Skip to main content

Protein-Mediated Electron Transfer: Pathways, Orbital Interactions, and Contact Maps

Structure-function relations for protein electron transfer

  • Chapter

Part of the book series: NATO ASI Series ((ASIC,volume 512))

Abstract

The theoretical framework for describing biological electron transfer (ET) reactions is well established [1,2]. Yet the key ingredients of the theory-reaction free energies, inner and outer sphere reorganization energies, and protein-mediated electronic coupling matrix elements - are not directly measurable and are challenging to compute for macromolecules. The goal of this article is to describe our efforts in the last decade to develop empirical [3–12], semiempirical [13], and ab initio methods [14] to compute electron transfer rates in proteins. Our focus is the protein-mediated electron donor-acceptor interaction. These methods were recently combined with powerful tools for analyzing electronic propagation in proteins to develop structure-function relations for bridge mediated electron transfer reactions [15,16]. Contributions in this area from other groups have been considerable as well, and were reviewed recently [2]. Using these tools, a comprehensive view of how primary, secondary, and tertiary structure (as well as protein dynamics) influence ET processes is beginning to emerge.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bertini I., Gray, H.B., Lippard, S., and Valentine, J.S. (1994) Principles of Bioinorganic Chemistry, University Science Books, Mill Valley

    Google Scholar 

  2. CA.Lippard, S.J. and Berg, J.M. (1994) Bioinorganic Chemistry, University Science Books, Mill Valley, CA.

    Google Scholar 

  3. Bendall, D.S. (1996) Protein Electron Transfer. BIOS Scientific Publishers, Oxford.

    Google Scholar 

  4. Skourtis, S.S. and Beratan, D.N. (1997) Theories of structure function relationships for bridge-mediated electron transfer reactions, Adv. Chem. Phys., in press.

    Google Scholar 

  5. Regan, J.J. and Onuchic, J.N. (1997) Adv. Chem. Phys., in press.

    Google Scholar 

  6. Beratan, D.N., Onuchic, J.N. and Hopfield, J.J. (1987) Electron tunneling through covalent and non-covalent pathways in proteins, J. Chem. Phys. 86, 4488–4498.

    Article  CAS  Google Scholar 

  7. Beratan, D.N. and Onuchic J.N. (1989) Electron tunneling pathways in proteins: influences on the transfer rate, Photosynth. Res. 22, 173–186.

    Article  CAS  Google Scholar 

  8. Onuchic, J.N. and Beratan, D.N. (1990) A predictive theoretical model for electron tunneling pathways in proteins, J. Chem. Phys. 92, 722–733.

    Article  CAS  Google Scholar 

  9. Beratan, D.N., Betts, J.N., and Onuchic, J.N. (1991) Protein electron transfer rates are predicted to be set by the bridging secondary and tertiary structure, Science 252, 1285–1288.

    Article  CAS  Google Scholar 

  10. Beratan D.N., Onuchic J.N. and Gray H.B. (1991) Electron tunneling pathways in proteins, in H. Sigel and A. Sigel (eds.) Metal Ions in Biological Systems, vol. 27, Marcel Dekker Press, New York, pp. 97–127.

    Google Scholar 

  11. Beratan, D.N. and Onuchic, J.N. (1991) Electron transfer - from model compounds to proteins, in J.R. Bolton, N. Mataga, G.L. McLendon (eds.), Electron transfer in inorganic, organic, and biological systems, ACS Advances in Chemistry Series vol. 228, ACS Press, Washington, DC, pp 71–90.

    Chapter  Google Scholar 

  12. Beratan, D.N., Onuchic J.N., Winkler, J.R., and Gray H.B. (1992), Science 258, 1740–1741.

    Article  CAS  Google Scholar 

  13. Onuchic, J.N., Beratan, D.N., Winkler, J.R., and Gray, H.B. (1992) Pathway analysis of protein electron-transfer reactions, Annu. Rev. Biophys. Biomol. Stract. 21, 349–377.

    Article  CAS  Google Scholar 

  14. Betts, J.N., Beratan, D.N., and Onuchic, J.N. (1992) Mapping electron tunneling pathways: an algorithm that finds the ‘minimum length’/ maximum coupling pathway between electron donors and acceptors in proteins, J. Am. Chem. Soc. 114, 4043–4046.

    Article  CAS  Google Scholar 

  15. Beratan, D.N., Betts, J.N., and Onuchic, J.N. (1992) Tunneling pathway and redox state dependent electronic couplings at nearly fixed distance in electron transfer proteins, J. Phys. Chem. 96, 2852–2855.

    Article  CAS  Google Scholar 

  16. Regan J.J., DiBilio A.J., Langen R., Skov L.K., Winkler J.R., Gray H.B., and Onuchic, J.N. (1995) Electron tunneling in azurin: the coupling across a β-sheet, Chem. and Biol. 2, 489–496.

    Article  CAS  Google Scholar 

  17. Regan J.J., Risser, S.M., Beratan D.N., and Onuchic, J.N. (1993) Protein electron transport: single versus multiple pathways, J. Phys. Chem. 97, 13083–13088.

    Article  CAS  Google Scholar 

  18. Kurnikov, I.V. and Beratan, D.N. (1996), J. Chem. Phys. 105, 9561–9573.

    Article  CAS  Google Scholar 

  19. Skourtis, S.S., Onuchic, J.N. and Beratan, D.N. (1996) A method to analyze multi-pathway effects on protein mediated donor-acceptor coupling interactions, Inorg. Chim. Acta 243, 167–175.

    Article  CAS  Google Scholar 

  20. Skourtis, S.S. and Beratan, D.N. (1997) Electron transfer contact maps, J. Phys. Chem. B 101, 1215–1234.

    Google Scholar 

  21. Hopfield, J.J. (1974) Electron transfer between biological molecules by thermally activated tunneling, Proc. Natl. Acad. Sci. (USA) 71, 3640–3644.

    Article  CAS  Google Scholar 

  22. Moser, C.C., Keske, J.M., Warncke, K., Fad, R.S. and Dutton, P.L. (1992) Nature of biological electron transfer, Nature 355, 796–802.

    Article  CAS  Google Scholar 

  23. Marcus, R.A. and Sutin, N. (1987) Some aspects of electron transfer in chemistry and biology, Biochem. Biophys. Acta 811, 265–322.

    Google Scholar 

  24. Karpishian, T.B., Grinstaff, M., Komar-Panicucci, S., McLendon, G., Gray, H.B. (1994) Electron transfer in cytochrome c depends upon the structure of the intervening medium, Structure 2, 415–422.

    Article  Google Scholar 

  25. Gray, H.B. and Winkler, J.R. (1996) Electron transfer in proteins, Annu. Rev. Biochem. 65, 537–561.

    Article  CAS  Google Scholar 

  26. Langen, R., Colon, J.L., Casimiro, D.R., Karpishin, T.B., Winkler, J.R. and Gray, H.B. (1996) Electron tunneling in proteins: role of the intervening medium, JBIC 1, 221–225.

    Article  CAS  Google Scholar 

  27. DeRege, P.J.F., Williams, S.A., and Therien, M.J. (1995) Direct evaluation of electronic coupling mediated by hydrogen bonds: implications for biological electron transfer, Science 269, 1409–1413.

    Article  CAS  Google Scholar 

  28. Turró, C., Chang, C.K., Leroi, G.E., Cukier, R.I. and Nocera D.G. (1992) Photoinduced electron transfer mediated by a hydrogen bonded interface, J. Am. Chem. Soc. 114, 4013–4015.

    Article  Google Scholar 

  29. Sessler, J.L., Wang, B., Harriman, A. (1993) Long-range photoinduced electron transfer in an associated but noncovalently linked photosynthetic model system, J. Am. Chem. Soc. 115, 10418–10419.

    Article  CAS  Google Scholar 

  30. Winkler, J.R., Nocera, D.G., Yocom, K.M., Bordignon, E. and Gray H.B. (1982) Electron transfer kinetics of pentaammine ruthenium(III)-(histidine-33)-fenicytochrome c - measurement of the rate of intramolecular electron transfer between redox centers separated by 15 Å in a protein, J. Am. Chem. Soc. 104, 5798–5800.

    Article  CAS  Google Scholar 

  31. Jacobs, B.A., Mauk, M., Funk, W., MacGillivray, R. Mauk, A.G. and Gray, H.B. (1991) Preparation, characterization, and intramolecular electron transfer in pentaamnierutheniumhistidine-26 cytochrome b 5 derivatives - role of the intervening medieum in long range donor-acceptor electronic coupling, J. Am. Chem. Soc. 113, 4390–4394.

    Article  CAS  Google Scholar 

  32. Therien, M.J., Chang, J., Raphael, A.L., Bowler, B.E. and Gray, H.B. (1991) in Structure and Bonding vol. 75, 109–129, Springer Verlag, New York.

    Google Scholar 

  33. Wuttke, D.S., Bjemtm, M.J., Winkler, J.R. and Gray, H.B. (1992) Electron tunneling paths in cytochrome c,Science 256, 1007–1009.

    Article  CAS  Google Scholar 

  34. Langen, R., Chang, I.J., Gennanas, J.P., Richards, J.H., Winkler, J.R. and Gray, H.B. (1995) Electron tunneling in proteins: coupling through a β-strand, Science 268, 1733–1735.

    Article  CAS  Google Scholar 

  35. Nocek, J.M., Thou, J.S., DeForest, S., Priyadarshy, S., Beratan, D.N., Onuchic, J.N., Hoffman, B.M. (1996) Theory and practice of electron transfer within protein-protein complexes: application to the multi-domain binding of cytochrome c by cytochrome c peroxidase, Chem. Rev. 96, 2459–2489.

    Article  CAS  Google Scholar 

  36. Aquino, A.J.A., Beroza, P., Beratan, D.N. and Onuchic, J.N. (1995) Docking and electron transfer between cytochrome c 2 and the photosynthetic reaction center, Chem. Phys. 197, 277–288.

    Article  CAS  Google Scholar 

  37. Balabin, I.A., Onuchic, J.N., and Beratan, D.N. (1997), unpublished data.

    Google Scholar 

  38. (a) Winkler, J.R. and Gray, H.B. (1997) Electron tunneling in proteins: role of the intervening medium JBIC, in press.

    Google Scholar 

  39. Ramirez, B.E., Malmström, B.G., Winkler, J.R. and Gray, H.B. (1995) The currents of life: the terminal electron-transfer complex of respiration, Proc. Natl. Acad. Sci. (USA) 92, 11949–11951.

    Article  CAS  Google Scholar 

  40. Moser, C.C., Page, C.C., Chen, X. and Dutton, P.L. (1997) Effect of intervening medium on long-range biological electron transfer, JBIC,in press.

    Google Scholar 

  41. Siddarth, P. and Marcus, R.A. (1993) Correlation between theory and experiment in electron transfer reactions in proteins - electronic couplings in modified cytochrome c and myoglobin, J. Phys. Chem. 97, 13078–13082.

    Article  Google Scholar 

  42. Curry, W.B., Grab e, M.D., Kumikov, I.V., Skourtis, S.S., Beratan, D.N., Regan, J.J., Aquino, A.J.A., Beroza, P. and Onuchic, J.N. (1995) Pathways, pathway tubes, pathway docking, and propagators in electron transfer proteins, J. Bioenerg. Biomembr. 27, 285–293.

    Article  CAS  Google Scholar 

  43. Priyadarshy, S., Skourtis, S.S., Risser, S.M. and Beratan, D.N. (1996) Bridge-mediated electronic interactions: differences between Hamiltonian and green function partitioning in a non-orthogonal basis, J. Chem. Phys. 104, 9473–9481.

    Article  CAS  Google Scholar 

  44. T.E. Creighton (1984), Proteins. Structures and Molecular Properties, W.H. Freeman Press, New York.

    Google Scholar 

  45. The inadequacy of distance contact maps for the description of ET was demonstrated in [39]. ETCMs were used to compare two different peptide structures related by a double mutation. Two calculations were performed. In one calculation the ETCMs were based on the exact computation of the tunneling propagation matrices G ij , using atomic orbital level Hamiltonians that incorporate the details of bonding. In the other, the G ij , matrices were approximated by an exponential distance decay model [39] that ignores structural details, i.e. G ij α exp[-β (r ij )], where β = 1.4 Å-1 and r ij is the distance between backbone orbital i and backbone orbital j. Although the distances between backbone orbitals were not altered by the mutation, the exact ETCMs showed large changes in the propagation between backbone orbitals. These changes were caused by the mutation, and the effects were as large as ~1000 times the original propagation strength. The approximate distance-based ETCMs did not show any changes in the tunneling propagation, since the distances between backbone orbitals remain constant upon mutation. Simple square barrier protein models do not predIct any change in coupling upon mutation.

    Google Scholar 

  46. Skourtis, S.S. and Beratan, D. N. (1997) High and low resolution theories of protein electron transfer, JBIC, in press.

    Google Scholar 

  47. Skourtis, S.S. Regan, J.J., Onuchic, J.N. (1994), Electron transfer in proteins: a novel approach for the description of the donor-acceptor, J. Phys. Chem. 98, 3379–3388.

    Article  CAS  Google Scholar 

  48. Farver, O. and Pecht, I. (1997) The role of the medium on long range electron transfer, JBIC,in press.

    Google Scholar 

  49. Farver, O., Skov, L.K., Young, S., Bonander, N., Karlsson, B.G., Vänngård, T. and Pecht, I. (1997), submitted for publication.

    Google Scholar 

  50. Wolfgang, J., Risser, S.M., Priyadarshy, S., and Beratan, D.N., (1997) Secondary structure conformations and long range electronic interactions in oligopeptides. J. Phys. Chem. B. 101, 2986–2991.

    CAS  Google Scholar 

  51. Kurnikov, I.V., Zusman, L.D., Kumikova, M.G., Farid, R.S., and Beratan, D.N. (1997) Structural fluctuations, spin, reorganization energy, and tunneling energy control of intramolecular electron transfer (1997) J. Am. Chem. Soc., in press.

    Google Scholar 

  52. Zusman, L.D. and Beratan, D.N. (1996) Two-electron transfer reactions in polar solvents, J. Chem. Phys. 105,165–176.

    Article  CAS  Google Scholar 

  53. Zusman, L.D. and Beratan, D.N. (1997) A three-state model for two-electron transfer reactions, J. Phys. Chem., in press.

    Google Scholar 

  54. Beratan, D.N., Priyadarshy, S. and Risser, S.M. (1997) DNA: Insulator or Wire?, Chem. and Biol. 4, 3–8.

    Article  CAS  Google Scholar 

  55. Priyadarshy, S., Risser, S.M. and Beratan, D.N. (1996) DNA is not a molecular wire: protein-like electron transfer predicted in an extended π-electron system, J. Phys. Chem. 100, 17678–17682.

    Article  CAS  Google Scholar 

  56. (a) Murphy, C.J., Arkin, M.R., Jenkins, Y., Ghatlia, N.D. Bossmann, S.H., Turro, N.J. and Barton, J.K. (1993) Long-range photoinduced electron transfer through a DNA helix, Science 262,1025–1029.

    Article  CAS  Google Scholar 

  57. Brun, A.J. and Harriman, A. (1994). Energy transfer and electron transfer processes involving palladium porphyrins bound to DNA, J. Am. Chem. Soc. 116, 10383–10393.

    Article  CAS  Google Scholar 

  58. Meade, T.J. and Kayyem, J.F. (1995) Electron transfer through DNA - site-specific modification of duplex DNA with ruthenium donors and acceptors, A ngew. Chem. Int. Ed. Engl. 34, 352–354.

    Article  CAS  Google Scholar 

  59. Olson, E.J.C., Hu, D., Hörmann, A., and Barbara, P.F. (1997) Quantitative modeling of DNA-mediated electron transfer between metallointercalators, J. Phys. Chem. B 101, 299–303.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Beratan, D.N., Skourtis, S.S. (1998). Protein-Mediated Electron Transfer: Pathways, Orbital Interactions, and Contact Maps. In: Canters, G.W., Vijgenboom, E. (eds) Biological Electron Transfer Chains: Genetics, Composition and Mode of Operation. NATO ASI Series, vol 512. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5133-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5133-7_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6158-2

  • Online ISBN: 978-94-011-5133-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics