Normal Mode Analysis of Proteins to Interpret Resonant and Inelastic Scattering of γ Quanta

  • Ernst Walter Knapp
  • Bernd Melchers
  • Fritz Parak
Part of the NATO ASI Series book series (ASHT, volume 41)


Information on structural fluctuations in proteins can be obtained from the B-factors of X-ray structure analysis [1,2], NMR spectroscopy [3,4], inelastic neutron scattering [5,6], and Rayleigh scattering of Mössbauer radiation (RSMR) [7,8]. For iron containing proteins Mössbauer spectra [9–12] can also be used. Specific information on different local conformations in proteins can also be gained from measurements of IR [13,14] and UV-VIS [15,16] as well as resonance Raman spectra [17]. Recently, a new method namely inelastic X-ray scattering with high energy resolution became available [18,19]. The first application of this method to a biological sample was with myoglobin [20].


Iron Atom Normal Mode Analysis Recoil Energy Time Correlation Function Mossbauer Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Frauenfelder H., Petsko, G.A., Tsemoglou, D. (1979) Temperature-dependent X-ray diffraction as a probe of protein structural dynamics, Nature 280, 558–563.CrossRefGoogle Scholar
  2. 2.
    Frauenfelder H., Parak, F., Young, R.D. (1988) Conformational substates in proteins, Ann. Rev. Biophys. Chem. 17, 451–479.CrossRefGoogle Scholar
  3. 3.
    Wtithrich, K. (1989) Protein structure determination in solution by nuclear magnetic resonance spectroscopy, Science 243, 45–50.CrossRefGoogle Scholar
  4. 4.
    Palmer III., A.G., Rance, M., Wright, P.E. (1991) Intramolecular motions of a zinc forger DNA-binding domain from Xfm characterized by proton-detected natural abundance 13C heteronuclear NMR spectroscopy, J. Am. Chem. Soc. 113, 4371–4380.CrossRefGoogle Scholar
  5. 5.
    Doster, W., Cusack, S., Petry, W. (1989) Dynamical transition of myoglobin revealed by inelastic neutron scattering, Nature 337, 754–756.CrossRefGoogle Scholar
  6. 6.
    Bellissent-Funel, M.-C., Lal, J., Bradley, K.F., Chen, S.H. (1993) Neutron structure factors of in-vivo deuterated amorphous protein C-phycocyanin, Biophys. J. 64, 1542–1549.CrossRefGoogle Scholar
  7. 7.
    Albanese, G., Deriu, A. (1979) High energy resolution X-ray spectroscopy, Rivista del nuovo cimento 2, 1–40.CrossRefGoogle Scholar
  8. 8.
    Nienhaus, G.U., Heinzl, J., Huenges, E., Parak, F. (1989) Protein crystal dynamics studied by time-resolved analysis of X-ray diffuse scattering, Nature 338, 665–666.CrossRefGoogle Scholar
  9. 9.
    Parak, F., Knapp, E.W., Kucheida, D. (1982) Protein dynamics: Mössbauer spectroscopy on deoxymyoglobin crystals, J. Mol. Biol. 16, 177–194.CrossRefGoogle Scholar
  10. 10.
    Knapp, E.W., Parak, F., Fischer, S.F. (1982) The influence of protein dynamics on Mössbauer spectra, J. Chem. Phys. 78, 4701–7411.CrossRefGoogle Scholar
  11. 11.
    Knapp, E.W., Fischer, S.F., Parak, F. (1982) Protein dynamics from Mössbauer spectra. The temperature dependence, J. Phys. Chem. 86, 5042–5047.CrossRefGoogle Scholar
  12. 12.
    Parak, F., Heidemeier, J., Nienhaus, G.U. (1988) Protein structural dynamics as determined by Mössbauer spectroscopy, Hypedine Interactions 40, 147–158.CrossRefGoogle Scholar
  13. 13.
    Krimm, S. Bandekar, J. (1986) Vibrational spectroscopy and conformation of peptides, polypeptides and proteins, Advan. Protein Chem. 38, 181–364.CrossRefGoogle Scholar
  14. 14.
    Gerwert, K. (1993) Molecular reaction mechanisms of proteins as monitored by time-resolved FTIR spectroscopy, Current Opinion in Struct. Biol. 3, 769–773.CrossRefGoogle Scholar
  15. 15.
    Srajer, V., Champion, P.M. (1991) Investigations of optical line shapes and kinetic hole burning in myoglobin, Biochem. 30, 7390–7402.CrossRefGoogle Scholar
  16. 16.
    Leone, M., Cupane, A., Militello, V., Cordone, L (1994) Thermal broadening of Soret band in heme complexes and in heme-proteins: role of the iron dynamics, Eur. Biophys. J. 23, 349–352.CrossRefGoogle Scholar
  17. 17.
    Chen, X.G., Asher, S.A., Schweitzer-Stenner, R., Mirkin, N.G., Krimm, S. (1995) UV Raman determination of the irrr’excited state geometry of N-methylacetamide: vibrational enhancement pattern, J. Am. Chem. Soc, 117, 2884–2895.CrossRefGoogle Scholar
  18. 18.
    Baron, A.Q.R., (1995) Report on the X-ray efficiency and time response of a 1 cm2 reach through avalanche diode, Nucl. Instr. Meth. A 352, 665–667.CrossRefGoogle Scholar
  19. 19.
    Chumakov, A., Baron, A.Q.R., Ruffer, R., Grünsteudel, H., Grünsteudel, H.F., Meyer, A. (1996) Nuclear resonance energy analysis of inelastic X-ray scattering, Phys. Rev. Lett. 76, 4257–4260.CrossRefGoogle Scholar
  20. 20.
    Achterhold, K. Keppler, C., van Bürck, U., Potzel, W., Schindelmann, P., Knapp, E.W., Melchers, B., Chumakov, A.I., Baron, A.Q.R., Raffer, R., Parak, F. (1996) Temperature dependent inelastic X-ray scattering of synchrotron radiation on myoglobin analyzed by the Mössbauer effect, Eur. Biophys. J. 25, 43–46.CrossRefGoogle Scholar
  21. 21.
    Daggett, V., Levitt, M. (1993) Realistic simulations of native-protein dynamics in solution and beyond, Annu. Rev. Biophys. Biomol. Struct. 22, 353–380.CrossRefGoogle Scholar
  22. 22.
    York, D.M., Wlodawer, A., Pedersen, L.G., Darden, T.A. (1994) Atomic-level accuracy in simulations of large protein crystals, Proc. Natl. Acad. Sci. USA 91, 8715–8718.CrossRefGoogle Scholar
  23. 23.
    Parak, F., Knapp, E.W. (1984) A consistent picture of protein dynamics, Proc. Natl. Acad. Sci. USA 81, 7088–7092.CrossRefGoogle Scholar
  24. 24.
    Hartmann, H. Parak, F., Steigemann W., Petsko, G.A., Ringe Ponzi, D. Frauenfelder, H. (1982) Conformational substates in a protein; structure and dynamics of metmyoglobin at 80 K., Proc Natl. Acad. Sci. USA 79, 4967–4971.CrossRefGoogle Scholar
  25. 25.
    Parak, F., Hartmann, H., Aumann, K.D., Reusher, H. Rennekamp, G., Bartunik, H., Steige-mann, W. (1987) Low temperature X-ray investigation of structural distributions in myoglobin, Eur. Biophys. J. 15, 237–249.CrossRefGoogle Scholar
  26. 26.
    Hartmann, H., Zinser, S., Komninos, P., Schneider, R.T., Nienhaus, G.U., Parak, F. (1996) X-ray structure determination of a metastable state of carbonmonoxy myoglobin after photodissociation, Proc. Natl. Acad. Sci. USA, 93, 7013–7016.CrossRefGoogle Scholar
  27. 27.
    Lonarich, R.J., Brooks, B.R., (1990) Temperature dependence of dynamics of hydrated myoglobin J. Mol. Biol. 215, 439–455.CrossRefGoogle Scholar
  28. 28.
    MacKerell, Jr. A.D., Nilsson, L., Rigler, R., Heinemann, U. Saenger, W. (1989) Molecular dynamics simulations of ribonuclease Ti: comparison of the free enzyme and the 2’ GMPenzyme complex, Proteins: Structure, Function and Genetics 6, 20–31.CrossRefGoogle Scholar
  29. 29.
    Melchers, B., Knapp, E.W., Parak, F., Cordone, L., Cupane, A., Leone, M. (1996) Structural fluctuations of myoglobin from normal modes, Mössbauer, Raman, and absorption spectroscopy, Biophys. J. 70, 2092–2099.CrossRefGoogle Scholar
  30. 30.
    Singwi, K.S., Sjölander, A. (1960) Resonance absorption of nuclear Y-rays and the dynamics of atomic motions, Phys. Review 120, 1093–1102.CrossRefGoogle Scholar
  31. 31.
    Mössbauer, R.L. (1976) Debye Waller factors and Lamb factors in the scattering of X-rays, Y-rays and thermal neutrons, Journal de Physique 37, 11–13.Google Scholar
  32. 32.
    Mössbauer, R.L. (1959) Kernresonanzabsorption von y-Strahlung in Ir191, Z. Naturforsch. 14a, 211–116.Google Scholar
  33. 33.
    Wilson, Jr. E.B., Decius, J.C., Cross, P.C. (1955) Molecular vibrations. The theory of infrared and Raman vibrational spectra, Dover Publ., Inc., N.Y.Google Scholar
  34. 34.
    Case, D.A. (1994) Normal mode analysis of protein dynamics, Current Opinion in Struct. Biol. 4, 285–290CrossRefGoogle Scholar
  35. 35.
    Levy, R.M. Karplus M., Kushick, J., Perahia, D. (1984) Evaluation of the configurational entropy for proteins: Application to molecular dynamics simulations of an a-helix, Macromolecules 17, 1370–1374.CrossRefGoogle Scholar
  36. 36.
    Teeter, M.M. Case, D.A. (1990) Harmonic and quasiharmonic dynamics of crambin, J. Phys. Chem. 94, 8091–8097.CrossRefGoogle Scholar
  37. 37.
    Jorgensen, W.L. Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L. (1983) Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79, 926–935.CrossRefGoogle Scholar
  38. 38.
    Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J. Swaminathan, S., and Karplus, M. (1983) CHARMM: A program for macromolecular energy, minimization, and dynamics calculations, J. Comp. Chem. 4, 187–217.CrossRefGoogle Scholar
  39. 39.
    Smith, B.T., Boyle, J.M., Dongarra, J.J., Garbow, B.S., Ikebe, Y., Klema, V.C., Moler, C.B. (1976) in Goos, G., Hartmanis, J. (eds.) Matrix Eigensystem Routines-EISPACK guide, Springer Verlag.Google Scholar
  40. 40.
    Kubo R. (1961) A stochastic theory of line-shape and relaxation, in Haar D. Ter (ed.), Fluctuation, relaxation and resonance in magnetic systems, Plenum Press, N.Y., pp. 23–68.Google Scholar
  41. 41.
    Nienhaus, G.U., Frauenfelder, H., Parak, F. (1991) Structural fluctuations in glass-forming liquids: Mössbauer spectroscopy on iron in glycerol, Phys. Rev. B 43, 3345–3350.CrossRefGoogle Scholar
  42. 42.
    Shaitan, KV. Rubin A.B. (1981) Theory of Mössbauer effects in proteins, Soy. Biophys., 25, 809ff.Google Scholar
  43. 43.
    Nowik, I., Cohen, S.G., Bauminger, E.R., Ofer, S. (1983) Mössbauer absorption in over-damped harmonically bound particles in Brownian motion, Phys. Rev. Lett. 50, 1528–1531.CrossRefGoogle Scholar
  44. 44.
    Uhlenbeck, G.E., Ornstein, L.S. (1930) On the theory of the Brownian motion, Phys. Rev. 36, 823–841.CrossRefGoogle Scholar
  45. 45.
    Chandrasekhar, S., (1943) Stochastic problems in physics and astronomy, Rev. Mod. Phys. 15, 1–87.CrossRefGoogle Scholar
  46. 46.
    Lipkin, H.J. (1962) Some simple features of the Mössbauer effect, Ann. Phys. 18, 182–197.CrossRefGoogle Scholar
  47. 47.
    Knapp, E.W., Fischer, S.F. (1981) On the theory of homogeneous and inhomogeneous line broadening. An exactly solvable model, J: Chem. Phys. 74, 89–95.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • Ernst Walter Knapp
    • 1
  • Bernd Melchers
    • 1
  • Fritz Parak
    • 2
  1. 1.Fachbereich Chemie Institut für KristallographieFreie Universität BerlinGermany
  2. 2.Fakultät für Physik El7Technische Universität MünchenGarchingGermany

Personalised recommendations