Skip to main content

Parameterization of Processes in Deep Convection Regimes

  • Chapter

Part of the book series: NATO Science Series ((ASIC,volume 516))

Abstract

Convection to large depth is the generation mechanism for the deep water masses circulating in the world ocean, and the few known sites of deep convection can thus be regarded as the sources for the lower branch of the thermohaline circulation. Convection activity therefore has an essential influence on the water mass properties and their volumes, and possibly also on the forcing of the circulation. For this reason we seek to understand the processes and consequences of deep convection and to correctly represent them in numerical circulation models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anati, D. and H. Stommel (1970). The initial phase of deep-water formation in the northwestern mediterranean, during medoc’69. Cah. Oceanogr. 22, 347–351.

    Google Scholar 

  • Clarke, R. A. and J. C. Gascard (1983). The formation of Labrador Sea Water. Part i: Large-scale processes. J. Phys. Oceanogr. 13,1764–1778.

    Article  Google Scholar 

  • Dewar, W. K. and P. D. Killworth (1990). On the cylinder collapse problem, mixing, and the merger of isolated eddies. J. Phys. Oceanogr. 20(10), 1563–1575.

    Article  Google Scholar 

  • Dickson, R., J. Lazier, P. Rhines, and J. Swift (1996). Long-term coordinated changes in the convective activity of the North Atlantic. Prog. Oceanogr. 38, 241–295.

    Article  Google Scholar 

  • Fernando, H. J. S., D. L. Boyer, and R. Chen (1991). Effects of rotation on convective turbulence. J. Fluid Mech. 228,513–547.

    Google Scholar 

  • Gascard, J. C. (1978). Mediterranean deep water formation, baroclinic instability and oceanic eddies. Oceanol. Acta 1,315–330.

    Google Scholar 

  • Gent, P. and J. McWilliams (1990). Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr. 20,150–155.

    Article  Google Scholar 

  • Green, J. A. (1970). Transfer properties of the large-scale eddies and the general circulation of the atmosphere. Quat. J. Roy. Met. Soc. 96,157–185.

    Article  Google Scholar 

  • Haidvogel, D. B., L. Wilkin, and R. Young (1991). A semi-spectral primitive equation ocean circulation model using vertical sigma and orthogonal curvilinear horizontal coordinates. J. Comput. Phys. 94,151–185.

    Article  Google Scholar 

  • Helfrich, K. R. and U. Send (1988). Finite-amplitude evolution of two-layer geostrophic vortices. J. Fluid Mech. 197,331–348.

    Article  Google Scholar 

  • Hogg, N. G. and H. M. Stommel (1985). The heton, an elementary interaction between discrete baroclinic geostrophic vortices, and its implications concerning eddy heat-flow. Proc. Roy. Soc. London A397,1–20.

    Google Scholar 

  • Jones, H. and J. Marshall (1993). Convection with rotation in a neutral ocean; a study of open ocean deep convection. J. Phys. Oceanogr. 23,1009–1039.

    Article  Google Scholar 

  • Jones, H. and J. Marshall (1998). Restratification after deep convection. J. Phys. Oceanogr.. in press.

    Google Scholar 

  • Killworth, P. D. (1983). Deep convection in the world ocean. Rev. Geophys. Space Phys. 21(1),1–26.

    Article  Google Scholar 

  • Klinger, B. A., J. Marshall, and U. Send (1996). Representation of convective plumes by vertical adjustment. J. Geophys. Res. 101,18175–18182.

    Article  Google Scholar 

  • Krahmann, G. (1997). Saisonale und zwischenjährliche Variabilität im westlichen Mit-telmeer - Analyse historischer Daten. Ph. D. thesis, Institut für Meereskunde, Kiel.

    Google Scholar 

  • Lab Sea Group, T. (1998). The Labrador Sea deep convection experiment. Bull. Amer. Met. Soc.. in print.

    Google Scholar 

  • Lazier, J. R. (1973). The renewal of Labrador Sea water. Deep-Sea Res. 20, 341–353.

    Google Scholar 

  • Lazier, J. R. (1980). Oceanographic conditions at ocean weather ship “Bravo”, 1964–1974. Atmosph.-Ocean 18(3), 227–238.

    Article  Google Scholar 

  • Lilly, J. M. (1998). The annual cycle of water properties in the Labrador Sea. In 1998 Ocean Sciences Meeting. American Geophysical Union. Supplement to EOS Vol.79 (1).

    Google Scholar 

  • Madec, G., F. Lott, P. Delecluse, and M. Crepon (1996). Large-scale preconditioning of deep-water formation in the Northwestern Mediterranean Sea. J. Phys. Oceanogr. 26,1393–1408.

    Article  Google Scholar 

  • Marshall, J. and F. Schott (1998). Open-ocean convection: observations, theory and models. Rev. Geophys.. in print.

    Google Scholar 

  • McWilliams, J. C. (1984). The emergence of isolated vortices in turbulent flow. J. Fluid Mech. 164,21–43.

    Article  Google Scholar 

  • Pickart, R. S., W. M. Smethie, J. R. N. Lazier, E. P. Jones, and W. J. Jenkins (1996). Eddies of newly formed upper labrador sea water. J. Geophys. Res. 101 (C90), 20711–20726.

    Article  Google Scholar 

  • Rhein, M. (1995). Deep water formation in the western mediterranean. J. Geophys. Res. 100,6943–6959.

    Article  Google Scholar 

  • Schmitt, R. (1998). Double-diffusive convection: Its role in ocean mixing and parameterization schemes for large scale modeling. In Ocean Modeling and Parameterization. Kluwer Academic Publishers. E. P. Chassignet and J. Verron, Eds., 215–234.

    Chapter  Google Scholar 

  • Schott, F. and K. D. Leaman (1991). Observations with moored acoustic doppler current profilers in the convection regime in the Golfe du Lion. J. Phys. Oceanogr. 21, 558–574.

    Article  Google Scholar 

  • Schott, F., M. Visbeck, and J. Fischer (1993). Observations of vertical currents and convection in the central Greenland Sea during the winter of 1988/89. J. Geophys. Res. 98,14401–14421.

    Article  Google Scholar 

  • Schott, F., M. Visbeck, U. Send, J. Fischer, L. Stramma, and Y. Desaubies (1996). Observations of deep convection in the gulf of lions, northern mediterranean, during the winter of 1991/92. J. Phys. Oceanogr. 26,505–524.

    Article  Google Scholar 

  • Send, U., J. Font, and C. Mertens (1996). Recent observation indicates convection’s role in deep circulation. EOS 77(7), 61–65.

    Article  Google Scholar 

  • Send, U. and J. Marshall (1995). Integral effects of deep convection. J. Phys. Oceanogr. 25, 855–872.

    Article  Google Scholar 

  • Send, U., F. Schott, F. Gaillard, and Y. Desaubies (1995). Observation of a deep convection regime with acoustic tomography. J. Geophys. Res. 100,6927–6941.

    Article  Google Scholar 

  • Stommel, H., A. Voorhis, and D. Webb (1971). Submarine clouds in the deep ocean. Am. Scientist 59,717–723.

    Google Scholar 

  • Tandon, A. and C. Garrett (1996). On a recent parameterization of mesoscale eddies. J. Phys. Oceanogr. 26,406–411.

    Article  Google Scholar 

  • Visbeck, M., J. Fischer, and F. Schott (1995). Preconditioning the Greenland Sea for deep convection: Ice formation and ice drift. J. Geophys. Res. 100,18489–18502.

    Article  Google Scholar 

  • Visbeck, M., J. Marshall, T. Haine, and M. Spall (1997). Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J. Phys. Oceanogr. 27,381–402.

    Article  Google Scholar 

  • Visbeck, M., J. Marshall, and H. Jones (1996). Dnamics of isolated convective regions in the ocean. J. Phys. Oceanogr. 26,1721–1734.

    Article  Google Scholar 

  • Worcester, P. F., J. F. Lynch, W. M. L. Morawitz, R. Pawlowicz, P. J. Sutton, B. D. Cornuelle, O. M. Johannessen, W. H. Munk, W. B. Owens, R. Shuchman, and R. C. Spindel (1993). Evolution of the large-scale temperature field in the green-land sea during 1988–89 from tomographic measurements. Geophys. Res. Letters 20, 2211–2214.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Send, U., Käse, R.H. (1998). Parameterization of Processes in Deep Convection Regimes. In: Chassignet, E.P., Verron, J. (eds) Ocean Modeling and Parameterization. NATO Science Series, vol 516. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5096-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5096-5_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5229-7

  • Online ISBN: 978-94-011-5096-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics