Skip to main content

Selection, convergence, and intragenic recombination in HLA diversity

  • Chapter

Part of the book series: Contemporary Issues in Genetics and Evolution ((CIGE,volume 7))

Abstract

To account for high degrees of human leukocyte antigen (HLA) diversity, a method is proposed for detecting intragenic recombination or gene conversion separately from parallel substitutions or convergent evolution. An application of the method to HLA protein sequences suggests that intragenic recombination played important roles in HLA-B and DPB1, some in HLA-A and DRB1, and least in HLA-C and DQB1 diversity. However, the extent of diversity of these molecules does not necessarily correlate with the frequency of intragenic recombination, supporting the view that (balancing) selection is a primary agent of HLA diversity and often leads to convergent evolution. Computer simulation is carried out to examine two models of balancing selection under the coupled effect with mutation, intragenic recombination, and random drift in a diploid population. It is emphasized that break points by intragenic recombination need be specified to account for HLA diversity. Implications of HLA diversity in human evolution are briefly discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ayala, F.J., 1995. The myth of Eve: molecular biology and human origins. Science 270: 1930–1936.

    Article  PubMed  CAS  Google Scholar 

  • Ayala, F.J., A. Escalante, C. O’huigin & J. Klein, 1994. Molecular genetics of speciation and human origins. Proc. Natl. Acad. Sci. USA 91: 6787–6794.

    Article  PubMed  CAS  Google Scholar 

  • Bunn, H.F., 1994. Sickle hemoglobin and other hemoglobin mutants, pp. 207–256 in The molecular basis of blood diseases (2nd ed), edited by G. Stamatoyannopoulos, A.W. Nienhuis, P.W. Marjerus and H. Varmus. Saunders, Philadelphia.

    Google Scholar 

  • Carver, N.F.H. & A. Cutler, 1994. International hemoglobin infor mation center variant list. Hemoglobin 18: 77–161.

    Article  Google Scholar 

  • Crow, J.F., 1997. The high spontaneous mutation rate: is it a health risk?. Proc. Natl. Acad. Sci. USA 94: 8380–8386.

    Article  PubMed  CAS  Google Scholar 

  • Erlich, H.A., T.F. Bergström, M. Stoneking & U. Gyllensten, 1996. HLA sequence polymorphism and the origin of humans. Science 274: 1552–1554.

    Article  PubMed  CAS  Google Scholar 

  • Fitch, W.M., 1975. Toward finding the tree of maximum parsimony, pp. 189–230 in Proceedings of the Eighth International Confer ence on Numerical Taxonomy, edited by G.F. Estabrook. W.H. Freeman & Co., San Francisco.

    Google Scholar 

  • Fitch, D.H.A. & M. Goodman, 1991. Phylogenetic scanning: a computer-assisted algorithm for mapping gene conversions and other recombination events. Comput. Appl. Biosci. 7: 207–215.

    PubMed  CAS  Google Scholar 

  • Gyllensten, U.B., M. Sundvall & H.A. Erlich, 1991. An allelic diversity is generated by intraexon sequence exchange at the DRB1 locus of primates. Proc. Natl. Acad. Sci. USA 88: 3686–3690.

    Article  PubMed  CAS  Google Scholar 

  • Hein, J., 1993. A heuristic method to reconstruct the history of sequences subject to recombination. J. Mol. Evol. 36: 396–405.

    Article  CAS  Google Scholar 

  • Hidebrand, W.H., J.D. Domena, S.Y. Shen, M. Lau, P.I. Terasaki, M. Bunce, S.G.E. Marsh, M.G. Guttridge, W.B. Bias & P. Parham, 1994. HLA-B15: a widespread and diverse family of HLA-B alleles. Tissue Antigens 43: 209–218.

    Article  Google Scholar 

  • Hughes, A.L. & M. Nei, 1988. Pattern of nucleotide substitutions at major histocompatibility complex class I loci reveals overdominant selection. Nature 335: 167–170.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, A.L. & M. Nei, 1989. Nucleotide substitution at major his tocompatibility complex class II loci: evidence for overdominant selection. Proc. Natl. Acad. Sci. USA 86: 958–962.

    Article  PubMed  CAS  Google Scholar 

  • Howard, J., 1992. Fast forward in the MHC. Nature 357: 284–285.

    Article  Google Scholar 

  • Jakobsen, I.B. & S. Easteal, 1996. A program for calculating and dis playing compatibility matrices as an aid in determining reticulate evolution in molecular sequences. CABIOS 12: 291–295.

    PubMed  CAS  Google Scholar 

  • Kimura, M., 1968. Evolutionary rate at the molecular level. Nature 217: 624–626.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, M., 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Kimura, M. & T. Ohta, 1969. The average number of generations until fixation of a mutant gene in a finite population. Genetics 61: 763–771.

    PubMed  CAS  Google Scholar 

  • Klein, J., 1986. Natural History of the Major Histocompatibility Complex. Wiley, New York.

    Google Scholar 

  • Klein, J. & C. O’huigin, 1995. Class II B Mhc motifs in an evolutionary perspective. Immunol. Rev. 143: 89–111.

    Article  PubMed  CAS  Google Scholar 

  • Klein, J., Y. Satta, C. O’huigin & N. Takahata, 1993. The molec ular descent of the major histocompatibility complex. Ann. Rev. Immunol. 11: 269–295.

    Article  CAS  Google Scholar 

  • Klein, J., N. Takahata & F. J. Ayala, 1993. Mhc diversity and human origins. Sci. Am. 269: 46–51.

    Article  Google Scholar 

  • Li, W.-H. & L.A. Sadler, 1991. Low nucleotide diversity in man. Genetics 129: 513–523.

    PubMed  CAS  Google Scholar 

  • McAdam, A.N., J.E. Boyson, X. Liu, T.L. Garber, A.L. Hughes, R.E. Bontrop & D.I. Watkins, 1994. A uniquely high level of recombination at the HLA-B locus. Proc. Natl. Acad. Sci. USA 91: 5893–5897.

    Article  PubMed  CAS  Google Scholar 

  • McDevitt, H., 1995. Evolution of class II allelic diversity. Immunol. Rev. 143: 113–121.

    Article  PubMed  CAS  Google Scholar 

  • Maruyama, T. & M. Nei, 1981. Genetic variability maintained by mutation and overdominant selection in finite populations. Genetics 98: 441–459.

    PubMed  CAS  Google Scholar 

  • Marsh, S., 1996. http://www.icnet.uk

  • Ohta, T., 1991. Role of diversifying selection and gene conversion in evolution of major histocompatibility complex loci. Proc. Natl. Acad. Sci. USA 88: 6717–6720.

    Article  Google Scholar 

  • O’huigin, C., 1995. Quantifying the degree of convergence in pri mate Mhc-DRB genes. Immunol. Rev. 143: 123–140.

    Article  CAS  Google Scholar 

  • Parham, P., E.J. Adams & K.L. Arnett, 1995. The origins of HLA-A, B, C diversity. Immunol. Rev. 143: 141–180.

    Article  PubMed  CAS  Google Scholar 

  • Parham, P. & T. Ohta, 1996. Population biology of antigen presen tation by MHC class I molecules. Science 272: 67–74

    Article  PubMed  CAS  Google Scholar 

  • Rogers, A.R. & H.C. Harpending, 1992. Population growth makes waves in the distribution of pairwise genetic distances. Mol. Biol. Evol. 9: 552–569.

    PubMed  CAS  Google Scholar 

  • Satta, Y., C. O’huigin, N. Takahata & J. Klein, 1993. The synony mous substitution rate of the major histocompatibility complex loci in primates. Proc. Natl. Acad. Sci. USA 90: 7480–7884.

    Article  PubMed  CAS  Google Scholar 

  • Satta, Y., C. O’huigin, N. Takahata & J. Klein, 1994. Intensity of natural selection at the major histocompatibility complex loci. Proc. Natl. Acad. Sci. USA 91: 7184–7188.

    Article  PubMed  CAS  Google Scholar 

  • Sawyer, S., 1989. Statistical tests for detecting gene conversion. Mol. Biol. Evol. 6: 526–538.

    PubMed  CAS  Google Scholar 

  • Slatkin, M. & R.R. Hudson, 1991. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129: 55–562.

    Google Scholar 

  • Starr, C. & B. McMillan, 1995. Human Biology. Wadsworth Publishing Co., New York.

    Google Scholar 

  • Stephens, J.C., 1985. Statistical methods of DNA sequence analysis: detection of intragenic recombination or gene conversion. Mol. Biol. Evol. 2: 539–556.

    PubMed  CAS  Google Scholar 

  • Tajima, F., 1983. Evolutionary relationship of DNA sequences in finite populations. Genetics 105: 437–460.

    PubMed  CAS  Google Scholar 

  • Takahata, N., 1990. A simple genealogical structure of strongly balanced allelic lines and trans-species evolution of diversity. Proc. Natl. Acad. Sci. USA 87: 2419–2423.

    Article  PubMed  CAS  Google Scholar 

  • Takahata, N., 1993. Allelic genealogy and human evolution. Mol. Biol. Evol. 10: 2–22.

    PubMed  CAS  Google Scholar 

  • Takahata, N., 1994. Comments on the detection of reciprocal recom bination or gene conversion. Immunogenetics 39: 146–149.

    Article  PubMed  CAS  Google Scholar 

  • Takahata, N., 1995a. MHC diversity and selection. Immunol. Rev. 143: 221–247.

    Article  Google Scholar 

  • Takahata, N., 1995b. A genetic perspective on the origin and history of humans. Ann. Rev. Ecol. Syst. 26: 343–372.

    Article  Google Scholar 

  • Takahata, N. & M. Nei, 1990. Allelic genealogy under overdom inant and frequency-dependent selection and diversity of major histocompatibility complex loci. Genetics 124: 967–978.

    PubMed  CAS  Google Scholar 

  • Takahata, N., Y Satta & J. Klein, 1992. Polymorphism and balancing selection at major histocompatibility complex loci. Genetics 130: 925–938.

    PubMed  CAS  Google Scholar 

  • Takahata, N., Y Satta & J. Klein, 1995. Divergence time and popula tion size in the lineage leading to modern humans. Theor. Popul. Biol. 48: 198–222.

    Article  PubMed  CAS  Google Scholar 

  • Takahata, N. & Y Satta, 1997. Evolution of the primate lineage leading to modern humans: phylogenetic and demographic infer ences from DNA sequences. Proc. Natl. Acad. Sci. USA 94: 4811–4815.

    Article  PubMed  CAS  Google Scholar 

  • Titus-Trachtenberg, E.A, O. Rickards, G.F. De Stefano & H.A. Erlich, 1994. Analysis of HLA class II haplotypes in the Cayapa Indians of Ecuador: a novel DRB1 allele reveals evidence for convergent evolution and balancing selection at position 86. Am. J. Hum. Genet. 55: 160–167.

    PubMed  CAS  Google Scholar 

  • Vogel, F. & A.G. Motulsky, 1996. Human Genetics, Problems and Approaches (3rd ed). Springer, New York.

    Google Scholar 

  • Watkins, D.I., S.N. McAdam, X. Liu, C.R. Strang, E.L. Milford, C.G. Levine, T.L. Garber, A.L. Dogon, C.I. Lord, S.H. Chim, G.M. Troup, A.L. Hughes & N.L. Letvin, 1992. New recombinant HLA-B alleles in a tribe of South American Amerindians indicate rapid evolution of MHC class I loci. Nature 357: 329–333.

    Article  PubMed  CAS  Google Scholar 

  • Zangenberg, G., M.-M. Huang, N. Arnheim & H. Erlich, 1995. New HLA-DPB1 alleles generated by interallelic gene conversion detected by analysis of sperm. Nature Genetics 10: 407–414.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Takahata, N., Satta, Y. (1998). Selection, convergence, and intragenic recombination in HLA diversity. In: Woodruff, R.C., Thompson, J.N. (eds) Mutation and Evolution. Contemporary Issues in Genetics and Evolution, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5210-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5210-5_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6193-3

  • Online ISBN: 978-94-011-5210-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics