Modeling of Structures and Molecular Properties of Transition Metal Compounds — Toward Metalloprotein Modeling

  • Peter Comba
Part of the NATO ASI Series book series (ASHT, volume 41)


Molecular modeling deals with the computational prediction of molecular structures and properties. These, i.e. stabilities, reactivities, thermodynamic and kinetic electron transfer parameters and spectroscopy (magnetic resonance, electronic and vibrational spectroscopy) are strongly correlated with molecular structural parameters and the environment: steric strain may lead to decreasing stabilities, bond stretching to the preference of certain substitution reaction paths, and structural variations may be accompanied by electron redistribution with possible consequences in various molecular properties. Thus, there are two parts of modeling: (i) the computation of the structure of an isolated molecule, a crystal lattice or a solvated species, i.e. the three-dimensional arrangement of atoms in space, and (ii) the computation of relevant molecular properties, based on structural parameters. The result of a modeling study may help to understand observed properties of a compound, to determine the structure of a molecule when more direct methods are not available, and to design new compounds with specified properties.


Force Field Compute Structure Transition Metal Compound Paracoccus Denitrificans Binuclear Copper 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1a.
    Burton,V. J., Deeth, R. J., Kemp, C. M., Gilbert, P. J. (1995) Molecular mechanics for coordination complexes: the impact of adding d-electron stabilisation energies, J. Am. Chem. Soc. 117, 8407–8415;CrossRefGoogle Scholar
  2. 1b.
    Comba, P., Hambley, T. W., Ströhle, M. (1995) The directionality of d-orbitals and molecular mechanics calculations of octahederal transition metal compounds, Hely. Chim. Acta 78, 2042–2047;CrossRefGoogle Scholar
  3. 1c.
    Comba, P., Zimmer, M. (1994) Molecular mechanics and the Jahn-Teller effect, Inorg. Chem. 33, 5368–5369;CrossRefGoogle Scholar
  4. 1d.
    Warshel, A., Karplus, M. (1972) Calculation of ground and excited state potential surfaces of conjugated molecules. I. Formulation and parametrization, J Am. Chem. Soc. 94, 5612–5625;CrossRefGoogle Scholar
  5. 1e.
    Landis, C. R., Cleveland, T.; Firman, T. K. (1995) Making sense of the shape of simple metal hydrides, J. Am. Chem. Soc. 117, 1859–1860CrossRefGoogle Scholar
  6. 1f.
    Bol, J. E., Buning, C., Comba, P.; Ströhle, M., Reedijk, J. (1997) Molecular mechanics modeling of the organic backbone of metal-free and coordinated ligands, submitted; Google Scholar
  7. 1g.
    Maseras, F.; Morokuma, K. (1995) IMOMM: A new integrated ab initio plus molecular mechanics geometry optimization scheme of equilibrium structures and transition states, J. Comput. Chem. 16, 1170–1179.CrossRefGoogle Scholar
  8. 2.
    Comba, P.; Hambley, T. W. (1995) Molecular modeling of inorganic compounds, VCH, Weinheim.Google Scholar
  9. 3a.
    Comba, P. (1993) The relation between ligand structure, coordination stereochemistry and electronic and thermodynamic properties, Coord. Chem. Rev. 123, 1–48;CrossRefGoogle Scholar
  10. 3b.
    Comba, P. (1996) Modeling of structural and spectroscopic properties of transition metal compounds, In Gans W.; Amann, A; Boeyens, J. C. A., Eds. Fundamental Priciples of Molecular Modeling, Plenum Press, New York, 167–187.Google Scholar
  11. 4a.
    Gavezzotti, A. (1997) Theoretical aspects and computer modeling of the molecular solid state, Wiley, New York, Chaper 4;Google Scholar
  12. 4b.
    Weiner, S. J.; Kollman, P. A.; Case, D. A.; Singh, C.; Ghio, C.; Profeta, S.; Alagona, G.; Weiner, P. (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins, J Am. Chem. Soc. 106, 765–784;CrossRefGoogle Scholar
  13. 4c.
    Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz Jr., K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. (1995) A second generation force field for the simulation of proteins and nucleic acids, J. Am. Chem. Soc. 117, 5179–5196.CrossRefGoogle Scholar
  14. 5a.
    Hay, B. P. (1993) Methods for molecular mechanics modeling of coordination compounds Coord. Chem. Rev. 126, 177–236;CrossRefGoogle Scholar
  15. 5b.
    Landis, C. R.; Root, D. M.; Cleveland, T. (1995) Molecular mechanics force fields for modeling inorganic and organometallic compounds In: Lipkowitz, K. B. and Boyd, D. B., Eds. Reviews in Computational Chemistry, VCH, Weinheim, Volume 6, 73–136.CrossRefGoogle Scholar
  16. 6.
    Bersuker, I. (1996) Electronic Structures and Properties of Transition Metal Compounds, Wiley, New York.Google Scholar
  17. 7.
    Comba, P.; Hambley, T. W.; Lauer, G.; Okon, N. (1997) MOMEC97, a molecular modeling package for inorganic compounds, Lauer & Okon, Heidelberg, Germany, e-mail: Scholar
  18. 8.
    Bernhardt, P. V.; Comba, P. (1992) Molecular mechanics calculations of transition metal complexes, Inorg. Chem. 31, 2638–2644.CrossRefGoogle Scholar
  19. 9.
    Comba, P.; Lauer, G.; Okon, N. (1997), in preperation.Google Scholar
  20. 10a.
    Kitajima, N.; Moro-oka, Y. (1994) Copper-dioxygen complexes. Inorganic and bioinorganic perspectives, Chem. Rev. 94, 737–758;CrossRefGoogle Scholar
  21. 10b.
    Karlin, K. D.; Tyeklár, Z., Eds. (1993) Bioinorganic Chemistry of Copper, Chapman & Hall, New York;Google Scholar
  22. 10c.
    Reedijk, J., Ed. (1993) Bioinorganic Catalysis, Marcel Dekker, New York;Google Scholar
  23. 10d.
    Vigato, P. A.; Tamburini, S.; Fenton, D. E. (1990) The activation of small molecules by dinuclear complexes of copper and other metals, Coord.Chem.Rev. 106, 25–170;CrossRefGoogle Scholar
  24. 10e.
    Sorrell, T. N. (1989) Synthetic models for binuclear copper proteins, Tetrahedron 45, 3–68.CrossRefGoogle Scholar
  25. 11.
    Magnus, K. A.; Ton-That, H.; Carpenter, J. E. (1994) Recent structural work on the oxygen transport protein hemocyanin, Chem. Rev. 94, 727–735.CrossRefGoogle Scholar
  26. 12a.
    Jacobson, R. R.; Tyeklár, Z.; Farooq, A.; Karlin, K. D.; Liu. S.; Zubieta, J. (1988) A Cu2O2 complex. Crystal structure and characterization of a reversible dioxygen binding system, J. Am. Chem. Soc. 110, 3690–3692;CrossRefGoogle Scholar
  27. 12b.
    Tyeklár, Z.; Jacobson, R. R.; Wei, N.; Murthy, N. N.; Zubieta, J.; Karlin, K. D. (1993) Reversible reaction of O2 (and CO) with a copper(I) complex. X-ray structures of relevant mononuclear Cu(I) precursor adducts and the trans-(µ1,2-peroxo)dicopper(II) product, J. Am. Chem. Soc. 115, 2677–2689;CrossRefGoogle Scholar
  28. 12c.
    Baldwin, M. J.; Ross, P. K.; Tyeklar, Z.; Karlin, K. D., Solomon, E. I. (1991) Spectroscopic and theoretical studies of an end-on peroxide-bridged coupled binuclear copper(II) model complex of relevance to the active sites in heomocyanin and tyrosinase, J. Am. Chem. Soc. 113, 8671–8679.CrossRefGoogle Scholar
  29. 13a.
    Lee, D.-H.; Wei, N.; Murthy, N. N., Tyeklár, Z.; Karlin, K. D.; Kaderli, S.; Jung, B.; Zuberbühler, A. D. (1995) Reversible O2 binding to a dinuclear copper(I) complex with linked tris(2-pyridylmethyl)amine units: kinetic-thermodynamic comparisons with mononuclear analogues, J. Am. Chem. Soc. 117, 12498–12513;CrossRefGoogle Scholar
  30. 13b.
    Karlin, K. D.; Lee, D. H.; Kaderli, S., Zuberbühler, A. D. (1997) Copper dioxygen complexes stable at ambient temperature: Optimization of ligand design and solvent, J. Chem Soc., Chem. Commun., 475–476.Google Scholar
  31. 14.
    Comba, P.; Hilfenhaus, P.; Karlin, K. D. (1997) Modeling of end-on (p-peroxo)dicopper(II) complexes, Inorg. Chem. 36, 2309–2313.CrossRefGoogle Scholar
  32. 15a.
    Rawle, S. C.; Clarke, A. J.; Moore, P; Alcock, N. W. (1992) Ligands designed to impose tetrahedral coordination: A convenient route to aminoethyl and aminopropyl pendant arm derivatives of 1,5,9-triazacyclonanane, J. Chem. Soc., Dalton Trans., 2755–2757;Google Scholar
  33. 15b.
    Alcock, N. W.; Benniston, A. C.; Moore, P.; Pike, G. A.; Rawle, S. C. (1991) Macrocyclic ligands designed to impose tetrahedral coordination: [1(3-dimethylaminopropyl)-1,5,9- triazacyclononane], LI, [12-(pyrrolidin-1-yl)ethyl-1,5,9-triazacyclononane], L2, and their zinc(II) complexes J. Chem. Soc., Chem. Comm., 706–708;Google Scholar
  34. 15c.
    Turonek, M. L.; Moore, P.; Clase, H. J.; Alcock, N. W. (1995) Synthesis and coordination chemistry of the pyridyl pendant-arm azamacrocycles 1-(2-pyridylmethyl)-1,5,9-triazacyclodocecane L1 and 1-(2pyridyl-2’-ethyl)-1,5,9-triazacyclododecane L2, with nickel(II), copper(II) and zinc(II). Crystal structures of [Ni(Ll)(O2NO)JNO3 and [Zn(L2)(NO3)3.67CI0.33] J Chem. Soc., Dalton Trans., 3659–3666;Google Scholar
  35. 15d.
    Comba, P.; Nuber, B.; Ramlow, A. (1997) Design of a new type of very rigid tetradentate ligand, J Chem. Soc., Dalton Trans., 347–352.Google Scholar
  36. 15e.
    Comba, P.; Goll, W.; Nuber, B.; Várnagy, K. (1997) Metal ion selective ligands: Design, synthesis and complexation of bisamidobispyridyl ligand systems, submitted; Google Scholar
  37. 15f.
    Bates, G. B.; Parker, D.; Tasker, P. A. (1996) Synthesis and solution complexation behaviour of dimeric zinc-selective bis(benzimidazole) derivatives, Chem. Soc. Perkin Trans. 2, 1117–1125.CrossRefGoogle Scholar
  38. 16a.
    Menger, F. M. Sherrod, M. J. (1988) Docking calculations on ferrocene complexation with cyclodextrins, J. Am. Chem. Soc. 110, 8606–8611;CrossRefGoogle Scholar
  39. 16b.
    Davies, S. G.; Derome, A. E.; McNally, J. P. (1991) Conformational analysis and dynamics of the triphenylphosphine ligand in [(15-C5H5)Fe(CO)(PPh3)COCH3], J. Am. Chem. Soc. 113, 2854–2861;CrossRefGoogle Scholar
  40. 16c.
    Rudzinski, J. M.; Osawa, E. (1992) Molecular Mechanics of bridged ferrocene derivatives: Conformational energy surfaces of [3]-, [4]- and [45] ferrocenophanes, J. Phys. Org. Chem. 5, 382;CrossRefGoogle Scholar
  41. 16d.
    Rudzinski, J. M.; Osawa, E. (1993) Conformational interconversion of [1.1] ferrocenophane: A molecular mechanics study, J. Phys. Org. Chem. 6, 107;CrossRefGoogle Scholar
  42. 16e.
    Blom, R.; Hammel, A.; Haaland, A.; Weidlein, J.; Timofeeva, T. V.; Struchkov, Y. T. (1993) Molecular structures of tris(methylcyclopentadienyl)-scandium and -ytterbium as studied by gas phase electron diffraction and molecular mechanics calculations: The scandium atom is too small to accommodate three pentahapto cyclopentadienyl rings, J. Organomet. Chem. 462, 131–139;CrossRefGoogle Scholar
  43. 16f.
    Doman, T. N.; Landis, C. R.; Bosnich, B. (1992) Molecular mechanics force fields for linear metallocenes, J. Am. Chem. Soc. 114, 7264–7272;CrossRefGoogle Scholar
  44. 16g.
    Mercandelli, P.; Sironi, A. (1996) Ligand stereochemistry of metal clusters containing it-bonded ligands, J. Am. Chem. Soc. 118, 11548–11554.CrossRefGoogle Scholar
  45. 17.
    Comba, P. (1997), work in progress. Google Scholar
  46. 18.
    Comba, P. (1994) Solution structures of coordination compounds, Comm. Inorg. Chem. 16, 133–151.CrossRefGoogle Scholar
  47. 19a.
    Wüthrich, K. (1986) NMR of proteins and nucleic acids, Wiley, New York;Google Scholar
  48. 19b.
    Wüthrich, K. (1989) The development of nuclear magnetic resonance spectroscopy as a technique for protein structure determination, Acc. Chem. Res. 22, 36–44.CrossRefGoogle Scholar
  49. 20a.
    Bertini, I.; Rosato, A. (1997) Solution structures of proteins containing paramagnetic metal ions, chapter 1 in this book;Google Scholar
  50. 20b.
    Banci, L.; Gori Savellini, G. (1997) Molecular dynamics calculations on metalloproteins, chapter 9 in this book.Google Scholar
  51. 21a.
    Bernhardt, P. V.; Comba, P.; Hambley, T. W.; Massoud, S. S.; Stebler, S. (1992) Determination of solution structures of binuclear copper(II) complexes, Inorg. Chem. 31, 2644–2650;CrossRefGoogle Scholar
  52. 21b.
    Comba, P.; Hilfenhaus, P. (1995) One-step template synthesis and solution structures of bis(macrocyclic) octaamine dicopper(II) complexes, J. Chem. Soc., Dalton Trans., 3269–3274.Google Scholar
  53. 21c.
    Comba, P.; Hambley, T. W.; Hilfenhaus, P.; Richens, D. T. (1996) Solid state and solution structures of two structurally related dicopper complexes with markedly different redox properties, J. Chem. Soc., Dalton Trans., 533–539.Google Scholar
  54. 22a.
    Comba, P.; Sickmüller, A. F. (1997) The solution structures of a pair of stable cobalt(III) hexaamine conformers, Angew. Chem., Angew. Chem. Int. Ed. Engl., accepted; Google Scholar
  55. 22b.
    Comba, P.; Sickmüller, A. F. (1997) Modeling of the redox properties of hexaaminecobalt(I11/II) couples, Jnorg. Chem., accepted Google Scholar
  56. 22c.
    Comba, P.; Jakob, H. (1997) Reduction potentials of tetraaminecopper(II/I) couples, submitted. Google Scholar
  57. 23a.
    Bernhardt, P. V.; Comba, P. (1993) Prediction and interpretation of electronic spectra of transition metal complexes via the combination of molecular mechanics and angular overlap model calculations, Inorg. Chem. 32, 2798–2803.;CrossRefGoogle Scholar
  58. 23b.
    Comba, P. (1994) Prediction and interpretation of EPR spectra of low spin iron(I1l) complexes with the MM-AOM method Inorg. Chem., 33, 4577–4583.;CrossRefGoogle Scholar
  59. 23c.
    Comba, P.; Hambley, T. W.; Hitchman, M. A.; Stratemeier, H. (1995) Interpretation of electronic and EPR spectra of copper(II) amine complexes - A test of the MM-AOM method, Inorg. Chem. 34, 3903–3911.CrossRefGoogle Scholar
  60. 24.
    Keppler, B. K.; Friesen, C.; Vongerichten, H.; Vogel, E. (1993) Budititane, a new tumor-inhibiting titanium compound: Preclinical and clinical development, In Keppler, B. K. Ed. Metal complexes in Cancer Chemotherapy, VCH, Weinheim.Google Scholar
  61. 25.
    Comba, P.; Jakob, H.; Keppler, B. K., Nuber, B. (1994) Solution structures and isomer distributions of bis(ß-diketonato) complexes of titanium(IV) and cobalt(III), Inorg. Chem. 33, 3396–3400.CrossRefGoogle Scholar
  62. 26.
    Magnus, K. A.; Ton-That, H.; Carpenter, J. E. (1993) Three-dimensional structure of the oxygenated form of the hemocyanin subunit II of Limilus Polyphemus at atomic resolution, In Karlin, K. D., Tyeklar, Z., Eds. Bioinorganic Chemistry of Copper, Chapman & Hall, New York, 143–150.CrossRefGoogle Scholar
  63. 27.
    Menif, R., Martell, A. E. (1989) Oxygen insertion by a new tyrosinase model binuclear Cu’ macrocyclic complex, J. Chem. Soc., Chem. Commun., 1521–1523.Google Scholar
  64. 28.
    Geue, R. J.; Hanna, J.; Höhn, A.; Qin, C. J.; Ralph, S. F.; Sargeson, A. M.; Willis, A. C. (1997) Steric effects in redox reactions and electron transfer rates, In Isied, S. S., Ed. Electron Transfer Reactions, ACS Symposium Series, ACS, Washington, Chapter 8.Google Scholar
  65. 29a.
    Solomon, E. I.; Baldwin, M. J.; Lowry, M. D. (1992) Electronic structures of active sites in copper proteins: Contributions to reactivity, Chem. Rev. 92, 521–542;CrossRefGoogle Scholar
  66. 29b.
    Ryde, U., Olsson, M. H. M.; Pierloot, K.; Roos, B. O. (1996) The cupric geometry of blue copper proteins is not strained, J. Mol. Bio1 261, 586–596;CrossRefGoogle Scholar
  67. 29c.
    Pierloot, K.; DeKerpel, J. O. A.; Ryde, U.; Roos, B. O. (1997) Theoretical study of the electronic spectrum of plastocyanin, J Am. Chem. Soc. 119, 218–226;CrossRefGoogle Scholar
  68. 29d.
    Larsson, S.; Broo, A.; Sjölin, L. (1995) Connection between structure, electronic spectrum and electron-transfer properties of blue copper proteins, J. Phys. Chem. 99, 4860–4865.CrossRefGoogle Scholar
  69. 30.
    Dennison, C.; Vijgenboom, E.; Hagen, W. R., Canters, G. W. (1996) Loop-directed mutagenesis converts amicyanin from Thiobacyllus versutus into a novel blue copper protein, J. Am. Chem. Soc. 118, 7406.CrossRefGoogle Scholar
  70. 31.
    Buning, C.; Canters, G. W.; Comba, P.; Dennison, C. (1997), work in progress. Google Scholar
  71. 32.
    Comba, P.; Melter, M. (1997), work in progress. Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • Peter Comba
    • 1
  1. 1.Anorganisch-Chemisches InstitutUniversität HeidelbergHeidelbergGermany

Personalised recommendations