., 1997. Mitochondrial and nuclear genes present conflicting portraits of human origins. Mol. Biol. Evol. 14: 166–172.

    Article  PubMed  CAS  Google Scholar 

  • Hudson, R.R., M. Kreitman & M. Aguade, 1987. A test of neutral molecular evolution based on nucleotide data. Genetics 116: 153–159.

    PubMed  CAS  Google Scholar 

  • Hutter, C.M. & D.M. Rand, 1995. Competition between mitochondr ial haplotypes in distinct nuclear genetic environments: Drosophila pseudoobscura vs. D. persimilis. Genetics 140: 537–548.

    PubMed  CAS  Google Scholar 

  • Jukes, T.H. & C.R. Cantor, 1969. Evolution of protein molecules, pp. 21–132 in Mammalian Protein Metabolism, edited by H.N. Munro, Academic Press, New York.

    Google Scholar 

  • Kaneko, M., Y Satta, E. T. Matsura & S. Chigusa, 1993. Evolution of the mitochondrial ATPase 6 gene in Drosophila: unusually high level of polymorphism in D. melanogaster. Genet. Res. 61: 195–204.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, J.K., 1997. A test of neutrality based on interlocus associa tions. Genetics 146: 1197–1206.

    PubMed  CAS  Google Scholar 

  • Kilpatrick, S.T. & D.M. Rand, 1995. Conditional hitchhik ing of mitochondrial DNA: frequency shifts of Drosophila melanogaster mtDNA variants depend on nuclear genetic back ground. Genetics 141: 1113–1124.

    PubMed  CAS  Google Scholar 

  • Kimura, M., 1968. Evolutionary rate at the molecular level. Nature 217: 624–626.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, M., 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge.

    Google Scholar 

  • Kreitman, M. & H. Akashi, 1995. Molecular evidence for natural selection. Ann. Rev. Ecol. Syst. 26: 403–422.

    Article  Google Scholar 

  • Li, W.-H. & L. A. Sadler, 1991. Low nucleotide diversity in man. Genetics 129: 513–523.

    PubMed  CAS  Google Scholar 

  • MacRae, A.F. & W.W. Anderson, 1988. Evidence for non-neutrality of mitochondrial DNA haplotypes in Drosophila pseudoobscura. Genetics 120: 485–494.

    PubMed  CAS  Google Scholar 

  • McDonald, J.H., 1996. Detecting non-neutral heterogeneity across a region of DNA sequence in the ratio of polymorphism to diver gence. Mol. Biol. Evol. 13: 253–260.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, J. H. & M. Kreitman, 1991. Adaptive protein evolution at the Adh locus in Drosophila. Nature 351: 652–654.

    Article  PubMed  CAS  Google Scholar 

  • Moritz, C., C.J. Schneider & D.B. Wake, 1992. Evolutionary rela tionships within the Ensatina eschscholtzii complex confirm the ring species interpretation. Syst. Biol. 41: 273–291.

    Google Scholar 

  • Nachman, M.W. & C.F. Aquadro, 1994. Polymorphism and diver gence at the 5′ flanking region of the sex determining locus, Sry, in mice. Mol. Biol. Evol. 11: 539–547.

    PubMed  CAS  Google Scholar 

  • Nachman, M.W., S.N. Boyer & C.F. Aquadro, 1994. Nonneutral evolution at the mitochondrial NADH dehydrogenase subunit 3 gene in mice. Proc. Nat. Acad. Sci. USA 91: 6364–6368.

    Article  PubMed  CAS  Google Scholar 

  • Nachman, M.W., W.M. Brown, M. Stoneking & C.F. Aquadro, 1996. Nonneutral mitochondrial DNA variation in humans and chimpanzees. Genetics 142: 953–963.

    PubMed  CAS  Google Scholar 

  • Ohta, T., 1972. Population size and rate of evolution. J. Mol. Evol. 1: 305–314.

    Article  PubMed  CAS  Google Scholar 

  • Ohta, T. & J.H. Gillespie, 1996. Development of neutral and nearly neutral theories. Theoret. Pop. Biol. 49: 128–142.

    Article  Google Scholar 

  • Ohta, T. & M. Kimura, 1971. On the constancy of the evolutionary rate of cistrons. J. Mol. Evol. 1: 18–25.

    Article  CAS  Google Scholar 

  • Rand, D.M. & L.M. Kann, 1996. Excess amino acid polymorphism in mitochondrial DNA: contrasts among genes from Drosophila, mice, and humans. Mol. Biol. Evol. 13: 735–748.

    Article  PubMed  CAS  Google Scholar 

  • Rand, D.M. & L.M. Kann, 1998. Mutation and selection at silent and replacement sites in the evolution of animal mitochondrial DNA. Genetica 102/103: 393–407.

    Article  PubMed  Google Scholar 

  • Rand, D.M., M. Dorfsman & L.M Kann, 1994. Neutral and nonneutral evolution of Drosophila mitochondrial DNA. Genetics 138: 741–756.

    PubMed  CAS  Google Scholar 

  • Sawyer, S.A. & D.L. Hartl, 1992. Population genetics of polymor phism and divergence. Genetics 132: 1161–1176.

    PubMed  CAS  Google Scholar 

  • Sawyer, S.A., D.E. Dykhuizen & D.L. Hartl, 1987. Confidence interval for the number of selectively neutral amino acid poly morphisms. Proc. Nat. Acad. Sci. USA 84: 6225–6228.

    Article  PubMed  CAS  Google Scholar 

  • Sokal, R.R. & F.J. Rohlf, 1995. Biometry, 3rd edition. W.H. Freeman and Co., New York.

    Google Scholar 

  • Summers, K., E. Bermingham, L. Weigt, S. McCafferty & L. Dahlstrom, 1997. Phenotypic and genetic divergence in three species of dart-poison frogs with contrasting parental behavior. J. Hered. 88: 8–13.

    Article  PubMed  CAS  Google Scholar 

  • Tajima, F., 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595.

    PubMed  CAS  Google Scholar 

  • Takahata, N., 1993. Relaxed natural selection in human populations during the Pleistocene. Jpn. J. Genet. 68: 539–547.

    Article  PubMed  CAS  Google Scholar 

  • Talbot, S.L. & G.F. Shields, 1996. Phylogeography of brown bears (Ursus arctos) of Alaska and paraphyly within the Ursidae. Mol. Phylogenet. Evol. 5: 477–494.

    Article  PubMed  CAS  Google Scholar 

  • Templeton, A.R., 1996. Contingency tests of neutrality using intra/ interspecific gene trees: the rejection of neutrality for the evolution of the mitochondrial cytochrome oxidase II gene in the hominoid primates. Genetics 144: 1263–1270.

    PubMed  CAS  Google Scholar 

  • Watterson, G.A., 1978. The homozygosity test of neutrality. Genetics 88: 405–417.

    PubMed  CAS  Google Scholar 

  • Watterson, G.A., 1975. On the number of segregating sites in genetic models without recombination. Theoret. Pop. Biol. 7: 256–276.

    Article  CAS  Google Scholar 

  • Wood, T.C. & C. Krajewski, 1996. Mitochondrial DNA sequence variation among the subspecies of Sarus Crane (Grus antigone). Auk 113: 655–663.

    Article  Google Scholar 

  • Zink, R.M. & R.C. Blackwell, 1996. Patterns of allozyme, mitochon drial DNA, and morphometric variation in four sparrow genera. Auk 113: 59–67.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nachman, M.W. (1998). Deleterious mutations in animal mitochondrial DNA. In: Woodruff, R.C., Thompson, J.N. (eds) Mutation and Evolution. Contemporary Issues in Genetics and Evolution, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5210-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5210-5_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6193-3

  • Online ISBN: 978-94-011-5210-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics