Ab Initio and Density Functional Theory Applied to Models for the Oxo-Transfer Reaction of Dioxomolybdenum Enzymes

  • Snežana Zarić
  • Michael B. Hall
Part of the NATO ASI Series book series (ASHT, volume 41)


Molybdenum oxotransferases catalyze the transfer of an oxygen atom to and from a substrate. In the active site of these enzymes molybdenum is surrounded with one or two oxo groups and two or three sulfur groups [1]. Additional oxygen or nitrogen ligands may be present [1]. Based upon the known physical and chemical properties of the oxotransferases a minimal catalytic cycle is shown in Scheme 1 [2].


Catalytic Cycle Geometrical Data Sulfite Oxidase Experimental Model System Bulky Ligand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Holm, R.H. (1990) The biologically relevant oxygen atom transfer chemistry of molybdenum: from synthetic analogue systems to enzymes, Coord. Chem. Rev. 110, 183–221CrossRefGoogle Scholar
  2. 2.
    Xiao, Z.; Young, C. G.; Enemark, J. H.; Wedd, A. G. (1992) A single model displaying all the important centers and processes involved in catalysis by molybdoenzymes containing [MoVIO]2+active sites J. Am. Chem. Soc. 144, 9194–9195.CrossRefGoogle Scholar
  3. 3.
    Roberts, S. A.; Young, C. G.; Cleland, Jr. W. E.; Ortega, R. B.; and Enemark, J. H. (1988) Synthesis, characterization, and oxygen atom transfer reaction of {HB(Me2C3N2H)3}MoO{S2P(OR)2} and {HB(Me2C3N2H)3}MoO21—S2P(OEt)2}, Inorg. Chem. 27, 3044–3051.CrossRefGoogle Scholar
  4. 4.
    Harlan, E. W.; Berg, J. M.; and Holm, R. H. (1986) Thermodynamic fitness of molybdenum(IV,VI) complexes for oxygen atom transfer reactions, including those with enzymatic substrates, J. Am. Chem. Soc. 108, 6992–7000.CrossRefGoogle Scholar
  5. 5.
    Gheller, S. F.; Schultz, B. E.; Scott, M. J.; Holm, R. H. (1992) A broad-substrate analogue reaction system of the molybdenum oxotransferases, J. Am. Chem. Soc. 114, 6934–6935.CrossRefGoogle Scholar
  6. 6.
    Schultz, B. E. and Holm, R. H. (1993) Kinetics of oxygen atom transfer in an analogue reaction system of the molybdenum oxotransferases, Inorg. Chem. 32, 4244–4248.CrossRefGoogle Scholar
  7. 7.
    Schultz, B. E.; Gheller, S. F.; Muetterties, M. C.; Scott, M. J.; and Holm, R. H. (1993) Molybdenum-mediated oxygen atom transfer: an improved analogue reaction system of molybdenum oxotransferases, J. Am. Chem. Soc. 115, 2714–2722.CrossRefGoogle Scholar
  8. 8.
    Xiao, Z.; Bruck, M. A.; Doyle, C.; Enemark, J. H.; Grittini, C.; Gable, R. W.; Wedd, A. G.; and Young, C. G. (1995) Dioxomolybdenum(VI) complexes of tripodal nitrogen-donor ligands: syntheses and spectroscopic, structural, and electrochemical studies, including the generation of EPR-active molybdenum(V) species in solution, Inorg. Chem. 34, 5950–5962.CrossRefGoogle Scholar
  9. 9.
    Oku, H.; Ueyama, N.; Kondo, M.; and Nakamura, A. (1994) Oxygen atom transfer systems in which the (p-oxo)dimolybdenum(V) complex formation does not occur: syntheses, structures, and reactivities of monooxomolybdenum(IV) benzenedithiolato complexes as models of molybdenum oxidoreductases, Inorg. Chem. 33, 209–216.CrossRefGoogle Scholar
  10. 10.
    Enemark, J. H. and Young, C. G. (1993) Bioinorganic chemistry of pterin-containing molybdenum and tungsten enzymes, Adv. Inorg. Chem. 40, 1–88.CrossRefGoogle Scholar
  11. 11.
    Holm, R. H. (1987) Metal-centered oxygen atom transfer reactions, Chem. Rev. 87, 1401–1449.CrossRefGoogle Scholar
  12. 12.
    Holm, R. H. and Berg, J. M. (1986) Toward functional models of metalloenzyme active sites: analogue reaction systems of the molybdenum oxo transferases, Acc. Chem. Res. 19, 363–370.CrossRefGoogle Scholar
  13. 13.
    Das, S. K.; Chaudahury, P. K.; Biswas, D.; Sarkar, S. (1994) Modeling for the active site of sulfite oxidase: synthesis, characterization, and reactivity of [MoVIO2(mnt)2]2-(mnt2-= 1,2-dicyanoethylenedithiolate), J. Am. Chem. Soc. 116, 9061–9070.CrossRefGoogle Scholar
  14. 14.
    Barbaro, P.; Bianchini, C.; Scapacci, G.; Masi, D.; and Zanello, P. (1994) Dioxomolybdenum(VI) complexes stabilized by polydentate ligands with NO3, N2O2, and NS2 donor-atom sets, Inorg. Chem. 33, 3180–3186.CrossRefGoogle Scholar
  15. 15.
    Caradonna, J. P.; Reddy, P. R.; Holm, R. H. (1988) Kinetics, mechanisms, and catalysis of oxygen atom transfer reaction of S-oxide and pyridine N-oxide substrates with molybdenum(IV,VI) complexes: relevance to molybdoenzymes, J. Am. Chem.Soc. 110, 2139 2144.CrossRefGoogle Scholar
  16. 16.
    Arzoumanian, H.; Lopez, R.; and Agrifoglio, G. (1994) Synthesis and X-ray characterization of tetraphenylphosphonium tetrathiocyanatodioxomolybdate(VI): a remarkable oxo transfer agent, Inorg. Chem. 33, 3177–3179.CrossRefGoogle Scholar
  17. 17.
    Kusthardt, U.; Albach, R. W. and Kiprof, P. (1993) New insights into the electrochemistry of molybdenum(VI) dioxo complexes containing a tetradentate S2(NH)2-Type ligand, Inorg. Chem. 32, 1838–1843.CrossRefGoogle Scholar
  18. 18.
    Eagle, A. A.; Laughlin, L. J.; Young, C. G.; Tiekink, E. R. T. (1992) An oxothiomolybdenum(VI) complex stabilized by an intramolecular sulfur-sulfur interaction: implications for the active site of oxidized xanthine oxidase and related enzymes, J. Am. Chem. Soc. 114, 9195–9197.CrossRefGoogle Scholar
  19. 19.
    Oku, H.; Ueyama, N.; and Nakamura, A. (1995) Thiolato-activated oxo-metal bond features in molybdenum and tungsten oxidoreductase models as revealed by raman spectroscopy, Inorg. Chem. 34, 3667–3676.CrossRefGoogle Scholar
  20. 20.
    Craig, J. A.; Harlan, E. W.; Snyder, B. S.; Whitener, M. A.; and Holm, R. H. (1989) Oxomolybdenum(IV,V,VI) complexes: structures, reactivities, and criteria of detection of binuclear (µ-oxo)molybdenum(V) products in oxygen atom transfer systems, Inorg. Chem. 28, 2082–2091.CrossRefGoogle Scholar
  21. 21.
    Cervilla, A.; Corma, A.; Fomes, V.; Llopis, E.; Perez, F.; Rey, F.; and Ribera, A. (1995) Model reactions of molybdo-reductase. A novel and highly efficient reduction of nitrobenzene to aniline catalyzed by a molybdenum-mediated oxygen atom transfer reaction, J Am. Chem.Soc. 117, 6781–6782.CrossRefGoogle Scholar
  22. 22.
    Laughlin, L. J. and Young, C. G. (1996) Oxygen atom transfer, coupled electron-proton transfer, and correlated electron-nucleophile transfer reactions of oxomolybdenum(IV) and dioxomolybdenum(VI) complexes, Inorg. Chem. 35, 1050–1058.CrossRefGoogle Scholar
  23. 23.
    Dhawan, I. K.; Pacheco, A.; and Enemark, H. (1994) Structural and Spectroscopic characterization of a monooxomono(dithiolene)molybdenum(V) compound and its implications for the low pH form of sulfite oxidase, J. Am. Chem. Soc. 116, 7911–7912.CrossRefGoogle Scholar
  24. 24.
    Rappé, A. K. and Goddard, W. A. III (1982) Hydrocarbon oxidation by high-valent group 6 oxides, J. Am. Chem. Soc. 104, 3287–3294.CrossRefGoogle Scholar
  25. 25.
    Peng G., Nichols, J., McCullough, E. A. Jr., and Spence, J. T. (1994) Models for the molybdenum(VIN) centers of the molybdenum hydroxylases and related enzymes. Geometry, electronic structure, and EPR g-tenzor predictions from ab initio and semiempirical molecular orbital studies, Inorg. Chem. 33, 2857–2864.CrossRefGoogle Scholar
  26. 26.
    Hay, P. J. and Wadt, W. R. (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals, J Chem. Phys. 82, 299–310.CrossRefGoogle Scholar
  27. 27.
    Stevens, W. J.; Basch, H.; and Krauss (1984) Compact effective potentials and efficient shared-exponent basis sets for the first-and second-row atoms, J Chem. Phys. 81, 6026–6034.CrossRefGoogle Scholar
  28. 28.
    Huzinaga, S.; Andzelm, J.; Klobukowski, M.; Radzio-Andzelm, E; Sakai, Y.; Tatewaki, H. (1984) Gaussian Basis Sets for Molecular Calculations, Elsevier, Amsterdam.Google Scholar
  29. 29.
    Pietsch, M. A.; Couty, M.; and Hall, M. B. (1995) Comparison of Moller-Plesset perturbation methods, complete active space self-consistent field theory, and a new generalized molecular orbital method for oxygen atom transfer from a molybdenum complex to a phosphine, J. Phys. Chem. 99, 16315–16319.CrossRefGoogle Scholar
  30. 30.
    Couty, M. and Hall, M. B. (1996) Basis sets for transition metals: optimized outer p functions J. Comp. Chem. 17, 1359–1370.CrossRefGoogle Scholar
  31. 31.
    Strout, D. L.; Zaric, S.; Niu, S.; and Hall, M. B. (1996) Methane metathesis at a cationic iridium center, J. Am. Chem. Soc. 118, 6068–6069.CrossRefGoogle Scholar
  32. 32.
    Zaric, S. and Hall, M. B. (1997) Ab initio calculations of the geometry and bonding energies of alkanes and fluoroalkanes complexes with tungsten pentacarbonyl, J. Phys. Chem.,submittedGoogle Scholar
  33. 33.
    Zaric, S.; Couty, M.; and Hall, M. B. (1997) Ab initio calculations of the geometry and vibrational frequencies of the triplet state of tungsten pentacarbonyl amine: a model for the unification of the preresonance raman and the time-resolved infrared experiments, J Am. Chem. Soc. 119, 2885–2888.CrossRefGoogle Scholar
  34. 34.
    Dupuis, M.; Spangler, D.; Wendolowski, J. (1993) NRCC Software Catalog; Vol.1, Program No. QGO1 (GAMESS). Guest, M.F.; Fantucci, P.; Harrison, R.J.; Kendrick, J.; van Lenthe, J. H.; Schoeffel, K.; Sherwood, P. GAMESS-UK; CSF Ltd.Google Scholar
  35. 35.
    Gaussian 92 Frisch, M. J.; Trucks, G. W.; Head-Gordon, M.; Gill, P. M. W.; Wong, M. W.; Foresman, J. B.; Johnson, B. G.; Schlegel, H. B.; Robb, M. A.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Martin, R. L.; Fox, D. G.; Defrees, D. J.; Baker, J.; Stewart, J. P.; and Pople, J. A. (1992) Gaussian, Inc., Pittsburgh, PA.Google Scholar
  36. 36.
    Gaussian 94 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B., Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. G.; Binkley, J. S.; Defrees, D. J.; Bajer, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; and Pople, J. A. (1995) Gaussian, Inc., Pittsburgh, PAGoogle Scholar
  37. 37.
    Couty, M. and Hall, M. B. (1997) Generalized molecular orbital theory II (GMO2), J. Phys. Chem. in press.Google Scholar
  38. 38.
    Holm, R.H. and Donahue, J. P. (1993) A thermodynamic scale for oxygen atom transfer reaction, Polyhedron 12, 571–589CrossRefGoogle Scholar
  39. 39.
    Bartell, L. S. and Brockway, L. O. (1960) Electron diffraction study of the structure of trimethylphosphine, J. Chem. Phys. 32, 512–515.CrossRefGoogle Scholar
  40. 40.
    Wilkins, C. J.; Hagen, K.; Hedberg, L.; Shen, Q.; and Hedberg, K. (1975) An electron diffraction investigation of the molecular structures of gaseous trimethylphosphine oxide, trimethylphosphine sulfide, trimethylarsine oxide, and trimethylarsine sulfide, J. Am. Chem.Soc. 97, 6352–6358.CrossRefGoogle Scholar
  41. 41.
    Pietsch, M. A. and Hall, M. B. (1996) Theoretical studies on models for the oxo-transfer reaction of dioxomolybdenum enzymes, Inorg. Chem. 35, 1273–1278.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • Snežana Zarić
    • 1
  • Michael B. Hall
    • 2
  1. 1.Department of ChemistryUniversity of BelgradeBelgradeYugoslavia
  2. 2.Department of ChemistryTexas A & M UniversityUSA

Personalised recommendations