Skip to main content

Major impacts of gonadal mosaicism on hereditary risk estimation, origin of hereditary diseases, and evolution

  • Chapter
Mutation and Evolution

Part of the book series: Contemporary Issues in Genetics and Evolution ((CIGE,volume 7))

Abstract

The specific-locus test in mice is by far the most extensively applied method for precisely defining gene mutation frequencies in mammals. Computer simulations of control experiments involving 57.4 million offspring, based on vast amounts of historical data, show that because of gonadal mosaicism, the total frequency of spontaneous mutations per generation is much higher than has been thought. The estimated combined spontaneous mutation frequency for both sexes for the seven genes tested in specific-locus experiments is 39.6 x 10−5 mutation/gamete. Division of this frequency by the combined induced mutation frequencies in parents of both sexes results in an estimate of the doubling-dose (DD) of from 5.4 to 7.7 Gy. For decades, the DD has been thought to be about 1 Gy. As the DD increases, estimates of hereditary risk that are based upon it decrease. Thus, one important ramification of this new understanding is that estimates of the hereditary risk to humans from radiation, commonly made by the doubling-dose (DD) approach, are probably at least five times too high. It also appears that gonadal mosaicism is likely to play a much more important role both in evolution and the origin of hereditary diseases than has been appreciated in the past.

The U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of the contribution, or allow others to do so, for U.S. Government purposes. The research was conducted at the Oak Ridge National Laboratory, managed by Lockheed Martin Energy Research Corp. for the U.S. Department of Energy under contract number DE-AC05-96OR22464.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, D., J.B. Bishop, R.C. Garner, P. Ostrosky-Wegman & P.B. Selby, 1995. Cyclophosphamide: review of its mutagenicity for an assessment of potential germ cell risks. Mutat. Res. 330: 115–181.

    Article  PubMed  CAS  Google Scholar 

  • Batchelor, A.L., R.J.S. Phillips & A.G. Searle, 1969. The ineffec tiveness of chronic irradiation with neutrons and gamma rays in inducing mutations in female mice. Brit. J. Radiol. 42: 448–451.

    Article  PubMed  CAS  Google Scholar 

  • BEIR III (Committee on the Biological Effects of Ionizing Radiation of the United States National Research Council), 1980. Genetic effects, pp. 71–134 in The Effects on Populations of Exposure to Low Levels of Ionizing Radiations. National Academy Press, Washington, DC.

    Google Scholar 

  • BEIR V (Committee on the Biological Effects of Ionizing Radiation of the United States National Research Council), 1990. Genetic effects of radiation, pp. 65–134 in Health Effects of Exposure to Low Levels of Ionizing Radiation. National Academy Press, Washington, DC.

    Google Scholar 

  • Cohn, D.H., B.J. Starman, B. Blumberg & P.H. Byers, 1990. Recurrence of lethal osteogenesis imperfecta due to parental mosaicism for a dominant mutation in a human type I collagen gene (COL1A1). Am. J. Hum. Genet. 46: 591–601.

    PubMed  CAS  Google Scholar 

  • Crow, J.F., 1993. How much do we know about spontaneous human mutation rates?. Environ. Mol. Mutagen. 21: 122–129.

    Article  PubMed  CAS  Google Scholar 

  • Drost, J. B. & W. R. Lee, 1995. Biological basis of germline muta tion: comparisons of spontaneous germline mutation rates among Drosophila, mouse, and human. Environ. Mol. Mutagen. 25(Suppl. 26): 48–64.

    Article  PubMed  CAS  Google Scholar 

  • Drost, J.B. & W. R. Lee, 1997. The developmental basis of germline mosaicism in Drosophila and mouse. Environ. Molec. Mutag. 29(Suppl. 28): 13.

    Google Scholar 

  • Dubrova, Y.E., A.J. Jeffreys & A.M. Malashenko, 1993. Mouse minisatellite mutations induced by ionizing radiation. Nature Genetics 5: 92–94.

    Article  PubMed  CAS  Google Scholar 

  • Ehling, U. H. & A. Neuhäuser-Klaus, 1984. Dose-effect relation ships of germ-cell mutations in mice, pp. 15–25 in Problems of Threshold in Chemical Mutagenesis, edited by Y. Tazima, S. Kondo and Y. Kuroda. Kokusai-bunken, Tokyo.

    Google Scholar 

  • Ehling, U.H. & A. Neuhäuser-Klaus, 1991. Induction of specificlocus and dominant lethal mutations in male mice by busulfan. Mutat. Res. 249: 285–292.

    Article  PubMed  CAS  Google Scholar 

  • Ehling, U. H. & A. Neuhäuser-Klaus, 1995. Induction of specificlocus and dominant lethal mutations in male mice by n-propyl and isopropyl methanesulfonate. Mutat. Res. 328: 73–82.

    Article  PubMed  CAS  Google Scholar 

  • Favor, J. & A. Neuhäuser-Klaus, 1994. Genetic mosaicism in the house mouse. Annu. Rev. Genet. 28: 27–47.

    Article  PubMed  CAS  Google Scholar 

  • Hall, J.G., 1988. Review and hypotheses: somatic mosaicism: obser vations related to clinical genetics. Am. J. Hum. Genet. 43: 355–363.

    PubMed  CAS  Google Scholar 

  • Neel, J.V. & S.E. Lewis, 1990. The comparative radiation genetics of humans and mice. Annu. Rev. Genet. 24: 327–362.

    Article  PubMed  CAS  Google Scholar 

  • Neel, J.V., H. Kato & W.J. Schull, 1974. Mortality in the children of atomic bomb survivors and controls. Genetics 76: 311–326.

    PubMed  CAS  Google Scholar 

  • Neel, J.V., W.J. Schull, A.A. Awa, C. Satoh, H. Kato, M. Otake & Y. Yoshimoto, 1990. The children of parents exposed to atomic bombs: estimates of the genetic doubling dose of radiation for humans. Am. J. Hum. Genet. 46: 1053–1072.

    PubMed  CAS  Google Scholar 

  • Raghunath, M., K. Mackay, R. Dalgleish & B. Steinmann, 1995. Genetic counselling on brittle grounds: recurring osteogenesis imperfecta due to parental mosaicism for a dominant mutation. Eur. J. Pediatr. 154: 123–129.

    Article  PubMed  CAS  Google Scholar 

  • Rugh, R., 1990. The Mouse Its Reproduction and Development. Oxford University, New York.

    Google Scholar 

  • Russell, L.B., 1964. Genetic and functional mosaicism in the mouse, pp. 153–181 in The Role of Chromosomes in Development, edited by M. Locke. Academic Press, New York.

    Chapter  Google Scholar 

  • Russell, L.B., 1979. Analysis of the albino-locus region of the mouse. II. Mosaic mutants. Genetics 91: 141–147.

    PubMed  CAS  Google Scholar 

  • Russell, L. B. & W. L. Russell, 1992. Frequency and nature of specific-locus mutations induced in female mice by radiations and chemicals: a review. Mutat. Res. 296: 107–127.

    Article  PubMed  CAS  Google Scholar 

  • Russell, L.B. & W.L. Russell, 1996. Spontaneous mutations recov ered as mosaics in the mouse specific-locus test. Proc. Natl. Acad. Sci. USA 93: 13072–13077.

    Article  PubMed  CAS  Google Scholar 

  • Russell, L.B. & W.L. Russell, 1997. Correction to article’ sponta neous mutations recovered as mosaics in the mouse specific-locus test’. Proc. Natl. Acad. Sci. USA 94: 4233.

    Article  Google Scholar 

  • Russell, L.B., P.R. Hunsicker & M.D. Shelby, 1992. Melphalan, a second chemical for which specific-locus mutation induction in the mouse is maximum in early spermatids. Mutat. Res. 282: 151–158.

    Article  PubMed  CAS  Google Scholar 

  • Russell, L.B., W.L. Russell & P.R. Hunsicker, 1996. Mutation clus ters in specific-locus experiments. Environ. Mol. Mutagen. 27(Suppl. 27): 58.

    Google Scholar 

  • Russell, W. L., 1951. X-ray-induced mutations in mice. Cold Spring Harbor Symposia on Quant. Biol. 16: 317–336.

    Google Scholar 

  • Russell, W.L., 1962. An augmenting effect of dose fractionation on radiation-induced mutation rate in mice. Proc. Nat. Acad. Sci. USA 48: 1724–1727.

    Article  PubMed  CAS  Google Scholar 

  • Russell, W.L., 1963. The effect of radiation dose rate and fraction ation on mutation in mice, pp. 205-217 in Repair from Genetic Radiation, edited by F. Sobels. Pergamon Press, Oxford.

    Google Scholar 

  • Russell, W.L., 1977. Mutation frequencies in female mice and the estimation of genetic hazards of radiation in women. Proc. Nat. Acad. Sci. USA 74: 3523–3527.

    Article  PubMed  CAS  Google Scholar 

  • Russell, W.L., 1982. Mutation frequencies in male mice and the estimation of genetic hazards of radiation in men. Proc. Nat. Acad. Sci. USA 79: 542–544.

    Article  PubMed  CAS  Google Scholar 

  • Russell, W. L. & E.M. Kelly, 1982. Mutation frequencies in male mice and the estimation of genetic hazards of radiation in men. Proc. Nat. Acad. Sci. USA 79: 542–544.

    Article  PubMed  CAS  Google Scholar 

  • Searle, A.G., 1974. Mutation induction in mice. Adv. Radiat. Biol. 4: 131–207.

    Google Scholar 

  • Selby, P.B., 1973. X-ray-induced specific-locus mutation rate in newborn male mice. Mutat. Res. 18: 63–75.

    Article  PubMed  CAS  Google Scholar 

  • Selby, P.B., 1998. Discovery of numerous clusters of spontaneous mutations in the specific-locus test in mice necessitates major increases in estimates of doubling doses. Genetica 102/103: 463–487.

    Article  Google Scholar 

  • Selby, P.B., S.S. Lee, E.M. Kelly, J.W. Bangham, G.D. Raymer & P.R. Hunsicker, 1991. Specific-locus experiments show that female mice exposed near the time of birth to low-LET ionizing radiation exhibit both a low mutational response and a dose-rate effect. Mutat. Res. 249: 351–369.

    Article  PubMed  CAS  Google Scholar 

  • Tegelenbosch, R.A.J. & D.G. de Rooij, 1993. A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat. Res. 290: 193–200.

    Article  PubMed  CAS  Google Scholar 

  • UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation), 1972. Genetic effects of ionizing radiation, pp. 199–302 in Ionizing Radiation: Levels and Effects. United Nations, New York.

    Google Scholar 

  • UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation), 1993. Hereditary effects of radiation, pp. 729–804 in [tiSources and Effects of Ionizing Radiation. United Nations, New York.

    Google Scholar 

  • Wichmann, B.A. & I.D. Hill, 1982a. Algorithm AS 183: An efficient and portable pseudo-random number generator. Applied Statistics 31: 188–190.

    Article  Google Scholar 

  • Wichmann, B.A. & I.D. Hill, 1982b. A Pseudo-random Number Generator. National Physical Laboratory (Teddington, Middle sex, UK) Report DITC 6/82.

    Google Scholar 

  • Woodruff, R.C., H. Huai & J.N. Thompson Jr., 1996. Clusters of identical new mutation in the evolutionary landscape. Genetica 98: 149–160.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Selby, P.B. (1998). Major impacts of gonadal mosaicism on hereditary risk estimation, origin of hereditary diseases, and evolution. In: Woodruff, R.C., Thompson, J.N. (eds) Mutation and Evolution. Contemporary Issues in Genetics and Evolution, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5210-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5210-5_35

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6193-3

  • Online ISBN: 978-94-011-5210-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics