Molecular Dynamics Calculations on Metalloproteins

  • Lucia Banci
  • Giovanni Gori Savellini
Part of the NATO ASI Series book series (ASHT, volume 41)


Molecular Dynamics (MD) simulations have been and are extensively applied to biological molecules, and they are very useful and precious for the determination of structural properties when experimental data are not available. They can also, in a fast and efficient way, predict structural changes induced by mutations, inhibitor binding or interaction with a substrate. Furthermore, they can provide information on the internal motions of macromolecules. With the algorithms presently available for MD calculations, only motions on fast time scales (i.e. up to nanoseconds) can be calculated. Still, these motions can be relevant for the comprehension of the biological function. They can be important for the determination of the molecular recognition for the substrate or the partner in biological reactions. Also the dynamic behavior of residue-residue interactions, which can affect the biological process, can be successfully addressed by MD calculations. Finally, MD can be useful for the characterization of solvation properties, specifically the structure of internal water molecules which cannot easily be addressed experimentally.


Water Molecule Molecular Dynamics Superoxide Dismutase Lignin Peroxidase Axial Ligand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fridovich, I. (1974) Superoxide dismutase, Adv. Enrymol. 41, 35–97.Google Scholar
  2. 2.
    Fridovich, I. (1986) Superoxide dismutase, Adv. Enzymol. Relat. Areas Mol. Biol. 58, 61–97.Google Scholar
  3. 3.
    Tamer, J.A., Getzoff, E.D., Beem, K.M., Richardson, J.S. and Richardson, D.C. (1982) Determination and Analysis of 2 A Structure of Copper Zinc Superoxide Dismutase, J. Mol. Biol. 160, 181–217.CrossRefGoogle Scholar
  4. 4.
    Tamer, J.A., Getzoff, E.D., Richardson, J.S. and Richardson, D.C. (1983) Structure and Mechanism of Copper, Zinc Superoxide Dismutase, Nature 306, 284–287.CrossRefGoogle Scholar
  5. 5.
    Parge, H.E., Hallewell, R.A. and Tainer, J. (1992) Atomic structures of wild-type and thermostable mutant recombinant human Cu,Zn superoxide dismutase, Proc. Natl. Acad. Sci. USA 89, 6109–6114.CrossRefGoogle Scholar
  6. 6.
    Djinovic, K., Gatti, G., Coda, A., Antolini, L., Pelosi, G., Desideri, A., Falconi, M., Marmocchi, F., Rotilio, G. and Bolognesi, M. (1992) Crystal Structure of Yeast Cu,Zn, Superoxide Dismutase. Crystallographic refinement at 2.5 A Resolution, J. Mol. Biol. 225, 791–809.CrossRefGoogle Scholar
  7. 7.
    Bertini, I., Banci, L., Brown III, R.D., Koenig, S.H. and Luchinat, C. (1988) Electronic relaxation of a copper(II) dimer in a macromolecular complex as evaluated from solvent proton relaxation, Inorg. Chem. 27, 951–953.CrossRefGoogle Scholar
  8. 8.
    Banci, L., Bertin, I., Hallewell, R.A., Luchinat, C. and Viezzoli, M.S. (1989) Water in the active cavity of copper/zinc superoxide dismutase. A water III-nuclear-magnetic-relaxationdispersion study, Ear. J. Biochem. 184, 125–129.CrossRefGoogle Scholar
  9. 9.
    Banci, L., Bertini, L, Luchinat, C. and Hallewell, R.A. (1988) An investigation of superoxide dismutase Lys-143, Ile-143, and Glu-143 mutants: Cu2Co2SOD derivatives, J. Am. Chem. Soc. 110, 3629–3633.CrossRefGoogle Scholar
  10. 10.
    Banci, L., Bertini, I., Cabelli, D., Hallewell, R.A., Luchinat, C. and Viezzoli, M.S. (1990) Investigation of copper-zinc superoxide dismutase Ser-137 and Ala-137 mutants, Inorg. Chem. 29, 2398–2403.CrossRefGoogle Scholar
  11. 11.
    Banci, L., Cabelli, D.E., Getzoff, E.D., Hallewell, R.A. and Viezzoli, M.S. (1993) An Essential Role for the Conserved Glu-133 in the Anion Interaction with Superoxide Dismutase, J. Inorg. Biochem. 50, 89–100.CrossRefGoogle Scholar
  12. 12.
    Fee, J.A. and Bull, C. (1986) Steady-state kinetic studies of superoxide dismutases, J. Biol. Chem. 261, 13000–13005.Google Scholar
  13. 13.
    Cabelli, D.E. and Bielski, B.H. (1983) Kinetic and mechanism for the oxidation of ascorbic acid/ascorbate by HO2/O2- radicals. A pulse radiolysis and stopped-flow photolysis study, J. Phys. Chem. 87, 1809–1812.CrossRefGoogle Scholar
  14. 14.
    Beyer, W.F., Jr., Fridovich, I., Mullenbach, G.T. and Hallewell, R.A. (1987) Examination of the role of Arginine-143 in the human Copper and Zinc superoxide dismutase by site-specific mutagenesis, J. Biol. Chem. 262, 11182–11187.Google Scholar
  15. 15.
    Bertin, I., Banci, L., Luchinat, C. and Hallewell, R.A. (1988) The exploration of the active-site cavity of copper-zinc superoxide dismutase, in Blanch, H.W. and Klibanov, A.M. (eds) Annals of the New York academy of sciences, New York Academy of Science Book, New York, pp. 37–52.Google Scholar
  16. 16.
    Bertini, I., Banci, L., Luchinat, C., Bielski, B.H.J., Cabelli, D., Mullenbach, G.T. and Hallewell, R.A. (1989) An investigation of a human erythrocyte SOD modified at the position 137, J. Am. Chem. Soc. 111, 714–719.CrossRefGoogle Scholar
  17. 17.
    Getzoff, E.D., Cabelli, D.E., Fisher, C.L., Parge, H.E., Viezzoli, M.S., Banci, L. and Hallewell, R.A. (1992) Faster Superoxide Dismutase Mutants designed by Enhancing Electrostatic Guidance, Nature 358„ 347–351CrossRefGoogle Scholar
  18. 18.
    Getzoff, E.D., Tainer, J.A., Stempien, M.M., Bell, G.I. and Hallewell, R.A. (1989) Evolution of CuZn superoxide dismutase and the greek key b-barrel structural motif, Proteins: Structure,Function, and Genetics 5, 322–336.CrossRefGoogle Scholar
  19. 19.
    Banci, L., Bertini, I., Luchinat, C. and Viezzoli, M.S. (1993) pH dependent properties of SOD studied through mutants on Lys 136, lnorg. Chem. 32, 1403-1406.CrossRefGoogle Scholar
  20. 20.
    Cudd, A. and Fridovich, I. (1982) Electrostatic Interactions in the Mechanism of Bovine Erythrocyte Superoxide Dismutase, J. Biol. Chem. 257, 11443–11447.Google Scholar
  21. 21.
    Sharp, K., Fine, R. and Honig, B. (1987) Computer simulations of the diffusion of a substrate to an active site of an Enzyme, Science 236, 1460–1463.CrossRefGoogle Scholar
  22. 22.
    Argese, E., Viglino, P., Rotilio, G., Scarpa, M. and Rigo, A. (1987) Electrostatic Control of the Rate-Det mining Step of the Copper,Zinc Superoxide Dismutase Catalytic Reaction, Biochemistry 26, 3224–3228.CrossRefGoogle Scholar
  23. 23.
    Getzoff, E.D., Tainer, J.A., Weiner, P.K., Kollman, P.A., Richardson, J.S. and Richardson, D.C. (1983) Elecrostatic Recognition between Superoxide and Copper, Zinc Superoxide Dismutase, Nature 306, 287–290.CrossRefGoogle Scholar
  24. 24.
    Klapper, I., Hagstrom, R., Fine, R., Sharp, K. and Honig, B. (1986) Focusing of electric fields in the active site of Cu-Zn superoxide dismutase: effects of ionic strength and amino-acid modification, Proteins: Structure,Function, and Genetics 1, 47–59.CrossRefGoogle Scholar
  25. 25.
    Sines, J.J., Allison, S.A. and McCammon, J.A. (1990) Point Charge Distribution and Electrostatic Steering in Enzyme/Substrate Encounter. Brownian Dynamics of Modified Copper/Zinc Superoxide Dismutase, Biochemistry 29, 9403–9412.CrossRefGoogle Scholar
  26. 26.
    Bacquet, R.J., McCammon, J.A. and Allison, S.A. (1988) Ionic Strength Dependence of Enzyme-Substrate Interactions. Monte Carlo and Poisson-Boltzmann Results for Superoxide Dismutase. J. Phys. Chem. 92, 7134–7141.CrossRefGoogle Scholar
  27. 27.
    Shen, J., Wong, C.F., Subrasmaniam, S., Albright, T.A. and McCammon, J.A. (1990) Partial electrostatic charges for the active center of copper, zinc superoxide dismutase, J. Comp. Chem. 11, 346–350.CrossRefGoogle Scholar
  28. 28.
    Merz, K.M., Murcko, M.A. and Kollman, P.A. (1991) Inhibition of carbonic anhydrase, J. Am. Chem. Soc. 113, 4484–4490.CrossRefGoogle Scholar
  29. 29.
    Merz, K.M. (1991) CO2 binding to human carbonic anhydrase II, J. Am. Chem. Soc. 113, 406–411.CrossRefGoogle Scholar
  30. 30.
    Banci, L., Bencini, A., Bertin, I., Luchinat, C. and Piccioli, M. (1990) 1H NOE and ligand field studies of copper-cobalt superoxide dismutase with anions, Inorg. Chem. 29, 4867–4873.CrossRefGoogle Scholar
  31. 31.
    Jorgensen, W.L., Chandrasekhar, J., Madura, J., Impey, R.W. and Klein, M.L. (1983) Comparison of Simple Potential Functions for Simulating Liquid Water, J. Chem. Phys. 79, 926–935.CrossRefGoogle Scholar
  32. 32.
    Banci, L., Carloni, P., La Penna, G. and Orioli, P.L. (1992) Molecular dynamics studies on superoxide dismutase and its mutants: the structural and functional role of Arg 143, J. Am. Chem. Soc. 114, 6994–7001.CrossRefGoogle Scholar
  33. 33.
    Banci, L., Carloni, P. and Orioli, P.L. (1994) Molecular Dynamics Studies on Mutants of Cu,Zn Superoxide Dismutase: The Functional Role of Charged Residues in the Electrostatic Loop VII, Proteins: Structure,Function, and Genetics 18, 216–230.Google Scholar
  34. 34.
    Fisher, C.L., Cabelli, D.E., Tainer, J.A., Hallewell, R.A. and Getzoff, E.D. (1994) The role of Arginine 143 in the Electrostatic and Mechanism of Cu,Zn Superoxide Dismutase: Computational and Experimental Evaluation of Site-directed Mutants, Proteins: Structure,Function, and Genetics 19, 24–34.CrossRefGoogle Scholar
  35. 35.
    Bosshard, H.R., Anni, H. and Yonetani, T. (1991) Everse, J., Everse, K.E. and Grisham, M.B. (eds) Peroxidases in Chemistry and Biology, CRC Press, Boca Raton, FL, pp. 84Google Scholar
  36. 36.
    Dawson, J.H. (1988) Science 240, 433–439.CrossRefGoogle Scholar
  37. 37.
    Goodwin, D.C., Aust, S.D. and Grover, T.A. (1995) Evidence for veratryl alcohol as a redox mediator in lignin peroxidase-catalyzed oxidation, Biochemistry 34, 5060–5065.CrossRefGoogle Scholar
  38. 38.
    Harvey, P.J. and Candeias, L.P. (1995) Radical cation cofactors in lignin peroxidase catalysis, Biochem. Soc. Trans. 23, 262–267.Google Scholar
  39. 39.
    Poulos, T.L., Freer, S.T., Alden, R.A., Edward, S.L., Skogland, U., Takio, K., Eriksson, B., Xuong, N., Yonetani, T. and Kraut, J. (1980) The crystal structure of Cytochrome c peroxidase, J. Biol. Chem. 255, 575–580.Google Scholar
  40. 40.
    Finzel, B.C., Poulos, T.L. and Kraut, J. (1984) Crystal structure of yeast cytochrome c peroxidase at 1.7 A resolution, J. Biol. Chem. 259, 13027–13036.Google Scholar
  41. 41.
    Piontek, K., Glumoff, T. and Winterhalter, K. (1993) Low pH crystal structure of glycosylated lignin peroxidase from Phanerochaete chrysosporium at 2.5 A resolution. FEBS Lett. 315, 119–124.CrossRefGoogle Scholar
  42. 42.
    Edwards, S.L., Raag, R., Wariishi, H., Gold, M.H. and Poulos, T.L. (1993) Cristal Structure of Lignin Peroxidase, Proc. Natl. Acad. Sci. USA 90, 750–754.CrossRefGoogle Scholar
  43. 43.
    Poulos, T.L., Edwards, S.L., Wariishi, H. and Gold, M.H. (1993) Crystallographic Refinement of Lignin Peroxidase at 2 A, J. Biol. Chem. 268, 4429–4440.Google Scholar
  44. 44.
    Sundaramoorthy, M., Kishi, K., Gold, M.H. and Poulos, T.L. (1994) The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 2.06 A resolution, J. Biol. Chem. 269, 32759–32767.Google Scholar
  45. 45.
    Petersen, J.F.W., Kadziola, A. and Larsen, S. (1994) Three-dimensional structure of a recombinant peroxidase from Coprinus cinereus at 2.6 A resolution, FEBS Lett. 339, 291–296.CrossRefGoogle Scholar
  46. 46.
    Kunishima, N., Fukuyama, K., Matsubara, H., Hatanaka, H., Shibano, Y. and Amachi, T. (1994) Crystal structure of the fungal peroxidase from Arthromyces ramosos at 1.9 A resolution. Structural comparisons with the lignin and cytochrome c peroxidase, J. Mol. Biol. 235, 331–344.CrossRefGoogle Scholar
  47. 47.
    Patterson, W.R. and Poulos, T.L. (1995) Crystal structure of recombinant pea cytosolic ascorbate peroxidase, Biochemistry 34, 4331–4341.CrossRefGoogle Scholar
  48. 48.
    Welinder, K.G. and Gajhede, M. (1993) Structure and Evolution of Peroxidases, in Greppin, H., Rasmussen, S.K., Welinder, K.G. and Penel, C. (eds) Plant Peroxidases Biochemistry and Physiology, University of Copenhagen University of Geneva, Geneva, pp. 35–42.Google Scholar
  49. 49.
    Poulos, T.L. and Kraut, J. (1980) The stereochemistry of Peroxidase catalysis, J. Biol. Chem. 255, 8199–8205.Google Scholar
  50. 50.
    Goodin, D.B. and McRee, D.E. (1993) The Asp-His-Fe triad of cytochrome c peroxidase controls the reduction potentials, electronic structure, and coupling of the tryptophan free radical to the heme, Biochemistry 32, 3313–3324.CrossRefGoogle Scholar
  51. 51.
    Banci, L., Bertini, I., Turano, P., Tien, M. and Kirk, T.K. (1991) Proton NMR investigation into the basis for the relatively high redox potential of lignin peroxidase, Proc. NatL Acad. Sci. USA 88, 6956–6960.CrossRefGoogle Scholar
  52. 52.
    Erman, J.E., Vitello, L.B., Miller, M.A. and Kraut, J. (1992) Active-Site Mutations in Cytochrome c Peroxidase: A Critical Role for Histidine 52 in the Rate of Formation of Compound I, J. Am. Chem. Soc. 114, 6592–6593.CrossRefGoogle Scholar
  53. 53.
    Erman, J.E., Vitello, L.B., Miller, M.A., Shaw, A., Broen, K.A. and Kraut, J. (1993) Histidine 52 Is a Critical Residue for Rapid Formation of Cytochrome c Peroxidase Compound I, Biochemistry 32, 9798–9806.CrossRefGoogle Scholar
  54. 54.
    Vitello, L.B., Erman, J.E., Miller, M.A., Wang, J. and Kraut, J. (1993) Effect of arginine-48 replacement on the reaction between cytochrome c peroxidase and hydrogen peroxide, Biochemistry 32, 9807–9818.CrossRefGoogle Scholar
  55. 55.
    Bujons, J., Dikiy, A., Ferrer, J.C., Banci, L. and Mauk, A.G. (1997) Charge reversal of a critical active-site residue in cytochrome c peroxidase. Characterization of the Arg48-Glu variant, Eur. J. Biochem. 243, 72–84.CrossRefGoogle Scholar
  56. 56.
    Ogawa, S., Shiro, Y. and Morishima, I. (1979) Calcium binding by horseradish peroxidase c and heme environmental structure, Biochem. Biophys. Res. Commun. 90, 674–678.CrossRefGoogle Scholar
  57. 57.
    Welinder, K.G. (1985) Plant Peroxidases, Eur. J. Biochem. 151, 497–450.CrossRefGoogle Scholar
  58. 58.
    Welinder, K.G. (1992) Superfamily of plant, fungal and bacterial peroxidases, Curr. Op. Struct. BioL 2, 388–393.CrossRefGoogle Scholar
  59. 59.
    Haschke, R.H. and Friedhof, J.M. (1978) Calcium-related properties of horseradish peroxidase, Biochem. Biophys. Res. Commun. 80, 1039–1042.CrossRefGoogle Scholar
  60. 60.
    Shiro, Y., Kurono, M. and Morishima, I. (1986) Presence of Endogenous Calcium Ion and Its Functional and Structural Regulation in Horseradish Peroxidase, J. Biol. Chem. 261, 9382–9390.Google Scholar
  61. 61.
    Morishima, L, Kurono, M. and Shiro, Y. (1986) Presence of endogenous calcium ion in horseradish peroxidase. Elucidation and metal-binding site by substitution of divalent and lanthanide ions for calcium and use of metal-induced NMR (proton and cadmium-113) resonances. J. Biol. Chem. 261, 9391–9399.Google Scholar
  62. 62.
    Barber, K.R., Rodriguez Maranon, M.J., Shaw, G.S. and Van Huystee, R.B. (1995) Structural influence of calcium on the heme cavity of cationic peanut peroxidase as determined by III-NMR spectroscopy, Eur. J. Biochem. 232, 825–833.CrossRefGoogle Scholar
  63. 63.
    Pettigrew, G.W. and Moore, G.R. (1987) Cytochromes c; Biological Aspects, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  64. 64.
    Moore, G.R. and Pettigrew, G.W. (1990) Cytochromes c; Evolutionary, Structural and Physicochemical Aspects, Springer-Verlag, Berlin.Google Scholar
  65. 65.
    Takano, T. and Dickerson, R.E. (1981) Conformation change in cytochrome Ferricytochrome c refinement at 1.8 A and comparison with ferrocytochrome c structure, J. Mol. Biol. 153, 95–155.CrossRefGoogle Scholar
  66. 66.
    Takano, T. and Dickerson, R.E. (1981) Conformation change of cytochrome c: I. Ferrocytochrome c structure refined at 1.5 A resolution, J. Mol. BioL 153, 79–94.CrossRefGoogle Scholar
  67. 67.
    Leung, C.J., Nall, B.T. and Brayer, G.D. (1989) Crystallization of yeast iso-2-cytochrome c using a novel hair seeding technique, J. Mol. BioL 206, 783–785.CrossRefGoogle Scholar
  68. 68.
    Bushnell, G.W., Louie, G.V. and Brayer, G.D. (1990) High-resolution three-dimensional structure of horse hearth cytochrome c, J. Mol. Biol. 214, 585–595.CrossRefGoogle Scholar
  69. 69.
    Berghuis, A.M. and Brayer, G.D. (1992) Oxidation state-dependent conformational changes in cytochrome c, J. Mol. Biol. 223, 959–976.CrossRefGoogle Scholar
  70. 70.
    Louie, G.V., Hutcheon, W.L.B. and Brayer, G.D. (1988) Yeast iso-l-cytochrome c: a 2.8 A resolution three-dimensional structure determination. J. Mol. BioL 199, 295–314.CrossRefGoogle Scholar
  71. 71.
    Murphy, M.E.P., Nall, B.T. and Brayer, G.D. (1992) Structure determination and analysis of yeast iso-2-cytochrome c and a composite mutant protein, J. Mol. BioL 227, 160–176.CrossRefGoogle Scholar
  72. 72.
    Ochi, H., Hata, Y., Tanaka, N., Kakudo, M., Sakuri, T., Achara, S. and Morita, Y. (1983) Structure of rice ferricytochrome cat 2.0 A resolution, J. Mol. Biol. 166, 407–418.CrossRefGoogle Scholar
  73. 73.
    Baistrocchi, P., Banci, L., Bertini, I., Turano, P., Bren, K.L. and Gray, H.B. (1996) Three-dimensional solution structure of saccharomyces cerevisiae reduced iso-l-cytochrome c, Biochemistry 35, 13788–13796.CrossRefGoogle Scholar
  74. 74.
    Banci, L., Bertin, I., Bren, K.L., Gray, H.B., Sompornpisut, P. and Turano, P. (1997) The solution structure of oxidized cytochrome c: hints to understand its function and folding, Biochemistry in pressGoogle Scholar
  75. 75.
    Scott, R.A. and Mauk, A.G. (1996) Cytochrome c. A multidisciplinary approach, University Science Books, Sausalito, California.Google Scholar
  76. 76.
    Berghuis, A.M., Guillemette, J.G., McLendon, G., Sherman, F., Smith, M. and Brayer, G.D. (1994) The role of conserved internal water molecule and its associated hydrogen bond network in cytochrome c, J. Mol. Biol. 236, 786–799.CrossRefGoogle Scholar
  77. 77.
    Qi, P.X., Urbauer, J.L., Fuentes, E.J., Leopold, M.F. and Wand, A.J. (1994) Structural Water in Oxidized and Reduced horse heart cytochrome c, Nature struct. Biol. 1, 378–382.CrossRefGoogle Scholar
  78. 78.
    Banci, L., Carlon, P. and Gori Savellini, G. (1994) Molecular Dynamics Studies on peroxidases: A Structural Model for Horse Radish Peroxidase and a Substrate Adduct, Biochemistry 33, 12356–12366.CrossRefGoogle Scholar
  79. 79.
    Band, L., Carloni, P., Diaz, A. and Gori Savellini, G. (1996) Molecular dynamics calculations on peroxidases: the effect of calcium ions on protein structure, JBIC 1, 264–272.Google Scholar
  80. 80.
    Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G. and Profeta, S., Jr. (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins, J. Am. Chem. Soc. 106, 765–784.CrossRefGoogle Scholar
  81. 81.
    Angelucci, L., De Gioia, L. and Fantucci, P. (1993) The mol. mechanics approach to the study of inorganic systems. The conformational properties of the iron(II)-porphyrinpolypeptide complexes. Gaz. Chim. Ital. 123, 111–117.Google Scholar
  82. 82.
    Ruf, H.H., Wende, P. and Ullrich, V. (1979) Models for ferric cytochrome P450. Characterization of hemin mercaptide complexes by electronic and ESR spectra, J. Inorg. Biochem. 11, 189–204.CrossRefGoogle Scholar
  83. 83.
    Collins, J.R., Du, P. and Loew, G.H. (1992) Molecular dynamics calculations on CcP, Biochemistry 31, 11166CrossRefGoogle Scholar
  84. 84.
    Satterlee, J.D., Russell, D.J. and Erman, J.E. (1991) Proton Homonuclear Correlated Spectroscopy as an Assignment Tool for Hyperfine-Shifted Resonances in Medium-Sized Paramagnetic Proteins: Cyanide-Ligated Yeast Cytochrome c Peroxidase as an Example, Biochemistry 30, 9072–9077.CrossRefGoogle Scholar
  85. 85.
    de Ropp, J.S., La Mar, G.N., Wariishi, H. and Gold, M.H. (1991) NMR study of the active site of resting state and cynide-inhibited Lignin Peroxidase from Phanerochaete chrysosporium. Comparison with Horseradish Peroxidase, J. Biol. Chem. 266, 15001–15008.Google Scholar
  86. 86.
    Banci, L., Bertini, I., Pierattelli, R., Tien, M. and Vila, A.J. (1995) Factoring of the hyperfine shifts in the cyanide adduct of lignin peroxidase from P. chrysosporium, J. Am. Chem. Soc. 117, 8659–8667.CrossRefGoogle Scholar
  87. 87.
    Satterlee, J.D. and Erman, J.E. (1991) Proton NMR assignments of heme contacts and catalytically implicated amino acids in cynade-ligated cytochrome c peroxidase determined from one-and two-dimensional nuclear Overhauser effects, Biochemistry 30, 4398–4405.CrossRefGoogle Scholar
  88. 88.
    Smulevich, G. (1993) Structure-Function relationships in peroxidases via resonance raman spectroscopy and site-directed mutagenesis: cytochrome c peroxidase, in Clark, R.J.H. and Hester, R.E. (eds) Biomolecular Specrtoscopy, Part A, Vol 20, Advances in Spectroscopy, J. Wiley and Sons, London, pp. 163–193Google Scholar
  89. 89.
    Banci, L., Gori Savellini, G. and Turano, P. (1996) Comparison between the reduced and oxidized forms of yeast iso-1 -cytochrome c: a MI) study in explicit water, submitted.Google Scholar
  90. 90.
    Cornell, W.D., Cieplak, P., Bayly, C.J., Gould, I.R., Merz, K.M., Jr., Ferguson, D.M., Spelhneyer, D.C., Fox, T., Caldwell, J.W. and Kollman, P.A. (1995) A Second Generation Force Field for the Simulation of Proteins, Nucleic Acid, and Organic Molecules, J. Am. Chem. Soc. 117, 5179–5197.CrossRefGoogle Scholar
  91. 91.
    Frisch, M.J., Trucks, G.W., Head-Gordon, M., Gill, P.M.W., Wong, M.W., Foresman, J.B., Johnson, B.G., Schlegel, H.B., Robb, M.A., Replogle, E.S., Gomperts, R., Andres, J.L., Raghavachari, K., Binidey, J.S., Gonzalez, C., Martin, R.L., Fox, D.J., Defrees, D.J., Baker, J., Stewart, J.J.P. and Pople, J.A. (1992) GAUSSIAN 92, Gaussian inc. Pittsburgh PA.Google Scholar
  92. 92.
    Marcus, R.A. and Sutin, N. (1985) Electron transfer in chemistry and biology, Biochim. Biophys. Acta 811, 265–275.CrossRefGoogle Scholar
  93. 93.
    Beratan, D.A., Onuchic, J.N., Betts, J.N., Bowler, B.E. and Gray, H.B. (1990) Electron-Tunneling Pathways in Ruthenated Proteins, J. Am. Chem. Soc. 112, 7915–7921.CrossRefGoogle Scholar
  94. 94.
    Casimiro, D.R., Richards, J.H., Winkler, J.R. and Gray, H.B. (1993) Electron Transfer in Ruthenium-Modified Cytochromes c. J. Phys. Chem. 97, 13073–13077.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • Lucia Banci
    • 1
  • Giovanni Gori Savellini
    • 1
  1. 1.Department of ChemistryUniversity of FlorenceFlorenceItaly

Personalised recommendations