The Role of Ca2+ in the Binding of Carbohydrates to C-Type Lectins as Revealed by Molecular Mechanics and Molecular Dynamics Calculations

  • Claus-Wilhelm Von Der Lieth
Part of the NATO ASI Series book series (ASHT, volume 41)

Abstract

Lectins constitute a structurally diverse class of proteins or glycoproteins which are characterized by their ability to bind carbohydrates with considerable specificity [1–3]. They are found in various organisms, ranging from viruses, bacteria and plants to humans. There is increasing evidence that carbohydrate-lectin interactions have a fundamental role in cell adhesion processes [4,5], cell proliferation [6], organogenesis and human pathology. Lectins merely bind but do not process carbohydrates. In contrast to, for example, antibodies, which can also bind carbohydrates, lectins are produced constitutively and not as a result of an external stimulus [7,8]. Lectins have been grouped into classes of discrete families based on homologies in their primary structures [9]. Although the number of reported animal lectins continues to increase, a recent classification [9] indicates that most fall into one of five major groups: the Ca2+-dependent (C-type) lectins, the galectins (galactose binding proteins), the mannose-6-phosphate-binding (P-type) lectins, and the immunoglobolin-like (I-type) lectins including sialoadhesins and L-type lectins, related in sequence to the leguminous plant lectins. While the overall architecture of the lectins widely varies, carbohydrate-binding activity can often be assigned to one part of the structure, called a carbohydrate recognition domain (CRD). C-type CRDs are present in a diverse array of protein structures which have been found in serum, extracellular matrix and membranes of animals.

Keywords

Interaction Energy Point Charge Carbohydrate Recognition Domain Inverted Orientation Calculated Interaction Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lis, H. and Sharon, N. (1986) Lectins as molecules and as tools, Annu.Rev.Biochem. 55, 35–67.CrossRefGoogle Scholar
  2. 2.
    Drickamer, K. and E, T. M. (1993) Biology of Animal Lectins, Ann. Rev. Cell. Biol. 9, 237–64.CrossRefGoogle Scholar
  3. 3.
    Gabius, H. J. and Gabius, S. Glycosciences-Status and Perspectives; Chapman Hall: D-69469 Weinheim, Germany, 1997.Google Scholar
  4. 4.
    Sharon, N. and Lis, H. (1990) Lectins as cell-recognition molecules. Science 246, 227–234.CrossRefGoogle Scholar
  5. 5.
    Feizi, T. (1993) Oligosaccharides that mediate mammalian cell-cell adhesion, CurrOpin. Struct. Biol. 3, 701–710.CrossRefGoogle Scholar
  6. 6.
    Zanetta, J.-P. (1997) Lectins and Carbohydrates in Animal Cell Adhesion and Control °Proliferation, in; Gabius, H.-J. and Gabius, S.(eds.), Glycosciences: Status and Perspectives, Chapman & Hall, Weinheim, pp 439–458.Google Scholar
  7. 7.
    Goldstein, I. J.,Hughes, R. C. and Monsigny, M. (1980) What should be called a lectin?, Nature 285, 66.CrossRefGoogle Scholar
  8. 8.
    Kocourek, J. and Horejsi, V. (1981) Defining a lectin, Nature 290, 188.CrossRefGoogle Scholar
  9. 9.
    Drickamer, K. (1995) Increasing diversity of animal lectin structures, Curr.Opin.Struct.Biol. 5, 612–616.CrossRefGoogle Scholar
  10. 10.
    Drickamer, K. (1993) Ca2+-dependant carbohydrate-recognition domains in animal proteins, Curr. Opin. Struct. Biol. 3, 392–400.Google Scholar
  11. 11.
    Lasky, L. A. (1992) Selectins: interpreters of cell-specific carbohydrate information during inflammation, Science 258, 964–69.CrossRefGoogle Scholar
  12. 12.
    Lasky, L. A. (1995) Selectin-carbohydrate interactions and the initiation of the inflammatory response, Annu. Rev. Biochem. 64, 113–139.CrossRefGoogle Scholar
  13. 13.
    Lee, R. T., Ichikawa, Y., Fay, M., Drickarner, K., Shao, M. S. and Lee, Y. C. (1991) Ligand-binding Characteristics of Rat Serum-type Mannose-binding Protein (MBP-A), J.Biol.Chem. 226, 4810–4815.Google Scholar
  14. 14.
    Lee, Y. C. and Lee, R. T. (1995) Carbohydrate-Protein Interactions: Basis of Glycobiology, Acc. Chem. Res. 28, 321–327.CrossRefGoogle Scholar
  15. 15.
    Toone, E. J. (1994) Structure and energetics of protein-carbohydrate complexes, Curr. Opin. Struct. Biol. 4, 719–728.CrossRefGoogle Scholar
  16. 16.
    Crocker, P. R. and Feizi, T. (1996) Carbohydrate recognition systems: functional triads in cell-cell interactions, Curr. Opin. Struc. Biol. 6, 679–691.CrossRefGoogle Scholar
  17. 17.
    Weis, W. I. and Drickamer, K. (1996) Structural Basis of Lectin-Carbohydrate Recognition, Annu. Rev. Biochem., 441–473.Google Scholar
  18. 18.
    Rini, J. M. (1995) X-Ray crystal structures of animal lectins, Curr. Opin. Struc. Biol. 5, 617–621.CrossRefGoogle Scholar
  19. 19.
    Rini, J. M. (1995) Lectin Structure, Ann. Rev. Biophys. Biomol. Struct. 24, 551–577.CrossRefGoogle Scholar
  20. 20.
    Blanck, O., Iobst, S. T., Gabel, C. and Drickamer, K. (1996) Introduction of Selectin-like Binding Specifcity into a Homologous Mannose-binding Protein., J.Biol.Chem. 271, 7289–7292.CrossRefGoogle Scholar
  21. 21.
    Drickamer, K. (1992) Engineering galactose binding activity into a C-type mannose-binding protein Nature 360, 183–186.CrossRefGoogle Scholar
  22. 22.
    Revelle, B. M., Scott, D., Kogan, T. P., Zheng, J. and Beck, P. J. (1996) Structure-Function Analysis of Pselectin-Sialyl LewisX Binding Interaction: Mutagenic Alternation of Ligand Binding Specificity, J.Biol.Chem. 271, 4289–4297.CrossRefGoogle Scholar
  23. 23.
    Bajorath, J. and Amuffo, A. (1994) Molecular Model of the Extracellular Lectin-like Domain in CD69, J.Biol.Chem. 269, 32457–32463.Google Scholar
  24. 24.
    Bajorath, J. and Amuffo, A. (1995) A Template for Generation and Comparison of Three-dimensional Selectin Models, Biochem.Biophys. Res. Commun. 216.Google Scholar
  25. 25.
    Cooke, R. M., Hale, R. S., Lister, S. G., Shah, G. and Weir, M. P. (1994) The Conformation of Sialyl LewisX Ligand Changes upon Binding to E-Selectin, Biochemistry 33, 10591–10596.CrossRefGoogle Scholar
  26. 26.
    Iobst, S. T.,Wormatd, M. R.,Weis, W. I.,Dwek, R. A. and Drickamer, K. (1994) Binding of Sugar Ligands to Ca2+dependant Animal Lectins: I Analysis of Man nose Binding by Site-directed Mutagenesis and NMR, J. Biol. Chem. 269, 15505–15511.Google Scholar
  27. 27.
    Iobst, S. T. and Drickamer, K. (1996) Selective Sugar Binding to the Carbohydrate Recognition Domains of the Rat Hepatic and Macrophage Asialoglycoprotein Receptors, J. Biol. Chem. 271, 6686–6693.CrossRefGoogle Scholar
  28. 28.
    Ng, K. K.-S.,Drickamer, K. and W, W. I. (1996) Structural Analysis of Monosaccharide Recognition of Rat Liver Mannose-binding Protein, J.Biol. Chem. 271, 663–674.CrossRefGoogle Scholar
  29. 29.
    Kolatkar, A. R. and Weis, W. I. (1996) Structural Basis of Galactose Recognition by C-type Animal Lectins, J. Biol. Chem 271, 6679–6685.CrossRefGoogle Scholar
  30. 30.
    Siebert, H.-C., von der Lieth, C.-W., Gilleron, M.,Reuter, G., Wituuann, J.,Vliegenthart, J. F. G. and Gabius, H.-J. (1997) Carbohydrate-Protein Interaction, in H.-J. Gabius and S. Gabius (ads.), Glycosciences; Status and Perspectives, Chapman & Hall, Weinheim, pp 291–310Google Scholar
  31. 31.
    Kollman, P. A. and Metz, K. M. (1990) Computer modeling of the interactions of complex molecules, Acc. Chem. Res. 23, 246–252.CrossRefGoogle Scholar
  32. 32.
    Weis, W. I., Kahn, R., Fourme, R., Drickamer, K. and Hedrickson, W. A. (1991) Structure of the Calcium-Dependent Lectin Domain from a Rat Mannose-Binding Protein Determined by MAD Phasing Science 254, 1608–1615.CrossRefGoogle Scholar
  33. 33.
    Weis, W. I.,Drickamer, K. and Hendrickson, W. A. (1992) Structure of a C-type mannose-binding protein complexed with an oligosaccharide, Nature 360, 127–134.CrossRefGoogle Scholar
  34. 34.
    Ng, K. K.-S. and Weis, W. I. (1997) Structure of a Selectin-like Mutant of Mannose-Binding Protein Cornplexed with Sialylated and Sulfated Lewisx Oligosaccharides,.Google Scholar
  35. 35.
    Graves, B. J., Crowther, R. L., Chandran, C., Rumberger, J. M., Li, S., Huang, K.-S., Presky, D. H., Familetti, P. C., Wolitzky, B. A. and Bums, D. K. (1994) Insight into E-selectin/ligand interactions from the crystal structure and mutagenesis of the lec/EGF domains, Nature 367, 532–538.CrossRefGoogle Scholar
  36. 36.
    Bajorath, J., Hollenbaugh, D., King, G., Harte, W., Eustice, D. C., Darveau, R. P. and Aruffo, A. (1994) CD62/P-Selectin Binding Site for Myeloid Cells and Sulfatides Are Overlapping Biochemistry 33, 1332–1339.CrossRefGoogle Scholar
  37. 37.
    Weis, W. I. and Drickamer, K. (1994) Trimeric structure of a C-type mannose-binding protein, Structure 2, 1227–1240.CrossRefGoogle Scholar
  38. 38.
    Boume, Y., van Tilbeurgh, H. and Cambillau, C. (1993) Protein-carbohydrate interactions, Curr. Opinion Struct. Biol. 3, 681–686.CrossRefGoogle Scholar
  39. 39.
    Weiner, S. R., Kollman, P. A., Nguyen, D. T. and Case, D. A. (1986) An all atom forcefield for simulations of proteins and nucleic acid, J. Comput. Chem. 7, 230–252.CrossRefGoogle Scholar
  40. 40.
    Weiner, S. R.,Kollman, P. A.,Case, D. Singh, U. C.,Ghio, C.,Alagona, G.,Profeta, S. and Weiner, P. (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins, J.Am.Chem.Soc. 106, 765–784.CrossRefGoogle Scholar
  41. 41.
    Hagler, A. T.,Dauber, P. and Lifson, S. (1979) Consistent force field studies of intramolecular forces in hydrogen bonded crystals. II A benchmark for the objective comparison of alternative force fields, J.Am.Chem.Soc, 5122–5130.Google Scholar
  42. 42.
    Hagler, A. T.,Dauber, P. and Lifson, S. (1979) Consistent force field studies of intermolecular forces in hydrogen bonded crystals. III.The C=O…H-O hydrogen bond and the analysis of the energetics and packing of carboxylic acids, J.Am.Chem.Soc., 5131–5141.Google Scholar
  43. 43.
    Hoops, S. C., Anderson, K. W. and Mers, K. M. J. (1991) Force Field design for metalloproteins, J.Am.Chem.Soc. 113, 4484–4490.CrossRefGoogle Scholar
  44. 44.
    Banci, L., Scgroder, S. and Kollman, P. A. (1992) Molecular dynamics characterization of the active cavity of carboxypeptidase A and some of its inhibitor adducts., Proteins 13, 288–305.CrossRefGoogle Scholar
  45. 45.
    Merz, K. M. J., Murcko, M. A. and Kollman, P. A. (1991) Inhibition of carbonic anhydrase, J.Am.Chem.Soc. 113, 4484–4490.CrossRefGoogle Scholar
  46. 46.
    Vedani, A. and Huhta, D. W. (1990) A new force field for modeling metalloproteins, J.Am.Chem.Soc. 112, 4759–4767.CrossRefGoogle Scholar
  47. 47.
    Liang, J. H. and Lipscomb, W. N. (1990) Binding of CO2 to the active site of human carbonic anhydrase II: A molec ular dynamics study, Proc.Natl.Acad.Sci. U.S.A. 87, 3675–3679.CrossRefGoogle Scholar
  48. 48.
    Makinen, M. W.,Troyer, J. N.,van der Werff, H.,Berendsen, J. C. and van Gunsteren, W. F. (1989) Dynamical structure of carboxypeptidase A, J.Mol.Biol. 207, 210–216.CrossRefGoogle Scholar
  49. 49.
    Stote, R.H. and Karplus, M. (1995) Zinc Binding in Proteins and Solution: A Simple but Accurate Non-bonded Representation, Proteins 23, 12–31.CrossRefGoogle Scholar
  50. 50.
    Stote, R. H., State, D. J. and Karplus, M. (1991) On the treatment of electrostatic interactions in biomolecular simulation, J.Chim.Phys. 88, 2419–2433.Google Scholar
  51. 51.
    Beseler, B. H., Merz, K. M. and Kollmann, P. A. (1990) Atomic Charges Derived from Semiemperical Methods, J.Comp.Chem. 11, 431–439.CrossRefGoogle Scholar
  52. 52.
    Bohne, A., Lang, E. and von der Lieth, C. W. (1996) SWEET-a quick way to generate reliable 3D-structures of Carbohydrates from sequence information alone., in; Hofesthdt, R.(eds.), Computer Science and Biology, Universität Leipzig, Leipzig, pp 176–178.Google Scholar
  53. 53.
    Varki, A. (1994) Selectin ligands, Proc. Natl..Acad Sci. USA 91, 7390–7397.CrossRefGoogle Scholar
  54. 54.
    Erbe, D. V., Wolitzky, B. A., Presta, L. G., Norton, C. R., Ramis, R. J., Burns, D. K., Rumberger, J. M., Narasinga Rao, B. N., Foxall, C. and Branddly, B. K. (1992) Indentification of an E-selectin Region Critical for Carbohydrate Recognition and Cell Adhesion, J. Cell. Biol. 119, 215–227.CrossRefGoogle Scholar
  55. 55.
    Erbe, D. V.,Watson, S. R.,Presta, L. G.,Wolitzky, B. A.,Foxall, C.,Brandly, B. K. and Lasky, L. A. (1993) P-and S-Selectin Use Common Sites for Carbohydrates Ligand Recognition and Cell Adhesion, J. Cell. Biol. 120, 1227–1235.CrossRefGoogle Scholar
  56. 56.
    Poppe, L.,Brown, G. S.,Philo, J. S.,Nikrad, P. V. and Shah, B. H. (1997) Conformation od sLex Tetrasaccharide, Free in Solution and Bound to E-, P-, and L-Selectin, J.Am.Chem.Soc. 119, 1727–1736.CrossRefGoogle Scholar
  57. 57.
    Kogan, T. P., Revelle, B. M.,Tapp, S.,Scott, D. and Beck, P. J. (1995) A Single Amino Acid Residue Can Determine the Ligand Specificity of E-selector, J.Biol.Chem 270, 14047–14055.CrossRefGoogle Scholar
  58. 58.
    Burling, F.T., Weis, W.I., Flaherty, K.M. and Briinger, A.T. (1996) Direct Observation of Protein Solvation and Discrete Disorder with Experimental Crystallographic Phases, Science 271, 72–76CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • Claus-Wilhelm Von Der Lieth
    • 1
  1. 1.Spectroscopic DepartmentGerman Cancer Research CenterHeidelbergGermany

Personalised recommendations