Skip to main content

Molecular Dynamics Study of H93G Sperm Whale Deoxymyoglobin Mutants with Exogenous Proximal Ligands

  • Chapter
  • 209 Accesses

Part of the book series: NATO ASI Series ((ASHT,volume 41))

Abstract

Life is based on organic molecules. However, many crucial biological functions are regulated by bioinorganic compounds. Transition metal ions catalyze biochemical reactions, e.g. as cofactors in enzyme reactions, and they are important in transport proteins as reaction centers for the reversible binding of small ligands. Since the discovery of heme proteins the iron coordinated by the porphyrin ring and embedded in the specific protein environment was the subject of extensive studies. Of particular interest is the very precise regulation of the reactivity of the five-coordinate metalcenter of hemoglobins (Hb) towards diatomic ligands [1]. The ability of Hbs to discriminate between a “good” oxygen and a “bad” (toxic) carbon monoxide has puzzled researchers for many years [2.3] and many interesting theories were tested experimentally [4] and computer modeled theoretically [5].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonini, E. and Brunori, M. (1971) Hemoglobin and myoglobin in their reaction with ligands, North-Holland Publishers, London.

    Google Scholar 

  2. Perutz, M.F. (1979) Regulation of oxygen activity of hemoglobin: influence of structure of the globin on the heme iron, Ann. Rev. Biochem. 48, 327–386.

    Article  CAS  Google Scholar 

  3. Springer, B.A., Sligar, S.G., Olson, J.S., and Phillips, Jr., G.N. (1994) Mechanism of ligand recognition in myoglobin, Chem. Rev. 94, 699–714.

    Article  CAS  Google Scholar 

  4. Lim, M., Jackson, T.A., and Anfinrud, P.A. (1997) Ultrafast rotation and trapping of carbon monoxide dissociated from myoglobin, Nature Struct. Biol. 4, 209–214.

    CAS  Google Scholar 

  5. Vitkup, D., Petsko, G.A., and Karplus, M. (1997) A comparison between molecular dynamics and X-ray results for dissociated CO in myoglobin, Nature Struct. Biol. 4, 202–208.

    CAS  Google Scholar 

  6. Schlichting, I., Berendzen, J., Phillips, Jr. G.N., and Sweet, R.M. (1994) Crystal structure of photolyzed carbonmonoxymyoglobin, Nature 371, 808–812.

    Article  CAS  Google Scholar 

  7. Martin, J.-L. and Vos, M.H. (1992) Femtosecond biology, Amt. Rev. Biophys. Biomol. Struct. 21, 199–222.

    Article  CAS  Google Scholar 

  8. Franzen, S., Bohn, B., Poyart, C., DePillis, G.D., Boxer, S.G., and Martin, J.-L. (1995) Functional aspects of ultra-rapid heme doming in hemoglobin, myoglobin and the myoglobin mutant H93G, J. Biol. Chem. 270, 1718–1720.

    Article  CAS  Google Scholar 

  9. Olafson, B.D. and Goddard, W.A, Molecular description of dioxygen bonding in hemoglobin, Proc. Natl. Acad. Sci. USA 74, 1315–1319.

    Article  Google Scholar 

  10. Friedman, J. (1985) Structure, dynamics and reactivity in hemoglobin, Science 228, 1273–1280.

    Article  CAS  Google Scholar 

  11. Friedman, J.M., Campbell, B.F., and Noble, R.W. (1990) A possible new control mechanism suggested by resonance Raman spectra from a deep ocean fish hemoglobin, Biophys. Chem. 37, 43–59.

    CAS  Google Scholar 

  12. Warshel, A. and Weiss, R.M. (1981) Energetics of heme-protein interactions in hemoglobin, J. Am. Chem. Soc. 103, 446–451.

    Article  CAS  Google Scholar 

  13. Gelin, B.R. and Karplus, M. (1977) Mechanism of tertiary structural change in hemoglobin, Proc. Natl. Acad. Sci. (USA) 74, 801–805.

    Article  CAS  Google Scholar 

  14. Gelin, B.R., Lee, A.W.M., and Karplus, M. (1983) Hemoglobin tertiary structural change on ligand binding. Its role in cooperative mechanism, J. Mol. Biol. 171, 489–559.

    Article  CAS  Google Scholar 

  15. Case, D.E. and Karplus, M. (1979) Dynamics of ligand binding to heme proteins, J. Mol. Biol. 132, 343–368.

    Article  CAS  Google Scholar 

  16. Tilton, R.F.,Jr., Singh, U.C., Weiner, S.J., Connolly, M.L., Kuntz, Jr. I.D., Kollman, P.A., Max, N., and Case, D.A. (1986) Computational studies of the interaction of myoglobin and xenon, J. Mol. Biol. 192, 443–456.

    Article  CAS  Google Scholar 

  17. Elber, R. and Karplus, M. (1990) Enhanced sampling in molecular dynamics: Use of Time-Dependent Hartree approximation for the simulation of carbon monoxide diffusion through myoglobin, J. Am. Chem. Soc. 112, 9161–9175.

    Article  CAS  Google Scholar 

  18. Czerminski, R., Elber, R. (1991) Computational studies of ligand diffusion in globins: I. Leghemoglobin, Proteins 10, 70–80.

    Article  CAS  Google Scholar 

  19. Elber, R., Czerminski R., Nowak, W., Choi, C., and Ulitsky, A. (1990) Dynamics of conformational transitions in peptides and ligand diffusion in proteins, Chem. Des. Autom. News 5, 17–21.

    Google Scholar 

  20. Elber, R., Czerminski R., Nowak, W., Choi, C., and Ulitsky, A. (1990) Dynamics of conformational transitions in peptides and ligand diffusion in proteins, Chem. Des. Autom. News 5, 17–21.

    Google Scholar 

  21. Nowak, W., Czerminski, R., and Elber, R. (1991) Reaction path study of ligand diffusion in proteins: Application of the Self Penalty Walk (SPW) method to calculate reaction coordinates for the motion of CO through leghemoglobin, J. Am. Chem. Soc. 113, 5627–5637.

    Article  CAS  Google Scholar 

  22. Verkhivker, G., Elber, R., and Gibson, Q.H., (1992) Microscopic modeling of ligand diffusion through the protein leghemoglobin: Computer simulations and experiments, J. Am. Chem. Soc. 114, 7866–7878.

    Article  CAS  Google Scholar 

  23. Verkhivker, G., Elber, R., and Nowak W. (1992) Locally enhanced sampling in free energy calculations: Application of mean field approximation to accurate calculation of free energy differences, J. Chem. Phys. 97, 7838–7841.

    Article  CAS  Google Scholar 

  24. Henry, E.R, Eaton W.A. and Hochstrasser, R. (1986) Molecular dynamics simulations of cooling in laser-excited heme proteins, Proc. Natl. Acad. Sci. (USA) 83, 8982–8986.

    Article  CAS  Google Scholar 

  25. Petrich, J.W., Lambry, J.-C., Kuczera, K., Karplus, M., Poyart, C., and Martin, J.-L. (1991) Ligand binding and protein relaxation in heme proteins: A room temperature analysis of NO geminate recombination., Biochemistry 30, 3975–3987.

    Article  CAS  Google Scholar 

  26. Kuczera, K., Lambry, J.-C., Martin, J.-L., and Karplus, M. (1993) Nonexponential relaxation after ligand dissociation from myoglobin. A molecular dynamics simulations, Proc. Natl. Acad. Sci. (USA) 90, 5805–5807.

    Article  CAS  Google Scholar 

  27. Schaad, O., Zhou, H.-X., Szabo, A., Eaton, W.A. and Henry, E.R. (1993) Simulation of the kinetics of ligand binding to a protein by molecular dynamics: geminate rebinding of nitric oxide to myoglobin, Proc. Natl. Acad. Sci. (USA) 90, 9547–9551.

    Article  CAS  Google Scholar 

  28. Li, H., Elber, R. and Straub, J. (1993) Molecular dynamics simulation of NO recombination to myoglobin mutants, J. Biol. Chem. 268, 17908–17916.

    CAS  Google Scholar 

  29. Carlson, M.J., Regan, R., Elber, R., Li, H., Phillips, Jr., G.N., Olson, J.S., and Gibson, Q.H. (1994) Nitric oxide recombination to double mutants of myoglobin: role of ligand diffusion in fluctuating heme pocket, Biochemistry 33, 10597–10606.

    Article  CAS  Google Scholar 

  30. Quillin, M.L., Li, T., Olson, J.S., Phillips, Jr., G.N., Dou, Y., Ikeda-Saito, M., Regan, R., Carlson, M., Gibson, Q.H., Li, H., and Elber, R. (1995) Structural and functional effects of apolar mutations of the distal valine in myoglobin, J. Mol. Biol. 245, 416–436.

    Article  CAS  Google Scholar 

  31. Duprat, A.F., Traylor, T.G., Wu, G.Z., Coletta, M., Sharma, V.S., Walda, K.N., and Magde, D. (1995) Myoglobin-NO at low pH: Free four-coordinated heme in the protein pocket, Biochemistry 34, 2634–2644.

    Article  CAS  Google Scholar 

  32. Nowak, W. and Martin, J.-L. (1996) Towards an understanding of quantum factors in small ligand geminate recombination to heme proteins, in D. Bicout and M. Field (eds.), Quantum Afeclrarical Simulation Methods for Studying Biological Systems, Springer, Les Editions de Physique, Berlin, pp. 255–270.

    Google Scholar 

  33. Nakatsuji, H., Hasegava, J., Ueda, H., and Hada, M. (1996) Ground and excited states of oxyheme: SAC/SAC-CI study, Chem. Phys. Letters 250, 379–386.

    Article  CAS  Google Scholar 

  34. Gosh, A. and Bocian, D.F. (1996) Carbonyl tilting and bending potential energy surface of carbon monoxyhemes, J. Phys. Chem. 100, 6363–6367.

    Article  Google Scholar 

  35. Jewsbury, P., Yamamoto, S., Minato, T., Saito, M., and Kitagawa, T. (1995) The proximal residue largely determines the CO distortion in carbonmonoxy globin proteins. An ab initiostudy of a heme prosthetic unit, J. Phys. Chem. 99, 12677–12685.

    Article  CAS  Google Scholar 

  36. DePillis, G.D., Decatur, S., Barrick, D., and Boxer, S.G. (1994) Functional cavities in proteins: a general method for proximal ligand substitution in myoglobin, J. Am. Chem. Soc. 116, 6981–6982.

    Article  CAS  Google Scholar 

  37. Barrick, D. (1994) Replacement of the proximal ligand of sperm whale myoglobin with free imidazole in the mutant His-93->Gly, Biochemistry 33, 6546–6554.

    Article  CAS  Google Scholar 

  38. Decatur, S.M. and Boxer, S.G (1995) 1H NMR characterization of myoglobine where exogenous ligands replace the proximal histidine, Biochemistry 34, 2122–2129.

    Article  CAS  Google Scholar 

  39. Decatur, S.M., DePillis, G.D., and Boxer, S.G. (1996) Modulation of protein function by exogenous ligands in protein cavities: CO binding to a myoglobin cavity mutant containing unnatural proximal ligands, Biochemistry 35, 3925–3932.

    Article  CAS  Google Scholar 

  40. Decatur, S.M., Franzen, S., DePillis, D.G., Dyer, R.B., Woodruff, W.H. and Boxer, S.G. (1996) Trans effects in nitric oxide binding to myoglobin cavity mutant H93G, Biochemistry 35, 4939–4944.

    Article  CAS  Google Scholar 

  41. Franzen, S. and Boxer, S.G. (1997) On the origin of heme absorption band shifts and associated protein structural relaxation in myoglobin following flashphotolysis, J. Biol. Chem. 272, 9655–9660.

    Article  CAS  Google Scholar 

  42. Barrick, D. (1995) Depletion and replacement of protein metal ligands, Cuff. Opin. Biotech. 6, 411–418.

    CAS  Google Scholar 

  43. Smerdon, S.J., Krzywda, Sz., Wilkinson, A.J., Brantley, Jr., R.E., Carver, T.E., Hargrove, M.S. and Olson, J.S. (1993) Serine (F7) contributes to the control of heme reactivity and stability in myoglobin, Biochemistry 32, 5132–5138.

    Article  CAS  Google Scholar 

  44. Shiro, Y., lizuka, T., Marubayashi, K., Ogura, T., Kitagawa, T., Balasubrama-pian, S., and Boxer, S.G. (1994) Spectroscopic study of Ser92 mutants of human myoglobin: hydrogen bonding effect of Ser92 to proximal His93 on structure and property of myoglobin, Biochemistry 33, 14986–14992.

    Article  CAS  Google Scholar 

  45. Nowak, W. (1997) Computer modelling of dynamics of Ser92X deoxymyoglobin mutants, Computers & Chemistry, accepted.

    Google Scholar 

  46. Hargrove, M.S, Barrick, D., and Olson, J.S (1996) The association rate constant for heme binding to globin is independent of protein structure, Biochemistry 35, 11293–11299.

    Article  CAS  Google Scholar 

  47. Hargrove, M.S, Wilkinson, A.S., and Olson, J.S (1996) Structural factors govering hemin dissociation from metmyoglobin, Biochemistry 35, 11300–11309.

    Article  CAS  Google Scholar 

  48. Hargrove, M.S. and Olson, J.S (1996) The stability of holomyoglobin is determined by heme affinity, Biochemistry 35, 11310–11318.

    Article  CAS  Google Scholar 

  49. Yamamoto, Y., Nanai, N., Chujo, R., and Suzuki T. (1990) Heme methyl hyperfine shift pattern as a probe for determining the orientation of the functionally relevant proximal histydyl imidazole with respect to the heme in hemoproteins, FEBS Lett 264, 113–116.

    Article  CAS  Google Scholar 

  50. Nowak, W. (1997) Molecular dynamics simulations of human deoxymyoglobin with a modified proximal side of the heme group, J. Mol. Struct. (Theochem), in press.

    Google Scholar 

  51. Barrick, D. (19%) Protein Data Bank File PDBIRC1.

    Google Scholar 

  52. Insight II, v.95. 0, Molecular Simulations, San Diego, USA, 1995.

    Google Scholar 

  53. Elber, R., Roitberg, A., Simmerling, C., Goldstein, R., Li, H., Verkhivker, G., Keasar, C., Zhang, J., and Ulitsky, A. (1995) MOIL: a program for simulation of macromolecules, Comp. Phys. Comm. 91, 159–189.

    CAS  Google Scholar 

  54. Czarnecka, J., MSc thesis, UMK, Poland, 1996, unpublished.

    Google Scholar 

  55. Ryckaert, J.P., Ciccotti, G., and Berendsen, H.J.C. (1977) Numerical integration of the cartesian equation of motion of a system with constraints: molecular dynamics of nalkanes, Comput. Phys. 23, 327–341.

    CAS  Google Scholar 

  56. Simmerling, C., Elber, R., and Zhang, J. (1995) MOIL-View–A program for visualisation of structure and dynamics of biomolecules and STO–a program for computing stochastic paths, A.Pullman, J.Jortner and B.Pullman (eds.), Modelling of Biomolecular Structure and Mechanisms, Kluwer, Netherlands, pp. 241–265.

    Chapter  Google Scholar 

  57. Neya, S., Funasaki, N., Shiro Y., Iizuka, T., and Imai, K. (1994) Consequence of rapid heme rotation to the oxygen binding of myoglobin, Biochim. Biophys. Acta 1208, 31–37.

    CAS  Google Scholar 

  58. Ansari A., Jones, C.M., Henry, E.R, Hofrichter, J., and Eaton, W.A. (1993) Photoselection in polarized photolysis experiments on heme proteins, Biophys. J. 64, 852–868.

    Article  CAS  Google Scholar 

  59. Henry, E.R. (1993) Molecular dynamics simulations of heme reorientational motions in myoglobin, Biophys. J. 64, 869–885.

    Article  CAS  Google Scholar 

  60. Kushkuley, B. and Stavrov, S.S. (1996) Theoretical study of the distal-side steric and electrostatic effects on the vibrational characteristics of the FeCO unit of the carbonylheme proteins and their models, Biophys. J. 70, 1214–1229.

    Article  CAS  Google Scholar 

  61. Kushkuley, B. and Stavrov, S.S. (1997) Theoretical study of the electrostatic and steric effects on the spectroscopic characteristics of the metal-ligand unit of heme proteins.2. CO vibrational frequencies, “O isotropic chemical shifts, and nuclear quadrupole coupling constants, Biophys. J. 72, 899–912.

    Article  CAS  Google Scholar 

  62. Parak, F. and Knapp, E.W. (1984) A consistent picture of protein dynamics, Proc. Natl. Acad. Sci. (USA) 81, 7088–7092.

    Article  CAS  Google Scholar 

  63. Glich, H., Dreyboldt, W., and Schweitzer-Sterner, R. (1995) Thermal fluctuations between conformational substates of the Fe-HisF8 linkage in deoxymyoglobin probed by the Raman active Fe-Nc(HisF8) stretching vibration, Biophys. J., 69, 214–227.

    Article  Google Scholar 

  64. Banci, L., Bertini, I., Turano, P., Tien, M., and Kirk, T.K (1991) Proton NMR investigation into basis for the relatively high redox potential of lignin peroxidase, Proc. Natl. Acad. Sci. (USA) 88, 6956–6960.

    Article  CAS  Google Scholar 

  65. Warshel, A., Papazyan, A., and Muegge, I. (1997) Microscopic and semimacroscopic redox calculations: what can and cannot be learned from continuum models, JBIC 2, 143–152.

    Article  CAS  Google Scholar 

  66. Scheidt, W.R. and Chipman, D.M. (1986) Prefered orientation of imidazole ligands in metallophorphyrins, J. Am. Chem. Soc. 108, 1163–1167.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nowak, W. (1997). Molecular Dynamics Study of H93G Sperm Whale Deoxymyoglobin Mutants with Exogenous Proximal Ligands. In: Banci, L., Comba, P. (eds) Molecular Modeling and Dynamics of Bioinorganic Systems. NATO ASI Series, vol 41. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5171-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5171-9_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6174-2

  • Online ISBN: 978-94-011-5171-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics