Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 512))

  • 308 Accesses

Abstract

Specific rates and activation parameters of electron transfer processes were determined for two types of copper-containing proteins which serve as model systems for resolving the role of the polypeptide matrix in these processes. In azurins which are well characterized blue single copper proteins predominantly consisting of a β-sheet polypeptide matrix, the above parameters were determined for the intramolecular long range electron transfer between the pulse radiolytically generated disulphide radical-anions and the copper(II) centre, as a function of driving force and nature of the separating medium in 19 different wild type and single site mutated proteins. The internal ET from the type-1 Cu(I) to the trinuclear Cu(II) centre of ascorbate oxidase is part of this enzyme’s catalytic cycle. We investigated the temperature and pH dependence of this process. Results obtained from studies of both types of proteins correlate with a model based on electron transfer proceeding through well defined pathways using a through-bond tunneling mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beratan D.N., Onuchic J.N., Winkler J.R., Gray H.B. (1992) Science 258, 1740–1741

    Article  CAS  Google Scholar 

  2. Moser C.C., Keske J.M., Warncke K., Farid R.S., Dutton P.L. (1992) Nature 355, 796–802

    Article  CAS  Google Scholar 

  3. Farid R.S., Moser C.C., Dutton P.L. (1993) Curr. Opin. Struct. Biol. 3, 225–233

    Article  CAS  Google Scholar 

  4. Siddarth P., Marcus R.A. (1993) J. Phys. Chem. 97, 13078–13082

    Article  CAS  Google Scholar 

  5. Gray H.B., Winkler J.R. (1996) Ann. Rev. Biochem. 65, 537–561

    Article  CAS  Google Scholar 

  6. Farver O., Pecht I. (1989) Proc. Natl. Acad. Sci. USA 86, 6968–6972

    Article  CAS  Google Scholar 

  7. Farver O., Pecht I. (1992) J. Am. Chem. Soc. 114, 5764–5767

    Article  CAS  Google Scholar 

  8. Farver O., Skov L.K., van de Kamp M., Canters G.W., Pecht L (1992) Eur. J. Biochem. 210, 399–403

    Article  CAS  Google Scholar 

  9. Farver O., Skov L.K., Pascher T., Karlsson B.G., Nordling M., Lundberg L.G., Vänngård T., Pecht, I. (1993) Biochemistry 32, 7317–7322

    Article  CAS  Google Scholar 

  10. Farver O., Skov L.K., Gilardi G., van Pouderoyen G., Canters G.W., Wherland S., Pecht I. (1996) Chem. Phys. 204, 271–277

    Article  CAS  Google Scholar 

  11. Farver O., Bonander N., Skov L.K., Pecht I. (1996) Inorg. Chim. Acta 243, 127–133

    Article  CAS  Google Scholar 

  12. Farver O., Skov L.K., Young S., Bonander N., Karlsson B.G., Vänngård T., Pecht I. (1997) Submitted for publication

    Google Scholar 

  13. Nar H., Messerschmidt A., Huber R., van de Kamp M., Canters, G.W. (1991) J. Mol. Biol. 221, 765–772

    Article  CAS  Google Scholar 

  14. Baker E.N. (1988) J. Mol. Biol. 203, 1071–1095

    Article  CAS  Google Scholar 

  15. Nar H., Messerschmidt A., Huber R., van de Kamp M., Canters G.W. (1991) J. Mol. Biol. 218, 427–447

    Article  CAS  Google Scholar 

  16. Romero A., Hoitink C.W.G., Nar R, Huber R., Messerschmidt A., Canters G.W. (1993) J. Mol. Biol. 229, 1007–1021

    Article  CAS  Google Scholar 

  17. Hammann C., Messerschmidt A., Huber R., Nar H., Gilardi G., Canters, G.W. (1996) J. Mol. Biol. 255, 362–366

    Article  CAS  Google Scholar 

  18. Farver O., Pecht L (1992) Proc. Natl. Acad. Sci. USA 89, 8283–8287

    Article  CAS  Google Scholar 

  19. Farver O., Wherland S., Pecht L (1994) J. Biol. Chem. 269, 22933–22936

    CAS  Google Scholar 

  20. Marcus R.A., Sutin N. (1985) Biochim. Biophys. Acta 811, 265–322

    Article  CAS  Google Scholar 

  21. Clarke M.J. et al. (eds) (1991) Long Range Electron Transfer in Biology; Struct. Bond. 75

    Google Scholar 

  22. Winkler J.R., Gray H.B. (1997) JBIC 2, 399–404

    Article  CAS  Google Scholar 

  23. Langen R., Colón J.L., Casimiro D.R., Karpisin T.B., Winkler J.R., Gray H.B. (1996) JBIC 1, 221–225

    Article  CAS  Google Scholar 

  24. Regan J.J., Risser S.M., Beratan D.N., Onuchic J.N. (1993) J. Phys. Chem. 97, 13083–13088

    Article  CAS  Google Scholar 

  25. Skourtis S.S., Regan J.J., Onuchic J.N. (1994) J. Phys.Chem. 98, 3379–3388

    Article  CAS  Google Scholar 

  26. Langen R., Chang I-J., Germanas J.P., Richards J.H., Winkler J.R., Gray H.B. (1995) Science 268, 1733–1735

    Article  CAS  Google Scholar 

  27. Broo A., Larsson S. (1990) Chem. Phys. 148, 103–115

    Article  CAS  Google Scholar 

  28. Christensen H.E.M., Conrad L.S., Mikkelsen K.V., Nielsen M.K., Ulstrup, J. (1990) Inorg. Chem. 29, 2808–2816

    Article  CAS  Google Scholar 

  29. Lowery M.D., Guckert J.A., Gebhard M.S., Solomon E.I. (1993) J. Am. Chem. Soc. 115, 3012–3013

    Article  CAS  Google Scholar 

  30. Larsson S., Broo A., Sjölin L. (1995) J. Phys. Chem. 99, 4860–4865

    Article  CAS  Google Scholar 

  31. Messerschmidt A., Ladenstein R., Huber R., Bolognesi M., Avigliano L., Marchesini A., Petruzzelli R., Rossi A., Finazzi-Agró A. (1992) J. Mol. Biol. 224, 179–205

    Article  CAS  Google Scholar 

  32. Messerschmidt A., Luecke H., Huber R. (1993) J. Mol. Biol. 230, 997–1014

    Article  CAS  Google Scholar 

  33. Farver O., Pecht I. (1997) Electron Transfer Reactions, in A. Messerschmidt (ed.) Multi-Copper Oxidases, World Scientific Publications, in Press

    Google Scholar 

  34. Hazzard J.T., Marchesini A., Curir P., Tollin G. (1994) Biochim. Biophys. Acta 1208, 166–170

    Article  CAS  Google Scholar 

  35. Nilsson T. (1992) Proc. Natl. Acad. Sci. USA 89, 6497–6501

    Article  CAS  Google Scholar 

  36. Tsukihara T., Aoyama H., Yamashita E., Tomizaki T., Yamaguchi H., Shinzawaitoh K., Nakashima R., Yaono R., Yoshikawa S. (1996) Science 272, 1136–1144

    Article  CAS  Google Scholar 

  37. Reinhammar, B., Aasa, R., Vänngíird, T., Maritano, S. and Marchesini, A. (1997) Biochim. Biophys. Acta 1337, 191–197.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Farver, O., Pecht, I. (1998). Mechanisms and Control of Electron Transfer Processes in Proteins. In: Canters, G.W., Vijgenboom, E. (eds) Biological Electron Transfer Chains: Genetics, Composition and Mode of Operation. NATO ASI Series, vol 512. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5133-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5133-7_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6158-2

  • Online ISBN: 978-94-011-5133-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics