Skip to main content

Turbulent Mixing in the Ocean

Intensity, causes, and consequences

  • Chapter
Ocean Modeling and Parameterization

Part of the book series: NATO Science Series ((ASIC,volume 516))

Abstract

The distributions of flows and water properties in the world’s oceans exhibit structure on a vast range of space and time scales. The largest scales (of order 107m) are limited chiefly by the size of ocean basins and ultimately of the earth. On the other end of the spectrum, gradients in velocity and water properties exist to sub-meter scales (see below). The total range of spatial scales is thus some nine or more orders of magnitude. The temperature and velocity structures on scales of a few centimeters evolve on a time scale of seconds to minutes (Dillon, 1984); scientists conducting climate studies seek to understand ocean variability on periods of decades to centuries or longer. This gives us in time, a span of at least nine orders of magnitude too. Between these extremes is of course a continuous wavenumber—frequency spectrum of ocean kinetic and potential energy encompassing a host of physical processes (Figure 1). Given these space and time-scale ranges, it is obviously impossible to develop global-scale numerical models that simultaneously resolve all possible oceanographic motions over long times.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker, M.A. and C.H. Gibson (1987) Sampling turbulence in the stratified ocean: Statistical consequences of strong intermittency. J. Physical Oceanography 17, 1817–1836.

    Article  Google Scholar 

  • Batchelor, G.K. (1949) Small-scale variation of convected quantities like temperature in a turbulent fluid, Pt 1, J. Fluid Mechanics 5, 113–133.

    Article  Google Scholar 

  • Bell, T.H. (1975a) Topographically generated internal waves in the open ocean, J. Geophysical Research 80, 320–327, 1975a.

    Article  Google Scholar 

  • Bell, T.H. (1975b) Lee waves in stratified flows with simple harmonic time dependence, J. Fluid Mechanics 67, 705–722.

    Article  Google Scholar 

  • Beckmann, A., 1998: Representation of bottom boundary layer processes in numerical ocean circulation models. In Ocean Modeling and Parameterization, E.P. Chassignet and J. Verron (Eds.), Kluwer Academic Publishers, 135–154.

    Chapter  Google Scholar 

  • Bryan, K. (1969) A numerical method for the study of the circulation of the world ocean, J. Computational Physics 4, 347–376.

    Article  Google Scholar 

  • Bryan, F. (1987) Parameter sensitivity of primitive equation ocean general circulation models, J. Physical Oceanography 17, 970–985.

    Article  Google Scholar 

  • Cairns, J.L. and G.O. Williams (1976) Internal wave observations from a midwater Float, 2, J. Geophysical Research 81, 1943–1950.

    Article  Google Scholar 

  • Dillon, T.M. (1984) The energetics of overturning structures: Implications for the theory of fossil turbulence, J. Physical Oceanography 14, 541–549.

    Article  Google Scholar 

  • Dugan, J.P., W. D. Morris, and B.S. Okawa (1986) Horizontal wavenumber distribution of potential energy in the ocean, J. Geophysical Research 91 12,993–13,000.

    Article  Google Scholar 

  • Eriksen, C.C. (1985) Implications of ocean bottom reflection for internal wave Spectra and mixing, J. Physical Oceanography 15, 1145–1156.

    Article  Google Scholar 

  • Eriksen, C.C. (1998) Internal wave reflection and mixing at Fieberling Guyot, J. Geophysical Research,in press.

    Google Scholar 

  • Firing, E. (1987) Deep zonal currents in the central equatorial Pacific, J. Marine Research 45, 791–812.

    Article  Google Scholar 

  • Gargett, A.E., P.J. Hendricks, T.B. Sanford, T.R. Osborn, and A.J. Williams III (1981) A composite spectrum of vertical shear in the ocean, J. Physical Oceanography 11, 1258–1271.

    Article  Google Scholar 

  • Gargett, A.E., T.R. Osborn, and P.W. Nasmyth (1984) Local isotropy and the decay of turbulence in a stratified fluid, J. Fluid Mechanics 144, 231–280.

    Article  Google Scholar 

  • Garrett, C. and D. Gilbert (1988) Estimates of vertical mixing by internal waves reflected off a sloping bottom, in: J.C.J. Nihoul and B.M. Jamart, (eds.), Small-Scale Turbulence and Mixing in the Ocean, Proceedings of the 19th International Liege Colloquium on Ocean Hydrodynamics, Elsevier, New York, pp. 405–424.

    Google Scholar 

  • Garrett, C. and W. H. Munk (1972) Space time scales of internal waves, Geophysical Fluid Dynamics 2, 225–264.

    Article  Google Scholar 

  • Garrett, C. and W. H. Munk (1975) Space time scales of internal waves: A progress report, J. Geophysical Research 80, 291–297.

    Article  Google Scholar 

  • Gent, P.R. and J.C. McWilliams (1990) Isopycnal mixing in ocean circulation models, J. Physical Oceanography 20, 9686–9698.

    Article  Google Scholar 

  • Gibson, C.H. (1982) Alternative interpretations for microstructure patches in the thermocline, J. Physical Oceanography 12, 374–383.

    Article  Google Scholar 

  • Gregg, M.C., H. Peters, J.C. Wesson, N.S. Oakey, and T.J. Shay (1985) Intensive measurements of turbulence and shear in the equatorial undercurrent, Nature 318, 140–144.

    Article  Google Scholar 

  • Gregg, M.C. (1987) Diapycnal mixing in the thermocline: A review, J. Geophysical Research 92, 5249–5286.

    Article  Google Scholar 

  • Gregg, M.C. (1989) Scaling turbulent dissipation in the thermocline, J. Geophysical Research 94, 9686–9698.

    Article  Google Scholar 

  • Gregg, M.C., D.P. Winkle, T.B. Sanford, and H. Peters (1996) Turbulence produced by internal waves in the oceanic thermocline at mid-and low latitudes, Dynamics of the Atmosphere and Oceans 24, 1–14.

    Article  Google Scholar 

  • Henyey, F.S., J. Wright, and S.M. Flatte (1986) Energy and action flow through the Internal wave field: An Eikonal approach, J. Geophysical Research 91, 8487–8495.

    Article  Google Scholar 

  • Henyey, F.S. (1991) Scaling of internal wave model predictions for the dynamics of oceanic internal waves, in: P. Muller and D. Henderson (eds.) Proceedings of the ‘Aha Juliko’a Hawaiian Winter Workshop, University of Hawaii at Manoa, Honolulu, pp. 233–236.

    Google Scholar 

  • Hogg, N.G., P. Biscaye, W. Gardner, and W J Schmitz (1982) On the transport and modification of antarctic bottom water in the Vema Channel J. Marine Research 40, Suppl., 231–363.

    Google Scholar 

  • Huang, R.X., Mixing and energetics of the oceanic thermohaline circulation J. Physical Oceanography, submitted, 1998.

    Google Scholar 

  • Jeffreys, H. (1925) On Fluid motions produced by differences of temperature and humidity, Quarterly J. Royal Meteorological Society 51, No. 216, 347–356.

    Article  Google Scholar 

  • Joyce, T.M. (1977) A note on the lateral mixing of water masses, J. Physical Oceanography 7, 626–629.

    Article  Google Scholar 

  • Kunze, E. (1985) Near-inertial wave propagation in geostrophic shear, J. Physical Oceanography 15,544–565.

    Article  Google Scholar 

  • Kunze, E., R.W. Schmitt, and J.M. Toole (1995) The energy balance in a warm-core ring’s near-inertial critical layer, J. Physical Oceanography 25, 942–957.

    Article  Google Scholar 

  • Kunze, E. and J.M. Toole (1997) Tidally-driven vorticity, diurnal shear, and turbulence atop fieberling seamount, J. Physical Oceanography 27, 2663–2693.

    Article  Google Scholar 

  • Large, W., 1998: Modeling and parameterizing ocean planetary boundary layers. In Ocean Modeling and Parameterization, E.P. Chassignet and J. Verron (Eds.), Kluwer Academic Publishers, 81–120.

    Chapter  Google Scholar 

  • Ledwell, J.R, A.J. Watson, and C.B. Law (1993) Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment, Nature 364, 701–703.

    Article  Google Scholar 

  • Ledwell, J.R, A.J. Watson, and C.B. Law, Mixing of a tracer in the pycnoclineJ. Geophysical Research, submitted, 1998.

    Google Scholar 

  • Lien, R.-C, D.A. Caldwell, M.C. Gregg, and J.N. Mourn (1995) Turbulence variability at the equator in the central Pacific at the beginning of the 1991–93 El Niño, J. Geophysical Research 100, 6881–6898.

    Article  Google Scholar 

  • Lueck, R. and R. Reid (1984) On the production and dissipation of mechanical energy in the ocean, J. Geophysical Research 89, 3439–3445.

    Article  Google Scholar 

  • Lueck, R. and T. Mudge (1997) Topographically-induced mixing around a shallow seamount, Science 276, 1831–1833.

    Article  Google Scholar 

  • Marshall, J., D. Jamous, and J. Nilsson, Reconciling ‘thermodynamic’ and ‘dynamic’ methods of computation of water-mass transformation rates, Manuscript in preparation, 1998.

    Google Scholar 

  • Morris, M., N. Hogg, and W.B. Owens (1997) Diapycnal mixing estimated from advective budgets in the deep Brazil Basin, International WOCE Newsletter 28, 23–25.

    Google Scholar 

  • Mourn, J.N., D.A. Caldwell, and C.A. Paulson (1989) Mixing in the equatorial surface layer and thermocline, J. Geophysical Research 94, 2005–2021.

    Article  Google Scholar 

  • Mourn, J.N. (1990) Profiler measurements of vertical velocity microstructure in the ocean, J. Atmospheric and Oceanic Technology 7, 323–333.

    Article  Google Scholar 

  • Munk, W.H. (1966) Abyssal recipes, Deep-Sea Research 13, 707–730.

    Google Scholar 

  • Munk, W.H. and C. Wunsch, The moon and mixing: Abyssal recipes II Manuscript in preparation, 1998.

    Google Scholar 

  • Nasmyth, P. (1970) Oceanic turbulence. Ph.D. thesis, Institute of Oceanography, University of British Columbia, 69 pp.

    Google Scholar 

  • Nurser, A.J.G. R. Marsh, and R.G. Williams, Diagnosing water mass formation from air—sea fluxes and surface mixing, Manuscript in preparation, 1998.

    Google Scholar 

  • Oakey, N.S. (1982) Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements, J. Physical Oceanography 12, 256–271.

    Article  Google Scholar 

  • Osborn, T.R. and C.B. Cox (1972) Oceanic finestructure, Geophysical Fluid Dynamics 3, 321–345.

    Article  Google Scholar 

  • Osborn, T.R. (1980) Estimates of the local rate of diffusion from dissipation measurements, J. Physical Oceanography 10 83–89.

    Article  Google Scholar 

  • Osborn, T.R. and W.R. Crawford (1980) Turbulent velocity measurements with an airfoil probe, in L. Hasse, F. Dobson and R. Davis (eds.), Instruments and Methods of Air—Sea Interaction,Plenum Press.

    Google Scholar 

  • Osborn, T.R. and R.G. Lueck (1985a) Turbulence measurements with a towed body, J. Atmospheric and Oceanic Technology 2, 517–527.

    Article  Google Scholar 

  • Osborn, T.R. and R.G. Lueck (1985b) Turbulence measurements with a submarine, J. Physical Oceanography 15, 1502–1520.

    Article  Google Scholar 

  • Pacanowski, R.C. (1995) MOM2 documentation, user’s guide and reference manual, GFDL Ocean Group Technical Report 3 Princeton, NJ.

    Google Scholar 

  • Peters, H., M.C. Gregg, and J.M. Toole (1988) On the parameterization of equatorial turbulence, J. Geophysical Research 93, 1199–1218.

    Article  Google Scholar 

  • Polzin, K.L., J.M. Toole, and R.W. Schmitt (1995) Finescale parameterizations of turbulent dissipation, J. Physical Oceanography 25, 306–328.

    Article  Google Scholar 

  • Polzin, K.L. and E. Firing (1997) Estimates of diapycnal mixing from I8s, International WOCE Newsletter 29, 39–41.

    Google Scholar 

  • Polzin, K.L., Abyssal Mixing: Inertial sub-range solution for the energy balance of the finescale internal wave field, Manuscript in preparation, 1998.

    Google Scholar 

  • Polzin, K.L., E. Kunze, J.M. Toole, and R.W. Schmitt, The partition of small-scale energy into internal waves and geostrophic motions, Manuscript in preparation, 1998.

    Google Scholar 

  • Polzin, K.L., K.G. Speer, J.M. Toole, and R.W. Schmitt (1996) Intense mixing of Antarctic Bottom Water in the equatorial Atlantic Ocean, Nature 380, 54–57.

    Article  Google Scholar 

  • Polzin, K.L., J.M. Toole, G.R Ledwell, and R.W Schmitt (1997) Spatial variability of turbulent mixing in the abyssal ocean, Science 276, 93–96, 1997.

    Article  Google Scholar 

  • Price, J.F., 1998: Parameterization of the fair weather Ekman layer. In Ocean Modeling and Parameterization, E.P. Chassignet and J. Verron (Eds.), Kluwer Academic Publishers, 121–134.

    Chapter  Google Scholar 

  • Price, J.F., and J. Yang, 1998: Marginal sea overflows for climate simulations. In Ocean Modeling and Parameterization, E.P. Chassignet and J. Verron (Eds.), Kluwer Academic Publishers, 155–170.

    Chapter  Google Scholar 

  • Price, J.F., and M. O’Neil Baringer (1994) Outflows and deep water production by marginal seas, Progress in Oceanography 33, 161–200.

    Article  Google Scholar 

  • Reid, J.L., On the total geostrophic circulation of the Pacific Ocean: Flow patterns, tracers and transports, Manuscript in preparation, 1998.

    Google Scholar 

  • Richards, K., 1998: Interleaving at the Equator. In Ocean Modeling and Parameterization, E.P. Chassignet and J. Verron (Eds.), Kluwer Academic Publishers, 235–252.

    Chapter  Google Scholar 

  • Robbins, P.E., and J.M. Toole (1997) The dissolved silica budget as a constraint on the meridional overturning circulation of the Indian Ocean, Deep-Sea Research 141, 879–906.

    Google Scholar 

  • Roemmich, D., and T. McCalister (1989) Large-scale circulation of the North Pacific Ocean. Progress. in Oceanography 22, 171–204, 1989.

    Article  Google Scholar 

  • Roemmich, D., S. Hautala, and D. Rudnick (1996) Northward abyssal transport through the Samoan passage and adjacent regions, J. Geophysical Research 101, 14,039–14,056.

    Article  Google Scholar 

  • Sandstrom, J.W. (1916) Meteorologische studien im Schwedischen hochgebirge, Goteborgs K. Ventenskaps-och Vitterhetssamhalles Handl., Ser. 4 22, No. 2, 48 pp.

    Google Scholar 

  • Saunders, P.M. (1987) Flow through Discovery Gap, J. Physical Oceanography 17, 631–643.

    Article  Google Scholar 

  • Schmitt, R., 1998: Double-diffusive convection: Its role in ocean mixing and parameterization schemes for large scale modeling. In Ocean Modeling and Parameterization, E.P. Chassignet and J. Verron (Eds.), Kluwer Academic Publishers, 215–234.

    Chapter  Google Scholar 

  • Schudlich, R.R. and J.F. Price (1992) Diurnal cycles of turbulent dissipation, current and temperature in a model of the equatorial upper ocean, J. Physical Oceanography 97, 5409–5422.

    Google Scholar 

  • Send, U., and R. Käse, 1998: Processes and effects of deep convection. In Ocean Modeling and Parameterization, E.P. Chassignet and J. Verron (Eds.), Kluwer Academic Publishers, 191–214.

    Chapter  Google Scholar 

  • Speer, K.G. (1998) A Note on average cross-isopycnal mixing in the North Atlantic Ocean, Deep-Sea Research 144,in press.

    Google Scholar 

  • St. Laurent, L. and R.W. Schmitt, The contribution of salt fingers to vertical mixing in the North Atlantic Tracer Release Experiment, Manuscript in preparation, 1998.

    Google Scholar 

  • Toole, J.M., R.W. Schmitt, K.L. Polzin, and E. Kunze (1997) Near-boundary mixing above the flanks of a mid-latitude seamount, J. Geophysical Research 102,947–959.

    Article  Google Scholar 

  • Whitehead, J.A. and L.V. Worthington (1982) The flux and mixing rates of Antarctic Bottom Water within the North Atlantic, J. Geophysical Research 87, 7903–7924.

    Article  Google Scholar 

  • Wijffels, S.E., J.M. Toole, H.L. Bryden, R.A. Fine, W.J. Jenkins, and J.L. Bullister (1996) The Water Masses and Circulation at 10°N, Deep-Sea Research 143, 501–544.

    Google Scholar 

  • Winters, K.B. and E.A. D’Asaro (1996) Diascalar flux and the rate of fluid mixing, J. Fluid Dynamics 317, 179–193.

    Google Scholar 

  • Wunsch, C., D.-X. Hu, and B. Grant (1983) Mass, heat, salt, and nutrient fluxes in the South Pacific Ocean, J. Physical Oceanography 13, 725–753.

    Article  Google Scholar 

  • Young, W.R., P.B. Rhines, and C.J.R. Garrett (1982) Shear flow dispersion, internal waves and horizontal mixing in the ocean, J. Physical Oceanography 12, 515–517.

    Article  Google Scholar 

  • Zhang, H.-M., and L.D. Talley (1998) Heat and buoyancy budgets and mixing rates in the upper thermocline. J. Physical Oceanography,accepted.

    Google Scholar 

  • Zhang, Z., R.W. Schmitt, and R.X. Huang, The relative influence of diapycnal mixing and hydrologic forcing on the stability of the thermohaline circulationJ. Physical Oceanography, submitted, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Toole, J.M. (1998). Turbulent Mixing in the Ocean. In: Chassignet, E.P., Verron, J. (eds) Ocean Modeling and Parameterization. NATO Science Series, vol 516. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5096-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5096-5_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5229-7

  • Online ISBN: 978-94-011-5096-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics