Extending Molecular Mechanics Methods to the Descriptions of Transition Metal Complexes and Bond-Making and -Breaking Processes

  • Clark R. Landis
  • Timothy K. Firman
  • Thomas Cleveland
  • Daniel M. Root
Part of the NATO ASI Series book series (ASHT, volume 41)

Abstract

The advent of rapid molecular modeling techniques has revolutionized the use of computers in chemical research. One result of the success of molecular modeling is the feasability of asking increasingly intimate questions about the potential energy surfaces for molecules of escalating complexity. These developments place pressure on the development of new empirical force field methods, particularly in the areas of transition metal modeling and the modeling of chemical reactions. In this paper we review the application of valence bond concepts to the qualitative understanding of molecular geometries of transition metal complexes. Furthermore, we demonstrate how valence bond concepts can be extended to a molecular mechanics description of bond-breaking and -making processes.

Keywords

Bond Angle Lone Pair American Chemical Society Natural Bond Orbital Transition Metal Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Root, D. M., Landis, C. R., and Cleveland, T. (1993) Valence Bond Concepts Applied to the Molecular Mechanics Description of Molecular Shapes 1. Application to Non-hypervalent Molecules of the P-block. Journal of the American Chemical Society 115, 4201–4209.CrossRefGoogle Scholar
  2. 2.
    Cleveland, T., and Landis, C. R. (1996) Valence Bond Concepts Applied to the Molecular Mechanics Description of Molecular Shapes. 2. Applications to Hypervalent Molecules of the P-Block. Journal of the American Chemical Society 118, 6020–6030.CrossRefGoogle Scholar
  3. 3.
    Landis, C. R., Cleveland, T., and Firman, T. K. (1995) Making Sense of the Shapes of Simple Metal Hydrides. Journal of the American Chemical Society 117, 1859–1860.CrossRefGoogle Scholar
  4. 4.
    Foster, J. P., and Weinhold, F. (1980) Natural Hybrid Orbitals. Journal of the American Chemical Society 102, 7211–7218.CrossRefGoogle Scholar
  5. 5.
    Reed, A. E., Weinstock, R. B., and Weinhold, F. (1985) Natural Population Analysis. Journal of Chemical Physics 83, 735–746.CrossRefGoogle Scholar
  6. 6.
    Reed, A. E., and Weinhold, F. (1985) Natural Localized Molecular Orbitals. J. Chem. Phys. 83, 1736–1740.CrossRefGoogle Scholar
  7. 7.
    Reed, A. E., Weinhold, F., Curtiss, L. A., and Pochatko, D. J. (1986) Natural Bond Orbital Analysis of Molecular Ineractions: Theoretical Studies of Binary Complexes of HF, H2O, NH3, N2, O2, F2, CO, and CO2with HF, H2O, and NH3 Journal of Chemical Physics 84, 5687–5705.CrossRefGoogle Scholar
  8. 8.
    Carpenter, J. E., and Weinhold, F. (1988) Transferability of Natural Bond Orbitals. Journal of the American Chemical Society 110, 368–372.CrossRefGoogle Scholar
  9. 9.
    Glendening, E. D., Badenhoop, J. K., Reed, A. E., Carpenter, J. E., and Weinhold, F. (1994) NBO 4.0. University of Wisconsin, Madison, WI.Google Scholar
  10. 10.
    Glendening, E. D., and Weinhold, F. (1994) Natural Resonance Theory. I. General Formalism. University of Wisconsin Theoretical Chemistry Institute.Google Scholar
  11. 11.
    Bent, H. (1961) An Appraisal of Valence-Bond Structures and Hybridization in Compounds of the First-Row Elements. Chemical Reviews 61, 275–311.CrossRefGoogle Scholar
  12. 12.
    Pauling, L. (1960) The Nature of the Chemical Bond. Cornell University, Ithaca.Google Scholar
  13. 13.
    Pauling, L. (1975) Valence-bond Theory of Compounds of Transition Metals. Proceedings of the National Academy of Sciences of the United States of America 72, 4200–4202.CrossRefGoogle Scholar
  14. 14.
    Magnusson, E. (1990) Hypercoordinate Molecules of Second-Row Elements: d Functions or d Orbitals? Journal of the American Chemical Society 112, 7940–7951.CrossRefGoogle Scholar
  15. 15.
    Musher, J. (1969) The Chemistry of Hypervalent Molecules. Angewandte Chemie (International edition in English) 8, 54–68.CrossRefGoogle Scholar
  16. 16.
    Musher, J. L. (1972) The Role of Nonbonding Orbitals, s Mixing, and d-Orbital Participation in Hypervalent Bonding. Journal of the American Chemical Society 94, 1370–1371.CrossRefGoogle Scholar
  17. 17.
    Jonas, V., Boehme, C., and Frenking, G. (1996) Bent’s Rule and the Structure of Transition Metal Compounds. Inorganic Chemistry 35, 2097–2099.CrossRefGoogle Scholar
  18. 18.
    Firman, T. K., and Landis, C. R. unpublished results.Google Scholar
  19. 19.
    Landis, C. R., Root, D. M., and Cleveland, T. (1995) Molecular Mechanics Force Fields for Modeling Inorganic and Organometallic Compounds. VCH Publishers, New York. 73–136.Google Scholar
  20. 20.
    Pauling, L. (1931) The Nature of the Chemical Bond. Application of Results Obtained from the Quantum Mechanics and from a Theory of Paramagnetic Susceptibility to the Structure of Molecules. Journal of the American Chemical Society 58, 1367–1400.CrossRefGoogle Scholar
  21. 21.
    Shen, M., Schaefer, H. F., and Partridge, H. (1992) Tungsten Hexahydride (WH6). An Equilibrium Geometry Far from Octahedral. Journal of Chemical Physics 98, 508–521.CrossRefGoogle Scholar
  22. 22.
    Kang, S. K., Tang, H., and Albright, T. A. (1993) Structures for d° ML6 and ML5 Complexes. Journal of the American Chemical Society 115, 1971–1981.CrossRefGoogle Scholar
  23. 23.
    Haaland, A., Hammel, A., Rypdal, K., and Volden, H. V. (1990) Coordination Geometry of Gaseous Hexamethyltungsten: Not Octahedral. Journal of the American Chemical Society 112, 4547–4549.CrossRefGoogle Scholar
  24. 24.
    Pfennig, V., and Seppelt, K. (1996) Crystal and Molecular-Structures of Hexamethyltungsten and Hexamethylrhenium. Science 271, 626–628.CrossRefGoogle Scholar
  25. 25.
    Pulham, C., Haaland, A., Hammel, A., Rypdal, K., Verne, H. P., and Volden, H. V. (1992) The Structures of Pentamethyltantalum and -Antimony: One Square Pyramid and One Trigonal Bipyramid. Angewandte Chemie (International edition in English) 31, 1464–1467.CrossRefGoogle Scholar
  26. 26.
    Piersol, C. J., Profilet, R. D., Fanwick, P. E., and Rothwell, I. P. (1993) Crystal and Molecular Structure of Penta(4-methylbenzyl)tantalum, [Ta(CH2C6H4-4Me)5]. Polyhedron 12, 1779–1783.CrossRefGoogle Scholar
  27. 27.
    Stavropoulos, P., Savage, P. D., Tooze, R. P., Wilkinson, G., Hussain, B., Motevalli, M., and Hursthouse, M. B. (1987) The Synthesis and X-Ray Structures of Homoleptic Tetrahedral Aryls of Osmium(IV) and of Cyclohexyls of Ruthenium(IV), Osmium(ld), and Chromium(IV). J. Chem. Soc., Dalton Trans., 557.Google Scholar
  28. 28.
    Hitchcock, P. B., Lappert, M. F., Smith, R. G., Bartlett, R. A., and Power, P. P. (1988) Synthesis and Structural Characterization of the First Neutral Homoleptic Lanthanide Metal Alkyls: [LnR3] [Ln=La or Sm, R=CH(SiMe3)2]. Journal of the Chemical Society–Chemical Communications, 1007–1008.Google Scholar
  29. 29.
    Hay-Motherwell, R. S., Hussain-Bates, B., Hursthouse, M. B., and Wilkinson, G. (1990) Synthesis and X-ray Crystal Structure of Trimesitylrhodium(III). Journal of the Chemical Society–Chemical Communications, 1242–1243.Google Scholar
  30. 30.
    Low, J. J., and Goddard, W. A. (1984) Theoretical Studies of Oxidative Addition and Reductive Elimination: H2+ Pt(PH3)2Pt(H)2(PH3)2. Journal of the American Chemical Society 106, 6928–6937.CrossRefGoogle Scholar
  31. 31.
    Low, J. J., and Goddard, W. A. (1986) Theoretical Studies of Oxidative Addition and Reductive Elimination. 2. Reductive Coupling of H-H, H-C, and C-C Bonds from Palladium and Platinum Complexes. Organometallics 5, 609–622.CrossRefGoogle Scholar
  32. 32.
    Kang, S. K., Albright, T. A., and Eisenstein, O. (1989) The Structures of d° ML6 Complexes. Inorganic Chemistry 28, 1611–1613.CrossRefGoogle Scholar
  33. 33.
    Kaupp, M. (1996) The Structure of Hexamethyltungsten, W(CH3)6- Distorted Trigonal Prismatic with C-3 Symmetry. Journal of the American Chemical Society 118, 3018–3024.CrossRefGoogle Scholar
  34. 34.
    Lappert, M. F., Raston, C. L., Skelton, B. W., and White, A. H. (1981) A Metallotricycle: Synthesis, one-electron Reduction, and Crystal Structure of the Thermally Robust Complex Tris-o-xylidenetungsten(VI), [W(CH2C6H4CH2-O)3]. Journal of the Chemical Society–Chemical Communications, 485–486.Google Scholar
  35. 35.
    Landis, C., Firman, T. K., and Cleveland, T., unpublished results.Google Scholar
  36. 36.
    Maseras, F., and Morokuma, K. (1992) Application of the natural population analysis to transition-metal complexes. Should the empty metal p orbitals be included in the valence space? Chemical Physics Letters 195, 500–504.CrossRefGoogle Scholar
  37. 37.
    Hehre, W. J., Radom, L., Schleyer, P. v. R., and Pople, J. A. (1986) Ab Initio Molecular Orbital Theory. John Wiley & Sons, New York. 548 pp.Google Scholar
  38. 38.
    Schilling, J. B., Goddard, W. A., and Beauchamp, J. L. (1987) Theoretical Studies of Transition Metal Hydrides. 3. SrH+ through CdH+. Journal of the American Chemical Society 109, 5565–5583.CrossRefGoogle Scholar
  39. 39.
    Yakshin, M. M. (1941) Dielectric Polarization of Complex Compounds of Platinum. Compt. Rend. (Doklady) l’Acad. Sci. U.R.S.S. 32, 555–557.Google Scholar
  40. 40.
    Syrkin, Y. K. (1948) Theory of Cis and Trans substitutions in Complex Compounds of Platinum. Bull. Acad. Sci. U.R.S.S., Classe Sci. Chim., 69–82.Google Scholar
  41. 41.
    Gillespie, R. J., and Hargittai, I. (1991) The VSEPR Model of Molecular Geometry. Allyn and Bacon, Boston.Google Scholar
  42. 42.
    Cerrada, E., Gimeno, M. C., Laguna, A., Laguna, M., Orera, V., and Jones, P. G. (1996) Charge-transfer salts with mononuclear and dinuclear ylide gold(I) complexes: x-ray structure of [Au(CH2PPh3)2](TCNQ)(TCNQ = 7,7’,8,8’tetracyanoquinodimethane). J. Organomet. Chem. 506, 203.CrossRefGoogle Scholar
  43. 43.
    Yared, Y. W., Miles, S. L., Bau, R., and Reed, C. A. (1977) The First Formally Three-Coordinate d8 Complex: Tris(triphenylphosphine)rhodium(I) Perchlorate and Its Novel Structure. Journal of the American Chemical Society 99, 7076.CrossRefGoogle Scholar
  44. 44.
    Bazhenova, T. A., Lobkovskaya, R. M., Shibaeva, R. P., Shilova, A. K., Gruselle, M., Leny, G., and Deschamps, E. (1983) Structure of the Napthyl Iron(II) Complex Formed in the Reaction of FeC13 and C10H7Li. Journal of Organometallic Chemistry 244, 375–382.CrossRefGoogle Scholar
  45. 45.
    Bronger, W., Müller, P., Schmitz, D., and Spittank, H. (1984) Synthese und Struktur von Na2PtH4, einem ternären Hydrid mit quadratisch planaren PtH4“Baugruppen. Zeitschrift Anorganishe Allgermaine Chemie 516, 35–41.CrossRefGoogle Scholar
  46. 46.
    Garcia, M. P., Jiminez, M. V., Oro, L. A., Lahoz, F. J., Tiripicchio, M. C., and Tiripicchio, A. (1993) A Homoleptic Mononuclear Iridium(II) Organometallic Complex: Synthesis and X-ray Structure of [Ir(C6C15)4]2-. Organometallics 12, 4660–4663.CrossRefGoogle Scholar
  47. 47.
    Bau, R., Ho, D. M., and Gibbins, S. G. (1981) The Binary Metal Hydrido Anion FeH6’: An X-ray Structural Characterization. Journal of the American Chemical Society 103, 4960–4962.CrossRefGoogle Scholar
  48. 48.
    Morris, R. J., and Girolami, G. S. (1991) High-Valent Organomanganese Chemistry. 1. Synthesis and Characterization of Manganese(III) and -(IV) Alkyls. Organometallics 10, 792.CrossRefGoogle Scholar
  49. 49.
    Garcia, M. P., Oro, L. A., and Lahoz, F. J. (1988) Novel Anionic Aryl Complexes of Rh(III): [Rh(C6F5)5]2- and [Rh(C6F5)4(CO)]-. Angewandte Chemie (International edition in English) 27, 1700–1701.CrossRefGoogle Scholar
  50. 50.
    Usón, R., Forniés, J., Tomás, M., Menjón, B., Sünkel, K., and Bau, R. (1984) The First Mononuclear Pt(III) Complex. Molecular Structures of (NBu4)[Pt(C6C15)4] and of its Parent Compound (NBu4)2[Pt(C6C15)4]. Journal of the Chemical Society–Chemical Communications, 751–752.Google Scholar
  51. 51.
    Markwell, A. J. (1985) The Crystal and Molecular Structure of Tetrabutylammonium Tetraphenylaurate(III). Journal of Organometallic Chemistry 293, 257.CrossRefGoogle Scholar
  52. 52.
    Murray, H. H., Fackler, J. P. J., Porter, L. C., Briggs, D. A., Guerra, M. A., and Lagow, R. J. (1987) Synthesis and X-ray Crystal Structures of [Au(CH2)2PPh2]2(CF3)2, [Au(CH2)PPh2]2(C6F5)2, and [PPN][Au(C6F5)4: Two Dinuclear Gold(II) Ylide Complexes Containing Alkyl and Aryl Ligands and a Tetrakis(pentafluorophenyl)aurate(III) Anion Complex. Inorganic Chemistry 26, 357.CrossRefGoogle Scholar
  53. 53.
    Geiser, U., Schlueter, J. A., Williams, J. M., Naumann, D., and Roy, T. (1995) Anion Disorder in the 115–118 K Structures of the Organic Superconductors tcL- (BEDT-TTF)2Ag(CF3)4(C2H3C13) [BEDT-TTF = 3,4;3’,4’- Bis(ethylenedithio)- 2,2’,5,5’-tetrathiafulfalene]. Acta Cryst. B (Str. Sci.) 51, 789.CrossRefGoogle Scholar
  54. 54.
    Geiser, U., Schlueter, J. A., Williams, J. M., Naumann, D., and Roy, T. (1995) CuCF34- Acta Cryst. B (Str. Sci.) 51, 789.CrossRefGoogle Scholar
  55. 55.
    Müller, E., Krause, J., and Schmiedeknecht, K. (1972) Strukturuntersuchungen an Organochromverbindungen. III. Röntgenstrukturanalytische und Spektroskopische Untersuchungen an Na2Cr(Ph)5. Journal of Organometallic Chemistry 44, 127–140.CrossRefGoogle Scholar
  56. 56.
    Hay-Motherwell, R. S., Wilkinson, G., Hussain, B., and Hursthouse, M. B. (1989) Homoleptic Methyl Compounds of Rhodium and Iridium(III). X-ray Crystal Structures of Tetramethylethylenediamine Lithium hexamethyl-rhodate(III) and -iridate(III). Journal of the Chemical Society–Chemical Communications, 1436–1437.Google Scholar
  57. 57.
    Krausse, J., and Marx, G. (1974) Strukturuntersuchungen an organochromverbindungenV*. IR UND Röntgen-Strukturanalyse des Li3Cr(CH3)63C4H8O2 Journal of Organometallic Chemistry 65, 215–222.CrossRefGoogle Scholar
  58. 58.
    Morris, R. J., and Girolami, G. S. (1988). Journal of the American Chemical Society 110, 6245–6252.CrossRefGoogle Scholar
  59. 59.
    Abrahams, S. C., Ginsberg, A. P., and Knox, K. (1963) Transition Metal-Hydrogen Compounds. II. The Crystal and Molecular Structure of potassium Rhenium Hydride, K2ReH9. Inorganic Chemistry 3, 558–567.CrossRefGoogle Scholar
  60. 60.
    Truhlar, D. G. (1972) Test of Bond-Order Methods for Predicting the Position of the Minimum-Energy Path for Hydrogen Atom Transfer Reactions. Journal of the American Chemical Society 94, 7584–7586.CrossRefGoogle Scholar
  61. 61.
    Johnston, H. S., and Parr, C. (1963). Journal of the American Chemical Society 94, 2544.CrossRefGoogle Scholar
  62. 62.
    Truhlar, D. G., and Parr, C. A. (1971). Journal of Physical Chemistry 75, 1844.CrossRefGoogle Scholar
  63. 63.
    Truhlar, D. G., Steckler, R., and Gordon, M. (1987) Potential Energy Surfaces for Polyatomic Reaction Dynamics. Chemical Reviews 87, 217–236.CrossRefGoogle Scholar
  64. 64.
    Root, D. M., and Landis, C. R. unpublished results.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • Clark R. Landis
    • 1
  • Timothy K. Firman
    • 1
  • Thomas Cleveland
    • 1
  • Daniel M. Root
    • 1
  1. 1.Department of ChemistryUniversity of WisconsinMadisonUSA

Personalised recommendations