Skip to main content

Cytochrome C Nitrite Reductase from Sulfurospirillum Deleyianum and Wolinella Succinogenes

Molecular and spectroscopic properties of the multihaem enzyme

  • Chapter
Book cover Biological Electron Transfer Chains: Genetics, Composition and Mode of Operation

Part of the book series: NATO ASI Series ((ASIC,volume 512))

Abstract

Within the biogeochemical nitrogen cycle NxOy compounds function as electron acceptors of anaerobic respiratory chains. Prokaryotes carry out their energy conservation during reduction of these nitrogen compounds, and use complex transition metal enzymes for their transformation [1,2]. Dissimilatory nitrate reduction proceeds via two different pathways, i.e. denitrification, and nitrate- ammonification (Scheme 1). In denitrification, the nitrite reductase is either a cytochrome cd 1, or a copper protein [3,4]. During nitrate-ammonification nitrate is reduced to nitrite as the only liberated intermediate that is subsequently converted to ammonia in a six-electron step by a cytochrome c nitrite reductase [4]. H2 and formate are the predominant electron donors that are oxidized by nitrate-ammonifying bacteria [5–7]. Eisenmann et al. [8] reported on the use of sulfide as electron donor to support bacterial growth by nitrate-ammonification, thus connecting the biogeochemical cycles of nitrogen and sulfur.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zumft, W.G. (1992) The denitrifying prokaryotes. In A. Balows, H.G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (eds.) The prokaryotes. A Handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, Springer Verlag,New York, Berlin, Heidelberg, London, Paris, Tokyo, Hong-Kong, Barcelona, Budapest,Vol. 1, pp. 554–582.

    Google Scholar 

  2. Berks, B.C., Ferguson, S.J., Moir, J.W.B., and Richardson, D.J. (1995) Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. Biochim. Biophys. Acta, 1232, 97–173.

    Article  Google Scholar 

  3. Godden, J.W., Turley, S., Teller, D.C., Adman, E.T., Liu, M.-Y., Payne, W.J., and LeGall, J. (1991) The 2.3 Ångstrøm X-ray structure of nitrite reductase from Achromobacter cycloclastes,Science 253, 438–44.

    Article  CAS  Google Scholar 

  4. Brittain, T., Blackmore, R., Greenwood, C., and Thomson, A.J. (1992) Bacterial nitrite-reducing enzymes, Eur. J. Biochem. 209, 793–802.

    Article  CAS  Google Scholar 

  5. Enoch, H.G. and Lester, R.L. (1974) The role of a novel cytochrome b-containing nitrate reductase and quinone in the in vitro reconstitution of formate-nitrate reductase activity in E. coli. Biochem. Biophys. Res. Commun.,61, 1234–1241.

    Article  CAS  Google Scholar 

  6. Abou-Jaoudé, A., Chippaux, M., and Pascal, M.-C. (1979) Formate-nitrite reduction in Escherichia coli K12. 1. Physiological study of the system, Eur. J. Biochem. 95, 309–314.

    Article  Google Scholar 

  7. Abou-Jaoudé, A., Pascal, M.-C., and Chippaux, M. (1979) Formate-nitrite reduction in Escherichia coli K12. 2. Identification of components involved in the electron transfer, Eur. J. Biochem. 95, 315–321.

    Article  Google Scholar 

  8. Eisenmann, E., Beuerle, J., Sulger, K., Kroneck, P.M.H., and Schumacher, W. (1995) Lithotrophic growth of Sulfurospirillum deleyianum with sulfide as electron donor coupled to respiratory reduction of nitrate to ammonia, Arch. Microbiol. 164, 180–185.

    Article  CAS  Google Scholar 

  9. Schumacher, W., Neese, F., Hole, U., and Kroneck, P.M.H. (1997) Cytochrome c nitrite reductase and nitrous oxide reductase: two metallo enzymes of the nitrogen cycle with novel metal sites. In G. Winkelmann and C.J. Carrano (eds.), Transition Metals in Microbial Metabolism,Harwood Academic Publishers, London, in press.

    Google Scholar 

  10. Cole, J.A. (1988) Assimilatory and dissimilatory reduction of nitrate to ammonia. In J.A. Cole and S.J. Ferguson (eds.), The nitrogen and sulphur cycles, Society for General Microbiology, University Press, Cambridge, pp. 281–329.

    Google Scholar 

  11. Cole, J.A. (1996) Nitrate reduction to ammonia by enteric bacteria: redundancy, or a strategy for survival during oxygen starvation? FEMS Microbiol. Lett., 136, 1–11.

    Article  CAS  Google Scholar 

  12. Jones, R.W. (1980) The role of the membrane-bound hydrogenase in the energy-conserving oxidation of molecular hydrogen by Escherichia coli, Biochem. J. 188, 345–350.

    CAS  Google Scholar 

  13. Jones, R.W., Lamont, A., and Garland, P.B. (1980) The mechanism of proton translocation driven by the respiratory nitrate reductase complex of Escherichia coli,Biochem. J. 190, 79–94.

    CAS  Google Scholar 

  14. de Vries, W., Niekus, H.G.D., Boellaard, M., and Stouthamer, A.H. (1980) Growth yields and energy generation by Campylobacter sputorum subspecies bubulus during growth in continuous culture with different hydrogen acceptors, Arch. Microbiol. 124, 221–227.

    Article  Google Scholar 

  15. Yoshinari, T. (1980) N2O reduction by Wolinella succinogenes,Appl. Environm. Microbiol. 39, 81–84.

    CAS  Google Scholar 

  16. Bokranz, M.J., Katz, J., Schröder, L, Roberton, A.M., and Kröger, A. (1983) Energy metabolism and biosynthesis of Vibrio succinogenes growing with nitrate or nitrite as terminal electron acceptor, Arch. Microbiol. 135, 36–41.

    Article  CAS  Google Scholar 

  17. Seitz, H.-J. and Cypionka, H. (1986) Chemolithotrophic growth of Desulfovibrio desulfuricans with hydrogen coupled to ammonification of nitrate or nitrite, Arch. Microbiol. 146, 63–67.

    Article  CAS  Google Scholar 

  18. Schumacher, W. and Kroneck, P.M.H. (1992) Anaerobic energy metabolism of the sulfur-reducing bacterium “Spirillum” 5175 during dissimilatory nitrate reduction to ammonia, Arch. Microbiol. 157, 464–470.

    Article  CAS  Google Scholar 

  19. Hooper, A. B. and DiSpirito, A.A. (1985) In bacteria which grow on simple reductants: generation of a proton gradient involves extracytoplasmic oxidation of substrate, Microbiol. Rev. 49, 140–157.

    CAS  Google Scholar 

  20. Berg, B.L., Li J., Heider, J., and Stewart, V. (1991) Nitrate-inducible formate dehydrogenase in Escherichia coli K-12 I. Nucleotide sequence of the fdnGHI operon and evidence that opal (UGA) encodes selenocysteine, J. Biol. Chem. 266, 22380–22385.

    CAS  Google Scholar 

  21. Berks, B.C., Page, M.D., Richardson, D.J., Reilly, A., Cavill, A., Outen, F., and Ferguson, S.J. (1995) Sequence analysis of subunits of the membrane-bound nitrate reductase from a denitrifying bacterium: the integral membrane subunit provides a prototype for the dihaem-carrying arm of a redox-loop, Mol. Microbiol. 15, 319–331.

    Article  CAS  Google Scholar 

  22. Kröger, A. and Innerhofer, A. (1976) The function of the b cytochromes in the electron transport from formate to fumarate of Vibrio succinogenes, Eur. J. Biochem. 69, 497–506.

    Article  Google Scholar 

  23. Kröger, A., Dorrer, E., and Winkler, E. (1980) The orientation of the substrate sites of formate dehydrogenase and fumarate reductase in the membrane of Vibrio succinogenes, Biochim. Biophys. Acta 589, 118–136.

    Article  Google Scholar 

  24. Zöphel, A., Kennedy, M.C., Beinert, H., and Kroneck, P.M.H. (1991) Investigations on microbial sulfur respiration. 2. Isolation, purification, and characterisation of cellular components from Spirillum 5175, Eur. J. Biochem. 195, 849–856.

    Article  Google Scholar 

  25. Page, L., Griffiths, L., and Cole, J.A. (1990) Different physiological roles of two independent pathways for nitrite reduction to ammonia by enteric bacteria, Arch. Microbiol. 154, 349–354.

    Article  CAS  Google Scholar 

  26. Steenkamp, D.J. and Peck Jr., H.D. (1980) The association of hydrogenase and dithionite reductase activities with the nitrite reductase of Desulfovibrio desulfuricans, Biochem. Biophys. Res. Commun. 94, 41–48.

    Article  CAS  Google Scholar 

  27. Steenkamp, D.J. and Peck Jr., H.D. (1981) Proton translocation associated with nitrite respiration in Desulfovibrio desulfuricans, J. Biol. Chem. 256, 5450–5458.

    CAS  Google Scholar 

  28. de Vries, W., Niekus, H.G.D., van Berchum, H., and Stouthamer, A.H. (1982) Electron transport-linked proton translocation at nitrite reduction in Campylobacter sputorum subspecies bubulus, Arch. Microbiol. 131,132–139.

    Article  Google Scholar 

  29. Pope, N.R. and Cole, J.A. (1982) Generation of a membrane potential by one of two independent pathways for nitrite reduction by Escherichia coli, J. Gen. Microbiol. 128, 319–322.

    Google Scholar 

  30. Barton, L.L., LeGall, J., Odom, J.M., and Peck Jr., H.D. (1983) Energy coupling to nitrite respiration in the sulfate-reducing bacterium Desulfovibrio desulfuricans, J. Bacteriol. 153, 86–871.

    Google Scholar 

  31. Kröger, A. and Winkler, E. (1981) Phosphorylative fumarate reduction in Vibrio succinogenes: stoichiometry of ATP synthesis, Arch. Microbiol. 129, 100–104.

    Article  Google Scholar 

  32. Odom, J.M. and Peck Jr., H.D. (1981) Localization of dehydrogenases, reductases and electron transfer components in the sulfate-reducing bacterium Desulfovibrio gigas, J. Bacteriol. 147, 161–169.

    CAS  Google Scholar 

  33. Bokranz, M., Gutmann, M., Körtner, C., Kojro, E., Fahrenholz, F., Lauterbach, F., and Kröger, A. (1991) Cloning and nucleotide sequence of the structural genes encoding the formate dehydrogenase of Wolinella succinogenes, Arch. Microbiol. 156, 119–128.

    Article  CAS  Google Scholar 

  34. Schröder, I., Roberton, A.M., Bokranz, M., Unden, G., Böcher, R. and Kröger, A. (1985) The membraneous nitrite reductase involved in the electron transport of Wolinella succinogenes. Arch. Microbiol., 140, 380–386.

    Article  Google Scholar 

  35. Fujita, T. and Sato, R. (1966) Studies on soluble cytochromes in Enterobacteriaceae. III. Localization of cytochrome c 552 in the surface layer of cells, J. Biochem. (Tokyo) 60, 568–577.

    CAS  Google Scholar 

  36. Darwin, A., Hussain, H., Griffiths, L., Grove, J., Sambongi, Y., Busby, S., and Cole, J. (1993) Regulation and sequence of the structural gene for cytochrome c 552 from Escherichia coli, not a hexaheme but a 50 kDa tetraheme nitrite reductase, Mol. Microbiol. 9, 1255–1265.

    Article  CAS  Google Scholar 

  37. Collins, M.D. and Widdel, F. (1986) Respiratory quinones of sulphate-reducing and sulphur-reducing bacteria: a systematic investigation, System. Appl. Microbiol. 8, 8–18.

    Article  CAS  Google Scholar 

  38. Hussain, R, Grove, J., Griffiths, L., Busby, S., and Cole, J. (1994) A seven-gene operon essential for formate-dependent nitrite reduction to ammonium by enteric bacteria, Mol. Microbiol. 12, 153–163.

    Article  CAS  Google Scholar 

  39. Geisler, V., Ullmann, R., and Kröger, A. (1994) The direction of proton exchange associated with the redox reactions of menaquinone during electron transport in Wolinella succinogenes, Biochim. Biophys. Acta 1184, 219–226.

    Article  CAS  Google Scholar 

  40. Fujita, T. (1966) Studies on soluble cytochromes in Enterobacteriaceae. I. Detection, purification and properties of cytochrome c 552 in anaerobically grown cells, J. Biochem. (Tokyo) 60, 204–215.

    CAS  Google Scholar 

  41. Kajie, S.-I. and Anraku, Y. (1986) Purification of a hexaheme cytochrome c 552 from Escherichia coli K12 and its properties as a nitrite reductase, Eur. J. Biochem. 154, 457–463.53.

    Article  CAS  Google Scholar 

  42. Prakash, O. and Sadana, J.C. (1972) Purification, characterisation and properties of nitrite reductase of Achromobacter fischeri,Arch. Biochem. Biophys. 148, 614–632.

    Article  CAS  Google Scholar 

  43. Liu, M.-C., Bakel, B.W., Liu, M.-Y., and Dao, T.N. (1988) Purification of Vibrio fischeri nitrite reductase and its characterisation as a hexaheme c-type cytochrome, Arch. Biochem. Biophys. 262, 259–265.

    Article  CAS  Google Scholar 

  44. Liu, M.-C. and Peck Jr., H.D. (1981) The isolation of a hexaheme cytochrome from Desulfovibrio desulfuricans and its identification as a new type of nitrite reductase, J. Biol. Chem. 256, 13159–13164.

    CAS  Google Scholar 

  45. Liu, M.-C., Liu, M.-Y., Payne, W.J., Peck Jr., H.D., and LeGall, J. (1983) Wolinella succinogenes nitrite reductase: purification and properties, FEMS Microbiol. Lett. 19, 201–206.

    Article  CAS  Google Scholar 

  46. Blackmore, R., Roberton, A.M., and Brittain, T. (1986) The purification and some equilibrium properties of nitrite reductase of the bacterium Wolinella succinogenes, Biochem. J. 323, 547–552.

    Google Scholar 

  47. Rehr, B. and Klemme, J.H. (1986) Metabolic role and properties of nitrite reductase of nitrate-ammonifying marine Vibrio species, FEMS Microbiol. Lett. 35, 325–328.

    Article  CAS  Google Scholar 

  48. Schumacher, W. and Kroneck, P.M.H. (1991) Dissimilatory hexaheme c nitrite reductase of “Spirillum” strain 5175: purification and properties, Arch. Microbiol. 156, 70–74.

    Article  CAS  Google Scholar 

  49. Schumacher, W., Hole, U.H., and Kroneck, P.M.H. (1994) Ammonia-forming cytochrome c nitrite reductase from Sulfurospirillum deleyianum is a tetraheme protein: new aspects of the molecular composition and spectroscopic properties, Biochem. Biophys. Res. Commun. 205, 911–916.

    Article  CAS  Google Scholar 

  50. Pereira, I.C., Abreu, I.A., Xavier, A.V., LeGall, J., and Teixeira, M. (1996) Nitrite reductase from Desulfovibrio desulfuricans (ATCC 27774). A heterooligomer heme protein with sulfite reductase activity, Biochem. Biophys. Res. Commun. 224, 611–618.

    Article  CAS  Google Scholar 

  51. Fleischman, R.D. et al. (1995) Whole genome random sequencing and assembly of Haemophilus influenzae Rd, Science 269, 496–512.

    Article  Google Scholar 

  52. Moreno, C., Costa, C., Moura, I., LeGall, J., Liu, M.Y., Payne, W.J., van Duk, C., and Moura, J.J.G. (1993) Electrochemical studies of the hexaheme nitrite reductase from Desulfovibrio desulfuricans ATCC 27774, Eur. J. Biochem. 212, 79–86.

    Article  CAS  Google Scholar 

  53. Strehlitz, B., Gründig, B., Schumacher, W., Kroneck, P.M.H., Vorlop, K.-D., and Kotte, H. (1996) A nitrite sensor based on a highly sensitive nitrite reductase mediator-coupled amperometric detection. Anal. Chem. 68, 807–816.

    Article  CAS  Google Scholar 

  54. Blackmore, R.S., Gadsby, P.M.A., Greenwood, C., and Thomson, A.J. (1990) Spectroscopic studies of partially reduced forms of Wolinella succinogenes nitrite reductase, FEBS Lett. 264, 257–262.

    Article  CAS  Google Scholar 

  55. Costa, C., Moura, J.J.G., Moura, L, Liu, M.-Y., Peck Jr., H.D., LeGall, J., Wang, Y., and Huynh, B.H. (1990) Hexaheme nitrite reductase from Desulfovibrio desulfuricans. Mössbauer and EPR characterisation of the heme groups, J. Biol. Chem. 265, 14382–14387.

    CAS  Google Scholar 

  56. Costa, C., Moura, J.J.G., Moura, I., Wang, Y., and Huynh, B.H. (1996) Redox properties of cytochrome c nitrite reductase from Desulfovibrio desulfuricans ATCC 27774, J. Biol. Chem. 271, 23191–23196.

    Article  CAS  Google Scholar 

  57. Blackmore, R.S., Brittain, T., Gadsby, P.M.A., Greenwood, C., and Thomson, A.J. (1987) Electron paramagnetic resonance and magnetic circular dichroism studies of a hexa-heme nitrite reductase from Wolinella succinogenes, FEBS Lett. 219, 244–248.

    Article  CAS  Google Scholar 

  58. Margoliash, E. and Frohwirt, N. (1959) Spectrum of horse heart cytochrome c,Biochem. J. 71, 570–572.

    CAS  Google Scholar 

  59. Bruschi, M., Hatchikian, C.E., Golovleva, L.A., and LeGall, J. (1977) Purification and characterization of cytochrome c 3, ferredoxin, and rubredoxin isolated from Desulfovibrio desulfuricans Norway, J. Bacteriol. 129, 30–38.

    CAS  Google Scholar 

  60. Andersson, K.K., Lipscomb, J.D., Valentine, M., Münck, E., and Hooper, A.B. (1986) Tetraheme cytochrome c 554 from Nitrosomonas europaea. Heme-heme interactions and ligand binding, J. Biol. Chem. 261, 1126–1138.

    CAS  Google Scholar 

  61. Hendrich, M.P., Logan, M., Andersson, K.K., Arciero, D.M., Lipscomb, J.D., and Hooper, A.B. (1994) The active site of hydroxylamine oxidoreductase from Nitrosomonas: evidence for a new metal cluster in enzymes, J. Am. Chem. Soc. 116, 11961–11968.

    Article  CAS  Google Scholar 

  62. Liu, M.-C., Liu, M.-Y., Payne, W.J., Peck Jr., H.D., LeGall, J., and DerVartanian, D.V. (1987) Comparative EPR-sudies on the nitrite reductases fromEscherichia coli and Wolinella succinogenes, FEBS Lett. 218, 227–230.

    Article  CAS  Google Scholar 

  63. Kastrau, D.H.W., Heiss, B., Kroneck, P.M.H., and Zumft, W.G. (1994) Nitric oxide reductase from Pseudomonas stutzeri,a novel cytochrome bc complex. Phospholipid requirement, electron paramagnetic resonance and redox properties, Eur. J. Biochem. 222, 293–303.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Einsle, O., Schumacher, W., Kurun, E., Nath, U., Kroneck, P.M.H. (1998). Cytochrome C Nitrite Reductase from Sulfurospirillum Deleyianum and Wolinella Succinogenes . In: Canters, G.W., Vijgenboom, E. (eds) Biological Electron Transfer Chains: Genetics, Composition and Mode of Operation. NATO ASI Series, vol 512. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5133-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5133-7_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6158-2

  • Online ISBN: 978-94-011-5133-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics