Skip to main content

Part of the book series: NATO ASI Series ((ASHT,volume 41))

Abstract

Metalloenzymes play a major role in many biological processes, including the action of G-proteins (e.g. refs. [1–4]), DNA-polymerases [5–9] and many other biologically important proteins [10]. Elucidating the origin of the catalytic activity of such systems, as well as understanding their detailed mechanism, is of major fundamental and practical importance. Thus, it is not surprising that many proposals have been put forward to explain the role of metals in metalloenzymes and the role of enzymes in general (e.g. ref. [11]). Yet, despite the enormous progress in structural and biochemical studies, it is hard to assess the importance of different catalytic factors based on current experimental information. For example, although mutation experiments are very useful, they only provide circumstantial evidence since they can be interpreted in different ways. In view of these difficulties, it seems clear that any progress in quantitative understanding of enzyme action requires the use of computer aided structure function correlation. This work will address the current state of the art in computer modeling of the action of metalloenzymes and consider some future options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Langen, R.; Schweins, T. and Warshel, A. (1992) On the Mechanism of Guanosine Triphosphate Hydrolysis in ras p21 Proteins. Biochemistry 31, 8691.

    Article  CAS  Google Scholar 

  2. Schweins, T.; Langen, R. and Warshel, A. (1994) Why Have Mutagenesis Studies Not Located the General Base in ras p21. Nat. Struct. Biol. 1, 476.

    Article  CAS  Google Scholar 

  3. Schweins, T. and Warshel, A. (1996) Mechanistic Analysis of the Observed Linear Free Energy Relationships in p21 ras and Related Systems. Biochemistry 35, 14232.

    Article  CAS  Google Scholar 

  4. Schweins, T.; Geyer, M.; Kalbitzer, H. R.; Wittinghofer, A. and Warshel, A. (1996) Linear Free Energy Relationships in the Intrinsic and GTPase Activating Protein-Stimulated Guanosine 5’-Triphosphate Hydrolysis of p21ras. Biochemistry 35, 14225.

    Article  CAS  Google Scholar 

  5. Yarus, M. (1993) How many catalytic RNAs? Ions and the Cheshire cat conjecture. FASEB J. 7, 31.

    CAS  Google Scholar 

  6. Haydock, K. and Allen, L. C. (1985) In Progress in Clinical and Biological Research, R. Rein and A. R. Liss, Ed.; Vol. 172A, pp 87–98.

    Google Scholar 

  7. Steitz, T. A. and Steitz, J. A. (1993) A General Two-Metal-Ion Mechanism for Catalytic RNA. Proc. Natl. Acad. Sci. 90, 6498.

    Article  CAS  Google Scholar 

  8. Beese, L. S. and Steitz, T. A. (1991) Structural Basis for the 3’-5’ Exonuclease Activity of Escherichia coliDNA Polymerase I: A Two Metal Ion Mechanism. EMBO J. 10, 25.

    CAS  Google Scholar 

  9. Fothergill, M.; Goodman, M. F.; Petruska, J. and Warshel, A. (1995) Structure-Energy Analysis of the Role of Metal Ions in Phosphodiester Bond Hydrolysis by DNA Polymerase I. J. Am. Chem. Soc. 117, 11619.

    Article  CAS  Google Scholar 

  10. Lipscomb, W. N. and Sträter, N. (1996) Recent Advances in Zinc Enzymology. Chem. Rev. 96, 2375–2433.

    Article  CAS  Google Scholar 

  11. Page, M. I. (1977) Entropy, Binding Energy, and Enzymic Catalysis. Angew. Chem. Int. Ed. Engl. 16, 449–459.

    Article  Google Scholar 

  12. Warshel, A. and Levitt, M. (1976) Theoretical Studies of Enzymatic Reactions. I. Dielectric Electrostatic and Steric Stabilization of the Carbonium Ion in the Reaction of Lysozyme. J. Mol. Biol. 103, 227.

    Article  CAS  Google Scholar 

  13. Luzhkov, V. and Warshel, A. (1991) Microscopic Calculations of Solvent Effects on Absorption Spectra of Conjugated Molecules. J. Am. Chem. Soc. 113, 4491.

    Article  CAS  Google Scholar 

  14. Gao, J. (1995) Reviews in Computational Chemistry; VCH: New York; Vol. 7, pp 119–185.

    Google Scholar 

  15. Mulholland, A.J.; Grant, G.H. and Richards, W.G. (1993) Computer Modelling of Enzyme Catalysed Reaction Mechanisms. Prot. Eng. 6, 133–147.

    Article  CAS  Google Scholar 

  16. Hartsough, D.S. and K.M. Merz, Jr. (1995) Dynamic Force Field Models: Molecular Dynamics Simulations of Human Carbonic Anhydrase Il Using a Quantum Mechanical/Molecular Mechanical Coupled Potential. J. Phys. Chem. 99, 11266–11275.

    Article  CAS  Google Scholar 

  17. Thompson, M. A. and Schenter, G. K. (1995) Excited States of the Bacteriochlorophyll bDimer of Rhodopsuedomonas viridis: A QM/MM Study of the Photosynthetic Reaction Center That Includes MM Polarization. J. Phys. Chem. 99, 6374.

    Article  CAS  Google Scholar 

  18. Muller, R. P. and Warshel, A. (1995) Ab initio Calculations of Free Energy Barriers for Chemical Reactions in Solution. J. Phys. Chem. 99, 17516.

    Article  CAS  Google Scholar 

  19. Bash, P. A.; Field, M. J. and Karplus, M. (1987) Free Energy Perturbation Method For Chemical Reactions in the Condensed Phase: A Dynamical Approach Based on a Combined Quantum and Molecular Mechanics Potential. J. Am. Chem. Soc. 109, 8092.

    Article  CAS  Google Scholar 

  20. Warshel, A. (1991) Computer Modeling of Chemical Reactions in Enzymes and Solutions; John Wiley & Sons: New York.

    Google Scholar 

  21. Hwang, J.-K.; King, G.; Creighton, S. and Warshel, A. (1988) Simulation of Free Energy Relationships and Dynamics of SN2 Reactions in Aqueous Solution. J. Am. Chem. Soc. 110, 5297.

    Article  CAS  Google Scholar 

  22. Aqvist, J. and Warshel, A. (1993) Simulation of Enzyme Reactions Using Valence Bond Force Fields and Other Hybrid Quantum/Classical Approaches. Chem. Rev. 93, 2523.

    Article  Google Scholar 

  23. Cooper, D. L.; Gerratt, J. and Raimondi, M. (1986) The Electronic Structure of the Benzene Molecule. Nature 323, 699.

    Article  CAS  Google Scholar 

  24. Bernardi, F.; Olivucci, M.; McDouall, J. J. W. and Robb, M. A. (1988) Parametrization of a Heitler-London Valence Bond Hamiltonian from Complete-Active-Space Self-Consistent-Field Computations: An Application to Chemical Reactivity. J. Chem. Phys. 89, 6365.

    Article  CAS  Google Scholar 

  25. Chang, Y.-T. and Miller, W. H. (1990) An Empirical Valence Bond Model for Constructing Global Potential Energy Surfaces for Chemical Reactions of Polyatomic Molecular Systems. J. Phys. Chem. 94, 5884.

    Article  CAS  Google Scholar 

  26. Bala, P.; Grochowski, P.; Lesyng, B. and McCammon, J.A. (1996) Quantum-Classical Molecular Dynamics Simulations of Proton-Transfer Processes in Molecular-Complexes and in Enzymes. J. Phys. Chem. 100, 2535.

    Article  CAS  Google Scholar 

  27. Aqvist, J.; Warshel, A. (1992) Computer Simulation of the Initial Proton Transfer Step in Human Carbonic Anhydrase I. J. Mol. Biol. 224, 7.

    Article  CAS  Google Scholar 

  28. Lobaugh, J. and Voth, G.A. (1996) The Quantum Dynamics of an Excess Proton in Water. J. Chem. Phys. 104, 2056–2069.

    Article  CAS  Google Scholar 

  29. Bursulaya, B.D.; Zichi, D.A. and Kim, H.J. (1996) Molecular Dynamics Simulation Study of Polarizable Solute Solvation in Water. I. Equilibrium Solvent Structure and Solute Rotational Dynamics. J. Phys. Chem 100, 1392–1405.

    Article  CAS  Google Scholar 

  30. Aqvist, J. and Warshel, A. (1990) Free Energy Relationships in Metalloenzyme-Catalyzed Reactions. Calculations of the Effects of Metal Ion Substitutions in Staphylococcal Nuclease. J. Am. Chem. Soc. 112, 2860.

    Article  Google Scholar 

  31. Hwang, J-K. and Warshel, A. (1996) How Important are Quantum Mechnical Nuclear Motions in Enzyme Catalysis? J. Am. Chem. Soc. 118, 11745.

    Article  CAS  Google Scholar 

  32. Aqvist, J. and Warshel, A. (1989) Calculation of Free Energy Profiles for the Staphylococcal Nuclease Catalyzed Reaction. Biochemistry 28, 4680.

    Article  CAS  Google Scholar 

  33. Aqvist, J.; Fothergill, M. and Warshel, A. (1993) Computer Simulation of the CO2/HCO- 3 Interconversion Step in Human Carbonic Anhydrase I. J. Am. Chem. Soc. 115, 631.

    Article  Google Scholar 

  34. Liang, J.-Y. and Lipscomb, W. N. (1990) Proc. Natl. Acad. Sci. USA 87, 3675.

    Article  CAS  Google Scholar 

  35. Soli, M.; Lledös, A.; Duran, M. and Bertràn, J. (1991) J. Am. Chem. Soc. 114, 869.

    Article  Google Scholar 

  36. Krauss, M. and Garmer, D. R. (1991) Active Site Tonicity and the Mechanism of Carbonic Anhydrase. J. Am. Chem. Soc. 113, 6426.

    Article  CAS  Google Scholar 

  37. Schweins, T.; Scheffzek, K.; Abheuer, R. and Wittinghofer, A. (1997) The role of the Metal Ion in the p21ras Catalyzed GTP-Hydrolysis: Mn2+ versus Mg2+. J. Mol. Biol. In press.

    Google Scholar 

  38. Sondek, J.; Lambright, D. G.; Noel, J. P.; Hamm, H. E. and Sigler, P. B. (1994) GTPase Mechanism of G proteins from the 1.7 A Crystal Structure of Transducin a-GDP-AIF4. Nature 372, 276–279.

    Article  CAS  Google Scholar 

  39. Muegge, I.; Schweins, T.; Langen, R. and Warshel, A. (1996) Electrostatic Control of GTP and GDP Binding in the Oncoprotein p21 ras. Structure 4, 475.

    Article  CAS  Google Scholar 

  40. Nakagawa, S.; Umeyama, H.; Kitaura and Morokuma, K. (1981) Chem. Pharm. Bull. 29, 1.

    Article  CAS  Google Scholar 

  41. Osman, R. and Basch, H. (1984) J. Am. Chem. Soc. 106, 5710.

    Article  CAS  Google Scholar 

  42. Waszkowycz, B.; Hillier, I. H.; Gensmantel, N. and Payling, D. W. (1991) J. Chem. Soc. Perkin Trans. 2, 1259.

    Google Scholar 

  43. Naray-Szabo, G.; Fuxreiter, M. and Warshel, A. (in press) In Approaches to Biochemical Reactivity, A. Warshel and G. Naray-Szabo, Ed.; Kluwer Academic Publishers.

    Google Scholar 

  44. Wesolowski, T. and Warshel, A. (1994) Ab InitioFree Energy Perturbation Calculations of Solvation Free Energy Using the Frozen Density Functional Approach. J. Phys. Chem. 98, 5183.

    Article  CAS  Google Scholar 

  45. Wesolowski, T.; Muller, R. P. and Warshel, A. (1996) Ab InitioFrozen Density Functional Calculations of Proton Transfer Reactions in Solution. J. Phys. Chem. 100, 15444.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Warshel, A. (1997). Computer Simulations of the Action of Metalloenzymes. In: Banci, L., Comba, P. (eds) Molecular Modeling and Dynamics of Bioinorganic Systems. NATO ASI Series, vol 41. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5171-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5171-9_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6174-2

  • Online ISBN: 978-94-011-5171-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics