Skip to main content

The Representation of Bottom Boundary Layer Processes in Numerical Ocean Circulation Models

  • Chapter
Ocean Modeling and Parameterization

Part of the book series: NATO Science Series ((ASIC,volume 516))

Abstract

Processes in the oceanic bottom boundary layer (BBL) have received much less attention in ocean modeling than surface mixed layer processes. Since the ocean is mainly driven from the surface, high vertical resolution is traditionally placed in the upper ocean. Consequently, the only effect of the lower boundary was considered to be its effect as a sink for momentum and energy. But BBLs are also the place for enhanced diapycnal mixing (especially over steep and rough topography), wind-driven cross-slope transports of tracers and particles (including sediment), and last but not least, gravity-driven dense water spreading. Thus, they play an important role for both local and large-scale ocean dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez, A. and J. Tintoré, 1998: Topographic stress: Importance and parameterization. In Ocean Modeling and Parameterization, E.P. Chassignet and J. Verrou (Eds.), Kluwer Academic Publishers, 327–350.

    Chapter  Google Scholar 

  • Alvarez, A., J. Tintoré, G. Holloway, M. Eby and J.-M. Beckers, 1994: Effect of topographic stress on circulation in the western Mediterranean. J. Geophys. Res.,99, 16053–16064.

    Article  Google Scholar 

  • Beckmann, A and R. Döscher, 1997: A method for improved representation of dense water spreading over topography in geopotential-coordinate models. J. Phys. Oceanogr., 27, 581–591.

    Article  Google Scholar 

  • Beckmann, A and D.B. Haidvogel, 1997: A numerical simulation of flow at Fieberling Guyot. J. Geophys. Res.,102, 5595–5613.

    Article  Google Scholar 

  • Brink, K.H., 1989: The effect of stratification on seamount-trapped waves, Deep-Sea Res., 36, 825–844.

    Article  Google Scholar 

  • Brink, K.H., 1995: Tidal and lower frequency currents above Fieberling Guyot, J. Geophys. Res.,100 10817–10832.

    Article  Google Scholar 

  • Chapman, D.C. and G. Gawarkiewicz, 1995: Offshore transport of dense water in the presence of a submarine canyon. J. Geophys. Res.,100, 13373–13387.

    Article  Google Scholar 

  • Dietrich, D.E., M.G. Marietta and P.J. Roache, 1987: An ocean modelling system with turbulent boundary layers and topography). a model description. Int. J. Num. Meth. Fluids, 7 833–855.

    Article  Google Scholar 

  • DYNAMO group (Barnard, S., B. Barmier, A. Beckmann, C.W. Böning, M. Coulibaly, D’A. DeCuevas, J. Dengg, Ch. Dieterich, U. Ernst, P. Herrmann, Y. Jia, P.D. Kill-worth, J. Kröger, M.-M. Lee, Ch. LeProvost, J.-M. Molines, A.L. New, A. Oschlies, T. Reynaud, L.J. West, J. Willebrand), 1997: DYNAMO - Dynamics of North Atlantic Models: Simulation and assimilation with high resolution models. Ber. Inst. f. Meereskunde Kiel, 294, 333 pp.

    Google Scholar 

  • Eby, M. and G. Holloway, 1994: Sensitivity of a large-scale ocean model to a parameterization of topographic stress. J. Phys. Oceanogr., 24, 2577–2588.

    Article  Google Scholar 

  • Fohrmann, H., J.O. Backhaus, F. Blaume and J Rumohr, 1998: Sediments in bottom arrested gravity plumes — numerical case studies. Submitted to J. Phys. Oceanogr.

    Google Scholar 

  • Gawarkiewicz, G. and D.C. Chapman, 1992: The role of stratification in the formation and maintenance of shelf-break fronts. J. Phys. Oceanogr., 22, 753–772.

    Article  Google Scholar 

  • Gawarkiewicz, G. and D.C. Chapman, 1995: A numerical study of dense water formation and transport on a shallow, sloping continental shelf. J. Geophys. Res., 100, 4489–4507.

    Article  Google Scholar 

  • Gnanadesikan, A., 1998: Representing the bottom boundary layer in the GFDL ocean model: Model framework, dynamical impacts, and parameter sensitivity. Submitted to J. Phys. Oceanogr.

    Google Scholar 

  • Haidvogel, D.B. and K.H. Brink, 1986: Mean currents driven by topographic drag over the continental shelf and slope. J. Phys. Oceanogr., 16, 2159–2171.

    Article  Google Scholar 

  • Haidvogel, D.B., J.L. Wilkin and R.E. Young, 1991: A semi-spectral primitive equation ocean circulation model using vertical sigma and orthogonal curvilinear horizontal coordinates. J. Comp. Phys., 94, 151–185.

    Article  Google Scholar 

  • Haidvogel, D.B., A. Beckmann, D.C. Chapman and R.-Q. Lin, 1993: Numerical simulation of flow around a tall isolated seamount: Part II: Resonant generation of trapped waves. J. Phys. Oceanogr.,23, 2373–2391.

    Article  Google Scholar 

  • Haidvogel, D.B. and A. Beckmann, 1998: Numerical modeling of the coastal ocean. In: Brink, K.H. and A.R. Robinson (Eds.): The Sea, Vol.10, 457–482.

    Google Scholar 

  • Holloway, G., 1992: Representing topographic stress for large-scale ocean models. J. Phys. Oceanogr.,22, 1033–1046.

    Article  Google Scholar 

  • Jiang, L. and R.W. Garwood, 1995: A numerical study of three-dimensional dense water bottom plumes on a Southern Ocean continental slope. J. Geophys. Res., 100, 18471–18488.

    Article  Google Scholar 

  • Jiang, L. and R.W. Garwood, 1996: Three-dimensional simulations of overflows on continental slopes. J. Phys. Oceanogr.,26, 1214–1233.

    Article  Google Scholar 

  • Jungclaus, J.H. and J.O. Backhaus, 1994: Application of a transient reduced gravity plume model to the Denmark Strait Overflow. J. Geophys. Res., 99, 12375–12396.

    Article  Google Scholar 

  • Jungclaus, J.H., J.O. Backhaus and H. Fohrmann, 1995: Outflow of dense water from the Storfjord in Svalbard: A numerical model study. J. Geophys. Res., 100, 24719–24728.

    Article  Google Scholar 

  • Jungclaus, J.H. and G.L. Mellor, 1998: A three-dimensional model study of the Mediterranean outflow. Submitted to Journal of Marine Systems.

    Google Scholar 

  • Killworth, P.D. and N.R. Edwards, 1998: A turbulent bottom boundary layer code for use in numerical ocean models. Submitted to J. Phys. Oceanogr.

    Google Scholar 

  • Klinck, J.M., 1996: Circulation near submarine canyons: a modeling study. J. Geophys. Res., 101, 1211–1223.

    Article  Google Scholar 

  • Kunze, E. and J.M. Toole, 1997: Tidally driven vorticity, diurnal shear, and turbulence atop Fieberling seamount. J. Phys. Oceanogr., 27, 2663–2693.

    Article  Google Scholar 

  • Large, W., 1998: Modeling and parameterizing ocean planetary boundary layers. In Ocean Modeling and Parameterization, E.P. Chassignet and J. Verron (Eds.), Kluwer Academic Publishers, 81–120.

    Chapter  Google Scholar 

  • Large, W.G., McWilliams, J.C. and S.C. Doney, 1994: Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363–403.

    Article  Google Scholar 

  • MacCready, P. and P.B. Rhines, 1993: Slippery bottom boundary layers on a slope. J. Phys. Oceanogr., 23, 5–22.

    Article  Google Scholar 

  • Mellor, G. L. and T. Yamada, T., 1982: Development of a turbulent closure model for geophysical fluid problems, Rev. Geophys., 20, 851–875.

    Article  Google Scholar 

  • Middleton, J.F. and D. Ramsden, 1996: The evolution of the bottom boundary layer on the sloping continental shelf: a numerical study. J. Geophys. Res., 101, 18061–18077.

    Article  Google Scholar 

  • Price, J.F. and M. O’Neil Baringer, 1994: Outflows and deep water productions by marginal seas. Prog. Oceanogr., 33, 161–200.

    Article  Google Scholar 

  • Price, J.F., and J. Yang, 1998: Marginal sea overflows for climate simulations. In Ocean Modeling and Parameterization, E.P. Chassignet and J. Verron (Eds.), Kluwer Academic Publishers, 155–170.

    Chapter  Google Scholar 

  • Ramsden, D., 1995a: Response of an oceanic bottom boundary layer on a slope to interior flow. Part I: Time-independent interior flow. J. Phys. Oceanogr., 25, 1672–1687.

    Article  Google Scholar 

  • Ramsden, D. 1995b: Response of an oceanic bottom boundary layer on a slope to interior flow. Part II: Time-dependent interior flow. J. Phys. Oceanogr., 25, 1688–1695.

    Article  Google Scholar 

  • Song, Y. and D.B. Haidvogel, 1994: A semi-implicit ocean circulation model using a generalized topography-following coordinate. J. Comp. Phys., 115, 228–244..

    Article  Google Scholar 

  • Trowbridge, J.H., and S.J. Lentz, 1991: Asymmetric behavior of an oceanic boundary layer above sloping bottom. J. Phys. Oceanogr., 21 1171–1185.

    Article  Google Scholar 

  • Verron, J., D. Renouard, D. L. Boyer, G. Chabert d’Hières, T. Nguyen and H. Didelle, 1995b: Rectified flow over an elongated topographic feature along a vertical wall. J. Phys. Oceanogr.,25, 2185–2203.

    Article  Google Scholar 

  • Weatherly, G.L., and P.J. Martin, 1978: On the structure and dynamics of the oceanic bottom boundary layer. J. Phys. Oceanogr., 8, 557–570.

    Article  Google Scholar 

  • White, M., 1994: Tidal and subtidal variability in the sloping benthic boundary layer. J. Geophys. Res.,99, 7851–7864

    Article  Google Scholar 

  • Wimbush, M. and W. Munk, 1970: The benthic boundary layer. In: A.E. Maxwell (Ed.), The Sea: Ideas and Observations on Progress in the Study of the Seas, 4, 731–758.

    Google Scholar 

  • Winton, M. and R. Hallberg, 1998: Simulation of density-driven frictional downslope flow on z-coordinate ocean models. Submitted to J. Phys. Oceanogr.

    Google Scholar 

  • Zilitinkevich, S. and D.V. Mironov, 1996: A multi-limit formulation for the equilibrium depth of a stably stratified boundary layer. Bound.-Layer Meteor., 81, 325–351.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Beckmann, A. (1998). The Representation of Bottom Boundary Layer Processes in Numerical Ocean Circulation Models. In: Chassignet, E.P., Verron, J. (eds) Ocean Modeling and Parameterization. NATO Science Series, vol 516. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5096-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5096-5_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5229-7

  • Online ISBN: 978-94-011-5096-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics