Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 512))

Abstract

Electron transfer (ET) reaction with participation of special proteins is the key process of functioning of biological systems. Till recently the high effectiveness and specific features of ET in proteins have been described solely by allowing for a protein’s static structure but their molecular dynamics has not been taken into account. However, according to the Marcus theory [1] the dynamic properties of medium constitute one of the most important parameters that govern the effectiveness of electron transfer in condensed media. The dynamic properties of proteins differ appreciably from the analogous parameters of liquids and solids. The local structural adjustment of the active center or the conformational transition of the entire protein globule during the catalytic act is a unique property of enzymes enabling them to optimize and control the chemical process. The aim of this paper is to critically analyze the existing models of long-range ET reactions in proteins. To correct the revealed discrepancies we propose a model, taking into account the molecular dynamics of proteins with a broad distribution of the relaxation times.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marcus, R.A., Sutin, N. (1985) Electron transfer in chemistry and biology, Biochim.Biophys.Acta 811, 265–322.

    Article  CAS  Google Scholar 

  2. Mayo, S.L., Ellis, W.R., Crutchley, R.J., Gray H.B. (1986) Long-range electron transfer in heme proteins, Science 233, 948–952.

    Article  CAS  Google Scholar 

  3. Gray, H.B., Malmström, B.G. (1989) Long-range electron transfer in multisite metalloproteins, Biochemistry 28, 7499–7505.

    Article  CAS  Google Scholar 

  4. Kotelnikov, A.I. (1991) Triplet labels in investigation of biological systems, Doctorate review. Moscow State University, Moscow.

    Google Scholar 

  5. Hoffman, B.M., Natan, M.J., Nocek, J.M., Wallin, S.A. (1991) Long-range electron transfer within metal-substituted protein complexes, Structure and bonding 75, 85–108, Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  6. Winkler, J.R., Gray, H.B. (1992) Electron transfer in ruthenium-modified proteins, Chem.Rev. 92, 369–379.

    Article  CAS  Google Scholar 

  7. Moser, C.C., Keske, J.M., Warncke, K., Farid, R.S., Dutton, P.L. (1992) Nature of biological electron transfer, Nature 355, 796–802.

    Article  CAS  Google Scholar 

  8. McLendon, G., Hake, R. (1992) Interprotein electron transfer, Chem.Rev. 92, 481–490.

    Article  CAS  Google Scholar 

  9. Kotelnikov, A.I. (1993) Analysis of the experimental data on the electron conductivity of globular proteins, Biophysics 38, 217–220.

    Google Scholar 

  10. Ramirez, B.E., Malmström, B.G., Winkler, J.R., Gray, H.B. (1995) The currents of life: the terminal electron transfer complex of respiration, Proc.Natl.Acad.Sci.USA 92, 11949–11951.

    Article  CAS  Google Scholar 

  11. Medvedev, E.S., Osherov, V.I. (1995) Radiationless Transitions in Polyatomic Molecules, Sect.6.5, Springer, Berlin.

    Book  Google Scholar 

  12. Casimiro, D.R., Richards, J.H., Winkler, J.R., Gray, H.B. (1993) Electron transfer in ruthenium-modified cytochromes c. a-Tunelling pathways through aromatic residues, J.Phys.Chem. 97, 13073–13077.

    Article  CAS  Google Scholar 

  13. Casimiro, D.R., Beratan, D.N., Onuchic, J.N., Winkler, J.R., Gray H.B. (1994) Donor-acceptor electronic coupling in ruthenium-modified heme proteins, Mechanistic Bioinorganic Chemistry. (Thorp, H.H. and Pecorado, V. eds) Advances in Chemistry, Series. American Chemical Society, Washington. DC.

    Google Scholar 

  14. Bashkin, J.S., Mc Lendon, G., Mukamel, S., Marohn, J. (1990) Influence of medium dynamics on solvation and charge separation reactions: comparison of a simple alcohol and protein “solvent”, J.Phys.Chem. 94, 4757–4761.

    Article  CAS  Google Scholar 

  15. Beece, D., Eisenstein, L., Frauenfelder, H., Good, D., Marden, M.C., Reinisch, L., Reynolds, A.H., Sorensen, L.B., Yue, K.T. (1980) Solvent viscosity and protein dynamics, Biochemistry 19, 5147–5157.

    Article  CAS  Google Scholar 

  16. Zusman, L.D. (1980) Outer-sphere electron transfer in polar solvents, Chem.Phys. 49, 295–304.

    Article  CAS  Google Scholar 

  17. Alexandrov, I.V.(1980) Physical Aspects of Charge Transfer Theory, Chem. Phys. 51, 449–457.

    Article  CAS  Google Scholar 

  18. Rips, I., Jortner, J. (1987) The effect of solvent relaxation dynamics on outer-sphere electron transfer, Chem.Phys.Lett. 133, 411–414.

    Article  CAS  Google Scholar 

  19. Bjerrum, M.J., Casimiro, D.R., Chang, I-Jy, Di Billio, A.J., Gray, H.B., Hill, M.G., Langen, R., Mines, G.A., Skov, L.K., Winkler J.R., Wuttke, D.S. (1995) Electron transfer in Ru-modified proteins, J.Bioenergetics and Biomembranes 27, 295–302.

    Article  CAS  Google Scholar 

  20. Blumenfeld, L.A., Davidov, R.M.(1979) Chemical reactivity of metalloproteins in conformationally out-of-equilibrium states, Biochem.Biophys.Acta. 549, 255–280.

    Article  CAS  Google Scholar 

  21. Pierce, D.W., Boxer, S.G. (1992) Dielectric relaxation in protein matrix, J.Phys.Chem. 96, 5560–5566.

    Article  CAS  Google Scholar 

  22. Likhtenstein, G.I., Kotelnikov, A.I.,(1983) The study of fluctuational intermolecular lability of proteins by physical labeling, Molekuljarnaja biologija 17, 505–517.

    Google Scholar 

  23. Kitagawa, T., Sakan, Y., Nagai, M., Ogura, T., Fraunfelder, F.A., Mattera, R., Ikeda-Saito, M. (1993) Time-resolved resonance Raman studies of recombination intermediates of CO-photodissociated myoglobin, hemoglobin and their E7 mutants, J.Inorg.Biochem. 51, 217.

    Article  Google Scholar 

  24. Pascher, T., Chesick, J.P., Winkler, J.R., Gray, H.B. (1996) Protein folding triggered by electron transfer, Science 271, 1558–1560.

    Article  CAS  Google Scholar 

  25. Cowan, J.A., Upmacis, R.R., Beratan, D.N., Onuchic, J.N., Gray, H.B. (1988) Long-range electron transfer in myoglobin, Ann.N.Y.Acad.Sci. 550, 68–84.

    Article  CAS  Google Scholar 

  26. Beratan, D.N., Onuchic, J.N., Betts, J.N., Bowler, B.E., Gray, H.B. (1990) Electron tunneling pathways in rutenated proteins, J.Am.Chem.Soc. 112, 7915–7921.

    Article  CAS  Google Scholar 

  27. Beratan, D.N., Onuchic, J.N., Winkler, J.R., Gray, H.B. (1992) Electron-tunneling pathways in proteins, Science 258, 1740–1741.

    Article  CAS  Google Scholar 

  28. Casimiro, D.R., Wong, L.L., Colon, J.L., Zewert, T.E., Richards, J.H., Chang, I.J., Winkler, J.R., Gray, H.B. (1993) Electron transfer in ruthenium/zinc porphyrin derivatives of recombinant human myoglobins. Analysis of tunelling pathways in myoglobin and cytochrome c, J.Am.Chem.Soc. 115, 1485–1489.

    Article  CAS  Google Scholar 

  29. Liang, N., Kang, Ch.H., Ho, P.S., Margoliash, E., Hoffman, B.M. (1986) Long-range electron transfer from iron(II)-cytochrome c to (Zn-cytochrome c peroxidase) (+) within the 1:1 complex, J.Am.Chem.Soc. 108, 4665–4666.

    Article  CAS  Google Scholar 

  30. Natan, M.J., Hoffman, B.M. (1989) Long-range [Fe2+(heme)-(M(porfirin))+] electron transfer within [M, Fe] (M=Mg, Zn)hemoglobin gybrids, J.Am.Chem.Soc. 111, 6468–6470.

    Article  CAS  Google Scholar 

  31. Kuila, D., Baxter, W.W., Natan, M.J., Hoffman, B.M.(1991) Temperature-independent electron transfer in mixed-metal hemoglobin hybrides, J.Phys.Chem. 95, 1–3.

    Article  CAS  Google Scholar 

  32. Farver, O., Pecht, I. (1989) Long-range intramolecular electron transfer in azurins, Proc.Natl.Acad.Sci.USA. 86, 6968–6972.

    Article  CAS  Google Scholar 

  33. Langen, R., Colon, J.L., Casimiro, D.R., Karpishin, T.B., Wikler J.R., Gray, H.B. (1996) Electron tunelling in proteins: role of the intervening medium, J.Biol.Inorg.Chem. 1, 221–225.

    Article  CAS  Google Scholar 

  34. Frolov, E.N., Goldanskii, V.I., Birk, A., Parak, F. (1996) The influence of electrostatic interactions and intramolecular dynamics on electron transfer from the cytochrome subunit to the cation-radical of the bacteriochlorophyll dimer in reaction centers from Rps.viridis, Eur.Biophys.J. 24, 433–438.

    Article  CAS  Google Scholar 

  35. Nocek, J.M., Liang, N., Wallin, S.A., Mauk, A.G., Hoffman, B.M. (1990) Low-temperature conformational transition within the [Zn-cytochrome c peroxidase, cytochrome c] electron transfer complex, J.Am.Chem.Soc. 112, 1623–1625.

    Article  CAS  Google Scholar 

  36. Siddarth, P., Marcus, R.A. (1993) Correlation between theory and experiment in electron transfer reactions in proteins: electronic couplings in modified cytochrome c and myoglobin derivatives, J.Phys.Chem. 97, 13078–13082.

    Article  CAS  Google Scholar 

  37. Cherry, R.J., Schneider, G. (1976) A spectroscopic technique for measuring rotational diffusion of macromolecules. 2: Determination of rotational correlation times of proteins in solution. Biochemistry, 15, 3657–3661.

    Article  CAS  Google Scholar 

  38. Moore, C., Boxer, D., Garlaund, P. (1979) Phosphorescence depolarisation and the measurement of the rotational motion of proteins in membranes, FEBS Letters, 108, 161–166.

    Article  CAS  Google Scholar 

  39. Likhtenstein, G.I., Kulikov, A.V., Kotelnikov, A.I., Levchenko, L.A. (1986) Methods of physical labels - a combiend approach to the study of microstructure and dynamics in biological systems, J.Biochem.Biophys.Methods 12, 1–28.

    Article  CAS  Google Scholar 

  40. Kotelnikov, A.I., Vogel, V.R., Kochetkov, V.V., Likhtenstein, G.I., Noks, P.P., Grishanova, N.P., Kononenko, A.A., Rubin, A.B. (1983) Molekuljarnaja biologija 17, 846–854.

    CAS  Google Scholar 

  41. Noks, P.P., Bystrjak, I.M., Kotelnikov, A.I., Shaitan, K.V., Kononenko, A.A., Zacharova, N.I., Likhtenstein, G.I., Rubin, A.B (1989) The Influence of glycerol and sugars on electron phototransfer in a system of quinone acceptors of reaction centers of purple bacteria, Ann.Acad.Sci.USSR, Biol. 5, 651–659.

    Google Scholar 

  42. Likhtenshtein, G.I., Bystrjak, S.M., Kotelnikov, A.I. (1990) Role of medium molecular dynamics in electron transfer reactions in viscous mediums, Chemical Physics (Russian) 9, 697–706.

    CAS  Google Scholar 

  43. Rubtsova, E.T., Vogel, V.R., Khudjakov, D.V., Kotelnikov, A.I., Likhtenstein, G.I., (1993) Influence of molecular dynamics of protein matrix on the photoinduced electron transfer kinetics, Biophysics, 38, 211–216.

    Google Scholar 

  44. DeVault, D., Chance, B.(1966) Studies of photosynthesis using a pulsed laser. 1. Temperature dependence of cytochrome oxidation rate in chromatium: Evidence for tunneling. Biophys.J. 6, 825–847.

    Article  CAS  Google Scholar 

  45. Ortega, J.M., Mathis, P. (1993) Electron transfer from tetraheme cytochrome to the special pair in isolated reaction centres of Rhodopseudomonas viridis, Biochemistry 32, 1141–1151.

    Article  CAS  Google Scholar 

  46. Zang, L.H., Maki, A.H. (1990) Photoinduced electron transfer in the Zn-substituted cytochrome c Ru(NH3)5(His-33) derivative studied by phosphorescence and optically detected magnetic resonance spectroscopy, J.Am.Chem.Soc. 112, 4346–4351.

    Article  CAS  Google Scholar 

  47. Sumi, H., Marcus, R.A. (1986) Dynamical effects in electron transfer reactions, J.Chem.Phys. 84, 4894–4914.

    Article  CAS  Google Scholar 

  48. Daizadeh, I., Medvedev, E. S., Stuchebrukhov, A. A. (1997) Effect of protein dynamics on biological electron transfer, Proc. Natl. Acad. Sci. USA. 94, 3703–3708.

    Article  CAS  Google Scholar 

  49. Medvedev, E. S., Stuchebrukhov, A. A.(1997) Inelastic tunneling in long-distance biological electron transfer reactions, J. Chem. Phys. 107, 3821–3831.

    Article  CAS  Google Scholar 

  50. Vogel, V.R., Rubtsova, E.T., Likhenshtein, G.I., Hideg, K. (1994) Factors affectiong photoinduced electron transfer in a donor-acceptor pair (D-A) incorporated into bovine serum albumin, J.Photochem.Photobiol. A: Chem. 83, 229–236.

    Article  CAS  Google Scholar 

  51. Kotelnikov, A.I., Vogel, V.R., Pastuchov, A.V. (1995) Analysis of electron transfer in proteins in the framework of adiabatic approach of outer-sphere electron transfer theory, J.Inorg.Biochem. 59, 268.

    Article  Google Scholar 

  52. Likhtenshtein, G.I. (1996) Role of orbital overlap and local dynamics in long-distance electron transfer in photosynthetic reaction centers and model systems, J.Photochem.Photobiol. A: Chemistry 96, 79–92.

    Article  CAS  Google Scholar 

  53. Kotelnikov, A.I., Vogel, V.R. (1996) Analysis of the experimental data on the kinetics of electron transfer in metal-containing proteins within the context of an adiabatic approximation, Biophysics 41, 597–605.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kotelnikov, A.I., Vogel, V.R., Pastuchov, A.V., Voskoboinikov, V.L., Medvedev, E.S. (1998). Coupling of Electron Transfer and Protein Dynamics. In: Canters, G.W., Vijgenboom, E. (eds) Biological Electron Transfer Chains: Genetics, Composition and Mode of Operation. NATO ASI Series, vol 512. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5133-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5133-7_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6158-2

  • Online ISBN: 978-94-011-5133-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics