Skip to main content

The Role of the Protein in Modulating Cofactor Electrochemistry in Proteins: The Calculation of Electrostatic Forces

  • Chapter
Molecular Modeling and Dynamics of Bioinorganic Systems

Part of the book series: NATO ASI Series ((ASHT,volume 41))

  • 210 Accesses

Abstract

Living organisms store information in a compact and flexible manner in nucleic acids and use proteins to create both structural and catalytic molecules. A wealth of information about the atomic 3-dimensional structure of many proteins and some nucleic acids is available and stored in a readily accessible form in the Brookhaven Data Bank [1]. The challenge is to understand how the structure of these biomolecules enables them to carry out their function. Each molecule of protein is a linear polymer with identical backbone units. The same is true for the nucleic acids DNA and RNA. It is the specific sequence of amino acid side chains in a protein or bases in a nucleic acid that makes each unique. Thus, it is non-bonded interactions between the side chains that influence the backbone geometry, defining regions of α-helix or β-sheet as well as the overall fold in proteins, the propensity for A, B, Z DNA, or the structure of an RNA molecule. In addition, it is the non-bonded interactions that enable proteins and nucleic acids to bind reaction partners and participate in the appropriate reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T. F. and Tasumi, M. (1977). The protein data bank: A computer based archival file for macromolecular structures. J. Mol. Biol. 112, 535–542.

    Article  CAS  Google Scholar 

  2. Karplus, M. and Porter, R. N. (1970). Atoms and Molecules,.Benjamin/Cummings, Menlo Park.

    Google Scholar 

  3. Spassov, V., Karshikoff, A. and Ladenstein, R. (1995). The optimization of proteinsolvent interactions: Thermostability and the role of hydrophobic and electrostatic interactions. Protein Science 4, 1516–1527.

    Article  CAS  Google Scholar 

  4. Richards, F. M. (1977). Areas, volumes, packing, and protein structure. Ann. Rev. Biophys. Bioeng. 6, 151–176.

    Article  CAS  Google Scholar 

  5. Ponder, J. W. and Richards, F. M. (1987). Tertiary templates for proteins Use of packing criteria in the enumeration of allowed sequences for structural classes. J. Mol. Biol. 193, 775–791.

    Article  CAS  Google Scholar 

  6. Spassov, V., Karshokoff, A. and Ladenstein, R. (1994). Optimization of the electrostatic interactions in proteins of different functional and folding type. Protein Science 3, 1556–1569.

    Article  CAS  Google Scholar 

  7. Spassov, V. Z. and Atanasov, B. P. (1994). Spatial optimization of electrostatic Interactions between the ionized groups in globular proteins. Proteins: Struct. Func. and Gen. 19, 222–229.

    Article  CAS  Google Scholar 

  8. Honig, B. and Nicholls, A. (1995). Classical electrostatics in biology and chemistry. Science 268, 1144–1149.

    Article  CAS  Google Scholar 

  9. Nakamura, H. (1996). Roles of electrostatic interactions in proteins. Quart. Rev. Biophys. 29, 1–90.

    Article  CAS  Google Scholar 

  10. Gunner, M. R. and Honig, B. (1996). Electrostatic simulation of cytochrome c. Cytochrome c Sourcebook. Mill Valley, University Science Books. 347–372.

    Google Scholar 

  11. Gilson, M. K. and Honig, B. H. (1987). Calculation of electrostatic potentials in an enzyme active site. Nature 330, 84–86.

    CAS  Google Scholar 

  12. Bagdassararian, C. K., Schramm, V. L. and Schwartz, S. D. (1996). Molecular electrostatic potential analysis for enzymatic substrates, competitive inhibitors, and transition-state inhibitors. J. Am. Chem. Soc. 118, 8825–8835.

    Article  Google Scholar 

  13. Oliveberg, M. and Fersht, A. R. (1996). Formation of electrostatic interactions on the protein-folding pathway. Biochem. 35, 2726–2737.

    Article  CAS  Google Scholar 

  14. Rich, M. R. and Evans, J. S. (1996). Molecular dynamics simulations of adipocyte lipid-binding protein: Effect of electrostatics and acyl chain unsaturation. Biochem. 35, 1506–1515.

    Article  CAS  Google Scholar 

  15. Karshikoff, A., Reinemer, P., Huber, R. and Ladenstein, R. (1993). Electrostatic evidence for the activation of the glutathione thiol by Tyr7 in a-class transferases. Eur. J. Biochem. 215, 663–670.

    Article  CAS  Google Scholar 

  16. Ullner, M., Woodward, C. E. and Jonsson, B. (1996). A Debye-Huckel theory for electrostatics interactions in proteins. J. Chem. Phys. 105, 2056–2065.

    Article  CAS  Google Scholar 

  17. Simonson, T. and Brooks, C. L. (1996). Charge sScreening and the dielectric constant of proteins: Insights from molecular dynamics. J. Am. Chem. Soc. 118, 8452–8458.

    Article  CAS  Google Scholar 

  18. Simonson, T., Perahia, D. and Brunger, A. T. (1991). Microscopic theory of the dielectric properties of proteins. Biophys. J. 59, 670–690.

    Article  CAS  Google Scholar 

  19. McCammon, J. A. and Harvey, S. C. (1987). Dynamics of Proteins and Nucleic Acids,.Cambridge University Press, Cambridge.

    Book  Google Scholar 

  20. Bakowies, D. and Thiel, W. (1996). Semiempirical treatment of electrostatic potentials and partial charges in combined quantum mechanical and molecular mechanical approaches. J. Com. Chem. 17, 87–108.

    Article  CAS  Google Scholar 

  21. Warshel, A. and Russell, S. T. (1984). Calculations of electrostatic interactions in biological systems and in solutions. Q. Rev. Biophys. 17, 283–422.

    Article  CAS  Google Scholar 

  22. Warwicker, J. and Watson, H. C. (1982). Calculation of the electric potential in the active site cleft due to a u-helix dipoles. J. Mol. Biol. 157, 671–679.

    Article  CAS  Google Scholar 

  23. Sharp, K. A. and Honig, B. (1990). Electrostatic interactions in macromolecules: Theory and applications. Annu. Rev. Biophys. Biophys. Chem. 19, 301–332.

    Article  CAS  Google Scholar 

  24. Lee, F. S., Chu, Z. T. and Warshel, A. (1993). Microscopic and semimicroscopic calculations of electrostatic energies in proteins by the POLARIS and ENZYMIX programs. J. Comp. Chem.2–51.

    Google Scholar 

  25. Sharp, K., Gilson, M., Fine, R. and Honig, B. (1987). Electrostatic interactions in proteins. Protein structure and Design 2, 235–244.

    Google Scholar 

  26. Gilson, M. K. and Honig, B. (1988). Calculation of the total electrostatic energy of a macromolecular system: Solvation energies, binding energies and conformation analysis. Proteins 4, 7–18.

    Article  CAS  Google Scholar 

  27. Nicholls, A. and Honig, B. (1991). A rapid finite difference algorithm utilizing successive over-relaxation to solve the Poisson-Boltzmann equation. J. Comp. Chem. 12, 435–445.

    Article  CAS  Google Scholar 

  28. Rashin (1990). J. Phys. Chem. 14, 484.

    Google Scholar 

  29. Holst, M., Kozack, R., Saied, F. and Subramaniam, S. (1995). Treatment of electrostatic effects in proteins: Multigrid-based Newton iterative methods for solution of the full nonlinear Poisson-Boltzmann equation. Proteins 18, 231–245.

    Article  Google Scholar 

  30. Davis, M. E. and McCammon, J. A. (1990). Solving the finite difference linearized Poisson-Boltzmann equation: A comparison of relaxation and conjugate gradient methods. J. Comp. Chem. 10, 386.

    Article  Google Scholar 

  31. Bharadwaj, R., Windemuth, A., Sridharan, S., Honig, B. and Nicholls, A. (1995). The fast multipole boundary element method for molecular electrostatics: An optimal approach for large systems. J. Comp Chem. 16, 898–913.

    Article  CAS  Google Scholar 

  32. Karshikoff, A., Spassov, V., Cowan, S. W., Ladenstein, R. and Schirmer, T. (1994). Electrostatic properties of two porin channels from Escherichia coli. J. Mil. Biol. 240, 372–384.

    CAS  Google Scholar 

  33. Sharp, K. A. and Honig, B. (1990). Calculating total electrostatic energies with the nonlinear Poisson-Boltzmann equation. J. Phys. Chem. 94, 7684–7692.

    Article  CAS  Google Scholar 

  34. Gilson, M. K., Sharp, K. A. and Honig, B. H. (1987). Calculating the electrostatic potential of molecules in solution: method and error assessment. J. Comp. Chem. 9, 327–335.

    Article  Google Scholar 

  35. Jean-Charles, A., Nicholls, A., Sharp, K., Honig, B., Tempczyk, A., Hendrickson, T. F. and Still, W. C. (1991). Electrostatic contributions to solvation energies: Comparison of free energy perturbation and continuum calculations. J. Am. Chem. Soc. 113, 1454–1455.

    Article  CAS  Google Scholar 

  36. Beroza, P., Fredkin, D. R., Okamura, M. Y. and Feher, R. (1995). Electrostatic calculations of amino acid titration electron transfer, Q-AQB-> QAQB-, in the reaction center. Biophys. J. 68, 2233–2250.

    Article  CAS  Google Scholar 

  37. Alexov, E. G. and Gunner, M. R. (1997). Combining conformation changes and calculation of pH-titration. Biophys. J. 74

    Google Scholar 

  38. Jorgensen, W. L. and Tirado-Rives, J. (1988). The OPLS potential functions for proteins. Energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 110, 1657–1666.

    Article  CAS  Google Scholar 

  39. Tannor, D. J., Marten, B., Murphy, R., Freisner, R. A., Sitkoff, D., Nichols, A., Ringnalda, M., Goddard, I., W. A. and Honig, B. (1994). Accurate first principles calculation of molecular charge distributions and solvation energies from ab Initioquantum mechanics and continuum dielectric theory. J. Am. Chem. Soc. 116, 11875–11882.

    Article  CAS  Google Scholar 

  40. Sitkoff, D., Sharp, K. A. and Honig, B. (1994). Accurate calculation of hydration free energies using macroscopic solvent models. J. Phys. Chem 98, 1978–1988.

    Article  CAS  Google Scholar 

  41. Jackson, J. D. (1975). Classical Electrodynamics,John Wiley & Sons, New York.

    Google Scholar 

  42. Barbara, P. F., Walker, G. C. and Smith, T. P. (1992). Vibrational modes and the dynamic solvent effect in electron and proton transfer. Science 256, 975–981.

    Article  CAS  Google Scholar 

  43. Pethig, R. (1979). Dielectric and electronic properties of biological materials, John Wiley, New York.

    Google Scholar 

  44. Lide, D. R., Ed. (1990). CRC Handbook of Chemistry and Physics. Boca Ratom, CRC Press.

    Google Scholar 

  45. Pethig, R. (1990). Protein-water interactions determined by dielectric methods. Ann. Rev. Phys. Chem. 43, 177–205.

    Article  Google Scholar 

  46. Luntz, T. L., Schejter, A., Garber, E. A. E. and Margoliash, E. (1989). Structural significance of an internal water molecule studied by site-directed mutagenesis of tyrosine-67 in rat cytochrome c. Proc. Natl. Acad. Sci., USA 86, 3524–3528.

    Article  CAS  Google Scholar 

  47. Gibas, C. and Subramaniam, S. (1996). Explicit solvent models in protein pKa calculations. Biophys. J. 71, 138–147.

    Article  CAS  Google Scholar 

  48. Jayaram, B., Fine, R., Sharp, K. and Honig, B. (1989). Free energy calculations of ion hydration: An analysis of the Bborn model in terms of microscopic simulations. J. Phys. Chem. 93, 4320–4327.

    Article  CAS  Google Scholar 

  49. Harvey, S. (1989). Treatment of electrostatic effects in macromolecular modeling. Proteins 5, 78–92.

    Article  CAS  Google Scholar 

  50. Gilson, M. K. and Honig, B. H. (1986). The dielectric constant of a folded protein. Biopolymers 25, 2097–2119.

    Article  CAS  Google Scholar 

  51. Smith, P. E., Brunne, R. M., Mark, A. E. and VanGunsteren, W. F. (1993). Dielectric properties of trypsin inhibitor and lysozymes calculated from molecular dynamics. J. Phys. Chem. 97, 2009–2014.

    Article  CAS  Google Scholar 

  52. Gunner, M. R. and Honig, B. (1991). Electrostatic control of midpoint potentials in the cytochrome subunit of the Rhodopseudomonas viridisreaction center. Proc. Natl. Acad. Sci. USA 88, 9151–9155.

    Article  CAS  Google Scholar 

  53. Antosiewicz, J., McCammon, J. A. and Gilson, M. K. (1994). Prediction of pH-dependent properties in proteins. J. Mol. Biol. 238, 415–436.

    Article  CAS  Google Scholar 

  54. Antosiewicz, J., McCammon, J. A. and Gilson, M. K. (1996). The determinants of pKas in proteins. Biochemistry 35, 7819.

    Article  CAS  Google Scholar 

  55. Beroza, P. and Case, D. (1996). Including side chain flexibility incontinuum electrostatic calculations of protein titration. J. Phys. Chem. 100, 20156–20163.

    Article  CAS  Google Scholar 

  56. You, T. J. and Bashford, D. (1995). Conformation and hydrogen ion titration of proteins: A continuum electrostatic model with conformational flexibility. Biophys. J. 69, 1721–1733.

    Article  CAS  Google Scholar 

  57. Thompson, M. A. and Zerner, M. C. (1991). A theoretical examination of the electronic structure and spectroscopy of the photosynthetic reaction center from Rhodopseudomonas viridis. J. Am. Chem. Soc. 113, 8210–8215.

    Article  CAS  Google Scholar 

  58. Naray-Szabo, G. (1997). J.B.I.C. 2, 135–138.

    CAS  Google Scholar 

  59. Parson, W. W., Chu, Z.-T. and Warshel, A. (1990). Electrostatic control of charge separation in bacterial photosynthesis. Biochim. Biophys. Acta 1017, 251–272.

    Article  CAS  Google Scholar 

  60. Richarz, R. and Wüthrich, K. (1975). Carbon-13 NMR chemical shifts of the common amino acid residues measured in aqueous solutions of the linear tetrapeptides H-Gly-GlyX-L-Ala-OH. Biopolymers 17, 2133–2141.

    Article  Google Scholar 

  61. Harbury, H. A. and Loach, P. A. (1960). Oxidation-linked proton functions in heme octaand undecapeptides from mammalian cytochrome c. J. Biol. Chem. 255, 3640–3645.

    Google Scholar 

  62. Wilson, G. S. (1974). Electrochemical studies of porphyrin redox reactions as cytochromes models. Bioelectrochem. and Bioenerg. 1, 172–179.

    Article  CAS  Google Scholar 

  63. Sitkoff, D., Ben-tal, N. and Honig, B. (1996). Calculation of alkane to water solvation free energies using continuum solvent models. J. Phys. Chem. 100, 2744–2752.

    Article  CAS  Google Scholar 

  64. Gunner, M. R. (1991). The reaction center protein from purple bacteria: Structure and function. Current Topics in Bioenergetics 16, 319–367.

    CAS  Google Scholar 

  65. Rich, P. R. and Bendall, D. S. (1979). A mechanism for the reduction of cytochromes by quinols in solution and its relevance to biological electron transfer reactions. FEBS Leu. 105, 189–194.

    Article  CAS  Google Scholar 

  66. Prince, R. C., Lloyd-Williams, P., Bruce, J. M. and Dutton, P. L. (1986). Voltammetric measurements of quinones. Methods Enzymol. 125, 109–119.

    Article  CAS  Google Scholar 

  67. Warncke, K. and Dutton, P. L. (1993). Influence of QA site cofactor structure on equilibrium binding, In situ electrochemistry, and electron-transfer performance in the photosynthetic reaction center protein. Biochemistry 32, 4769–4779.

    Article  CAS  Google Scholar 

  68. Gunner, M. R., Nicholls, A. and Honig, B. (1996). Electrostatic potentials in Rhopseudomonas viridisreaction center: Implications for the driving force and directionality of electron transfer. J. Phys. Chem. 100, 4277–4291.

    Article  CAS  Google Scholar 

  69. Bockris, J. O. and Reddy, A. K. N. (1973). Modern Electrochemistry,.Plenum, New York.

    Book  Google Scholar 

  70. Rashin, A. A. and Honig, B. (1985). Reevaluation of the Born model of ion hydration. J. Phys. Chem. 89, 5588–5593.

    Article  CAS  Google Scholar 

  71. Kassner, R. J. (1972). Effects of nonpolar environments on the redox potentials of heme complexes. Proc. Natl. Acad. Sci. USA 69, 2263–2267.

    Article  CAS  Google Scholar 

  72. Churg, A. K. and Warshel, A. (1986). Control of the redox potential of cytochrome c and microscopic dielectric effects in proteins. Biochemistry 25, 1675–1681.

    Article  CAS  Google Scholar 

  73. Lancaster, C. R. D., Michel, H., Honig, B. and Gunner, M. R. (1996). The coupling of light-induced electron transfer and proton uptake: Electrostatic calculations on the photosynthetic reaction center of Rhodopseudomonas viridis. Biophys. J. 70, 2469–2492.

    Article  CAS  Google Scholar 

  74. Yang, A.-S., Gunner, M. R., Sampogna, R., Sharp, K. and Honig, B. (1993). On the calculation ofpKa’s in proteins. Proteins 15, 252–265.

    Article  CAS  Google Scholar 

  75. Beroza, P., Fredkin, D. R., Okamura, M. Y. and Feher, G. (1991). Protonation of interacting residues in a protein by a Monte Carlo method: Application to Lysozyme and the photosynthetic reaction center of Rhodobacter sphaeroides. Proc. Natl. Acad. Sci. USA 88, 5804–5808.

    Article  CAS  Google Scholar 

  76. Bashford, D. and Karplus, M. (1990). The pKa’s of ionizable groups in proteins: Atomic detail from a continuum electrostatic model. Biochemistry 29, 10219–10225.

    Article  CAS  Google Scholar 

  77. Ripoll, D. R., Vorobjev, Y. N., Liwo, A., Vila, J. A. and Scheraga, H. A. (1996). Coupling between folding and ionization equilibria: Effects of pH on the conformational preferences of polypeptides. J. Mol. Biol. 264, 770–783.

    Article  CAS  Google Scholar 

  78. Honig, B. (1993). Theory and simulation. Curr. Opin. Struc. Biol. 3, 223–224.

    Article  Google Scholar 

  79. Honig, B. H. and Hubble, W. L. (1984). Stablilty of “salt bridges’ in membrane proteins. Proc. Natl. Acad. Sci. USA 81, 5412–5416.

    Article  CAS  Google Scholar 

  80. Wolfenden, R. (1983). Waterlogged molecules. Science 222, 1087–1093.

    Article  CAS  Google Scholar 

  81. Gunner, M. R., Alexov, E., Torres, E. and Lipovaca, S. (1997). The importance of the protein in controlling the electrochemistry of heme metalloproteins: methods of calculation and analysis. JBIC 2, 126–134.

    Article  CAS  Google Scholar 

  82. Klapper, I., Hagstrom, R., Fine, R., Sharp, K. and Honig, B. (1986). Focusing of electric fields in the active site of Cu-Zn superoxide dismutase: Effects of ionic strength and amino-acid modification. Proteins 1, 47–59.

    Article  CAS  Google Scholar 

  83. Tiede, D. M., Vashishta, A.-C. and Gunner, M. R. (1993). Electron transfer kinetics and electrostatic properties of the Rhodobacter sphaeroidesreaction center and soluble c-cytochromes. Biochemistry 32, 4515–4531.

    Article  CAS  Google Scholar 

  84. Liu, Y. and Newton, M.D. (1995). Solvent Reorganization and Donor/Acceptor Coupling in Electron-Transfer Processes: Self-Consistent Reaction Field Theory and Ab Inition Applications. J. Phys. Chem. 99, 12382–12386

    Article  CAS  Google Scholar 

  85. Sharp, K., Jean-Charles, A. and Honig, B. (1992). A local dielectric constant model for solvation free energies which accounts for solute polarizability. J. Phys. Chem. 96, 3822–3828.

    Article  CAS  Google Scholar 

  86. Berghuis, A. M. and Brayer, G.D. (1992). Oxidation state-dependent conformational changes in cytochrome c. J. Mol. Biol.223, 959–976.

    Article  CAS  Google Scholar 

  87. Nicholls, A., Sharp, K. and Honig, B. (1991). Protein folding and association: Insights from the interfacial and thermodynamics properties of hydrocarbons. Proteins 11, 281.

    Article  CAS  Google Scholar 

  88. Ren, Z. and Meyer, T. (1993). Atomic structure of a cytochrome c’ with an unusual ligand-controlled dimer dissociation at 1. 8 A resolution. J. Mol. Biol. 234, 433–445.

    Article  CAS  Google Scholar 

  89. Deisenhofer, J., Epp, O., Miki, R. and Michel, H. (1985). Structure of the protein subunits in the photosynthetic reaction center of Rhodopseudomonas viridis at3 A resolution. Nature 318, 618–624.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gunner, M.R., Alexov, E. (1997). The Role of the Protein in Modulating Cofactor Electrochemistry in Proteins: The Calculation of Electrostatic Forces. In: Banci, L., Comba, P. (eds) Molecular Modeling and Dynamics of Bioinorganic Systems. NATO ASI Series, vol 41. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5171-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5171-9_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6174-2

  • Online ISBN: 978-94-011-5171-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics