Skip to main content

Species composition and seasonal cycles of phytoplankton with special reference to the nanoplankton of Lake Mikri Prespa

  • Chapter
Lake Prespa, Northwestern Greece

Part of the book series: Developments in Hydrobiology ((DIHY,volume 122))

  • 85 Accesses

Abstract

The phytoplankton of Lake Mikri Prespa was studied at monthly or biweekly intervals during the period May 1990-September 1992. Its species composition, consisting of a great number of cyanophytes and a very small number of chrysophytes and desmids, may reflect the eutrophic character of the lake. Moreover, the mean annual biomass values (15.0 and 3.2 g m-3 in the two years, respectively) and the maximum biomass (38.1, 6.4 and 9.6 g m-3), classify Mikri Prespa as a eutrophic lake. A tendency towards a double-peaked pattern of biomass distribution in time with one peak in autumn, composed mainly of cyanophytes, and another in spring made up of diatoms, was observed. This pattern contrasts with the standard pattern in eutrophic, stratified temperate lakes, which exhibit a third biomass maximum in summer.

Cyanophytes were the most important group in terms of biomass and were dominated by the species Microcystis aeruginosa, Microcystis wesenbergii, Anabaena lemmermannii var. minor and Aphanocapsa elachista var. conferta. Diatoms constituted the second most important group, with main representative the species Cyclotella ocellata. Cyanophytes, diatoms, chlorophytes and dinophytes revealed annual periodicity whereas the other algal groups did not show any seasonality at all.

The nanoplankton constituted an important part of algal biomass (38.9 and 49.9% in the two years, respectively) and revealed annual periodicity with maximum values in winter and spring, mainly composed of diatoms and cryptophytes. Low temperature, increased rainfall and high DIN concentrations seemed to be the main factors influencing the seasonality. Although the percentage contribution of nanoplankton decreased with the increase in total biomass, justifying the classification of Lake Mikri Prespa among the eutrophic lakes, the nanoplankton biomass did not correlate significantly with total phytoplankton biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, S. E., 1989. Chemical analyses of ecological materials. Black. Sci. Publ., 367 pp.

    Google Scholar 

  • Berman, T. & U. Pollingher, 1974. Annual and seasonal variations of phytoplankton, chlorophyll, and photosynthesis in Lake Kinneret. Limnol. Oceanogr. 19: 31–54.

    Google Scholar 

  • Cronberg, G., 1982. Phytoplankton changes in Lake Trummen induced by restoration. Long-term whole-lake studies and food-web experiments. Folia Limnol. Scand. Lund, 119 pp.

    Google Scholar 

  • Echevarria, F., P. Carrillo, F. Jimenez, P. Sanchez-Castillo, L. Cruz-Pizarro & J. Rodriguez, 1990. The size-abundance distribution and taxonomic composition of plankton in an oligotrophic, high mountain lake (La Caldera, Sierra Nevada, Spain). J. Plankton Res. 12: 415–422.

    Article  Google Scholar 

  • Eloranta, R., 1986. The phytoplankton of some subarctic subalpine lakes in Finnish Lapland. Mem. Soc. Fauna Flora Fenn. 62: 41 – 57.

    Google Scholar 

  • Eloranta, R. & A. Palomaki, 1986. Phytoplankton in Lake Konnevesi with special reference to eutrophication of the lake by fish farming. Aquat. Fenn. 16: 37–45.

    CAS  Google Scholar 

  • Gaedke, U., 1992. The size distribution of plankton biomass in a large lake and its seasonal variability. Limnol. Oceanogr. 37: 1202–1220.

    Google Scholar 

  • Gelin, G., 1975. Nutrients, biomass and primary productivity of nanoplankton in eutrophic Lake Vombsjon, Sweden. Oikos 26: 121–139.

    Article  CAS  Google Scholar 

  • Gounis, N. & M. Moustaka-Gouni, 1990. Simple sampler for the research of vertical distribution of phytoplankton. 3rd Panhellenic Symp. Oceanogr. Fish. Athens: 453–460 (in Greek).

    Google Scholar 

  • Klaveness, D., 1989. Biology and ecology of the Cryptophyceae: Status and challenges. Biol. Oceanogr. 6: 257–270.

    Google Scholar 

  • Klemer, A. & J. Barko, 1991. Effects of mixing and silica enrichment on phytoplankton seasonal succession. Hydrobiologia 210: 171 – 181.

    Article  Google Scholar 

  • Kousouris, T. & A. Diapoulis, 1983. Utilization and protection of land freshwaters I Lake Mikri Prespa. Institute of Oceanographic and Fisheries Research. Special Publ. 6: 1–89 (in Greek).

    Google Scholar 

  • Kristiansen, J., 1971. Phytoplankton of two Danish lakes, with special reference to seasonal cycles of the nanoplankton. Mitt. int. Ver. Limnol. 19: 253–265.

    Google Scholar 

  • Liddicoat, M. I., S. Tibbits & M. I. Butler, 1976. The determination of ammonia in natural waters. Wat. Res. 10: 567–568.

    CAS  Google Scholar 

  • Lund, J. W., G. Kipling & E. D. Le Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.

    Article  Google Scholar 

  • Morgan, K. C. & J. Kalif, 1979. Effect of light and temperature interactions on growth of Cryptomonas erosa(Cryptophyceae). J. Phycol. 15: 127–134.

    Article  Google Scholar 

  • Morris, L., 1980. The physiological ecology of phytoplankton. University of California Press, 491 pp.

    Google Scholar 

  • Mourkides, G., G. E. Tsikritsis, S. E. Tsiouris & U. Menkisoglou, 1978. The Lakes of northern Greece I. Trophic status. Sci. Ann. School Agricult. For. 21: 93–131 (in Greek).

    Google Scholar 

  • Moustaka, M., 1988. Seasonal variations, annual periodicity and spatial distribution of phytoplankton in Lake Volvi. Doctoral Dissertation, University of Thessaloniki, 230 pp (in Greek).

    Google Scholar 

  • Moustaka-Gouni, M., 1988. The structure and dynamics of the phytoplankton assemblages in Lake Volvi, Greece I. Phytoplankton composition and abundance during the period March 1984-March 1985. Arch. Hydrobiol. 112: 251–264.

    Google Scholar 

  • Moustaka-Gouni, M., 1993. Phytoplankton sucession and diversity in a warm monomictic, relatively shallow lake: Lake Volvi, Macedonia, Greece. Hydrobiologia 249: 33–42.

    Article  Google Scholar 

  • Moustaka-Gouni, M. & I. Tsekos, 1989. The structure and dynamics of the phytoplankton assemblages in Lake Volvi, Greece II. Phytoplankton biomass and environmental factors. Arch. Hydrobiol. 115: 575–588.

    Google Scholar 

  • Moustaka-Gouni, M. & G. Nikolaidis, 1990. Phytoplankton of a warm monomictic lake-Lake Vegoritis, Greece. Arch. Hydrobiol. 119: 299–313.

    Google Scholar 

  • Moustaka-Gouni, M., G. Nikolaidis & E. Tryfon, 1994. Chloro-phytes and their ecology in three Macedonian lakes, Greece. Biologia 4: 1–10.

    Google Scholar 

  • Nauwerck, A., 1963. Die Beziehungen zwishen Zooplankton and Phytoplankton in See Erken. Symbolae Botanikae Upsaliensis 17: 1–163.

    Google Scholar 

  • Nicholls, K. H., W. Kennedy & C. Hammett, 1980. A fish-kill in Heart Lake, Ontario, associated with the collapse of a massive population of Ceratium hirundinella(Dinophyceae). Freshwat. Biol. 10: 553–561.

    Google Scholar 

  • Oskam, G., 1978. Light and zooplankton as algae regulating factors in eutrophic Biesbosch reservoirs. Verh. int. Ver. Limnol. 20: 1612–1618.

    Google Scholar 

  • Padisak, J., L. Toth & M. Rajczy, 1988. The role of storms in the summer sucession of the phytoplankton community in a shallow lake (Lake Balaton, Hungary). J. Plankton Res. 10: 249–265.

    Article  Google Scholar 

  • Padisak, J., L. Toth & M. Rajczy, 1990. Stirr-up effects of wind on a more-or-less stratified shallow lake phytoplankton community, Lake Balaton, Hungary. Hydrobiologia 191: 249–254.

    Article  Google Scholar 

  • Pant, M. C., S. Jaiswal & A. R. Sharma, 1985. A compositional and structural analysis of phytoplankton in Lake Khurpatal. (U.P.), India. Int. Revue ges. Hydrobiol. 70: 269–280.

    Article  Google Scholar 

  • Pavoni, M., 1963. Die Bedeutung des Nannoplanktons im Vergleich zum Netzplankton. Schweitz. Z. Hydrol. 25: 219–341.

    Google Scholar 

  • Pollingher, U., 1981. The structure and dynamics of the phytoplankton assemblages in Lake Kinneret, Israel. J. Plankton Res. 3: 93–105.

    Article  CAS  Google Scholar 

  • Pollingher, U., 1990. Effects of latitude on phytoplankton composition and abundance in large lakes. In Tilzer, M. M. & C. Serruya (eds), Large Lakes, Ecological Structure and Function. Springer Verlag, Berlin: 368–402.

    Google Scholar 

  • Redfield, A. C., 1958. The biological control of chemical factors in the environment. Am. Sci. 46: 205–210.

    CAS  Google Scholar 

  • Reynolds, C. S., 1982. Phytoplankton periodicity: its motivation, mechanisms and manipulation. Freshwat. Biol. Ass., Annual Report 60–75.

    Google Scholar 

  • Reynolds, C. S., 1984a. The ecology of freshwater phytoplankton. Cambridge Univ. Press., Cambridge, 383 pp.

    Google Scholar 

  • Reynolds, C. S., 1984b. Phytoplankton periodicity: the interactions of form, function and environmental variability. Freshwat. Biol. 14: 111–142.

    Google Scholar 

  • Rott, E., 1984. Phytoplankton as biological parameter for the trophic characterisation of lakes. Verh. int. Ver. Limnol. 22: 1078–1085.

    CAS  Google Scholar 

  • Round, F. E., 1981. The Ecology of Algae. Cambridge University Press, 653 pp.

    Google Scholar 

  • Schindler, D. W., 1977. Evolution of phosphorus limitation in lakes. Science 195: 260–262.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, J., 1973. Blue-green algae: Why they become dominant. Science 179: 382–384.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, J., 1984. Blue-green dominance in lakes: The role and management significance of pH and CO2. Int. Revue ges. Hydrobiol. 69: 765–780.

    Article  Google Scholar 

  • Sommer, U., 1981. The role of r-and K-selection in the sucession of phytoplankton in Lake Constance. Acta Oecologica 2: 327–342.

    Google Scholar 

  • Sommer, U., Z. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106: 433–471.

    Google Scholar 

  • Stewart, A. J. & R. G. Wetzel, 1985. Cryptophytes and other microflagellates as couplers in planktonic community dynamics. Arch. Hydrobiol. 106: 1–19.

    Google Scholar 

  • Strickland, J. D. H. & T. R. Parsons, 1968. A practical handbook of seawater analysis. Bull. Fish. Res. Bd Can 167: 1–311.

    Google Scholar 

  • Tilman, D., R. Kiesling, R. Sterner, S. S. Kilham & F. A. Johnson, 1986. Green, bluegreen and diatom algae: Taxonomic differences in competitive ability for phosphorus, silicon and nitrogen. Arch. Hydrobiol. 106: 473–485.

    Google Scholar 

  • Tryfon, E., 1994. Structure and dynamics of phytoplancton assemblages in Lake Mikri Prespa. Doctoral Dissertation, University of Thessaloniki, (in Greek), 270 pp.

    Google Scholar 

  • Tryfon, E., M. Moustaka-Gouni, G. Nikolaidis & I. Tsekos, 1994. I. Phytoplankton and physical-chemical features of the shallow Lake Mikri Prespa, Macedonia, Greece. Arch. Hydrobiol. 131: 477–494.

    CAS  Google Scholar 

  • Utermoehl, H., 1958. Zur Vervollkommung der quantitativen Phytoplankton-Methodik. Mitt. int. Ver. Theor. Angew. Limnol. 9: 1–38.

    Google Scholar 

  • Vollenweider, R. A., 1968. Scientific Fundamentals of the Eutrophication of Lakes and Flowing Waters with Particular Reference to Nitrogen and Phosphorus as Factors in Eutrophication. Paris, OECD. 159 pp.

    Google Scholar 

  • Watson, S. W. & J. Kalff, 1981. Relationships between nanoplankton and lake trophic status. Can. J. Fish. aquat. Sci. 38: 960–967.

    Article  Google Scholar 

  • Wetzel, R. G., 1983. Limnology. 2nd edn., Sanders College Publishing, 753 pp.

    Google Scholar 

  • Willen, E., 1976a. Simplified method of phytoplankton counting. Br. Phycol. J. 11: 265–278.

    Article  Google Scholar 

  • Willen, E., 1976b. Phytoplankton in Lake Hjalmaren. Acta Universitalis Uppsaliensis 387: 3–18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tryfon, E., Moustaka-Gouni, M. (1997). Species composition and seasonal cycles of phytoplankton with special reference to the nanoplankton of Lake Mikri Prespa. In: Crivelli, A.J., Catsadorakis, G. (eds) Lake Prespa, Northwestern Greece. Developments in Hydrobiology, vol 122. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5180-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5180-1_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6179-7

  • Online ISBN: 978-94-011-5180-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics