Skip to main content

Modeling and Parameterizing the Ocean Planetary Boundary Layer

  • Chapter
Ocean Modeling and Parameterization

Part of the book series: NATO Science Series ((ASIC,volume 516))

Abstract

The portion of a geophysical fluid that is directly influenced by the presence of a boundary is referred to as a planetary boundary layer, PBL. The two most notable examples are the atmospheric boundary layer, ABL, where the lower surface is either land or ocean, and the ocean’s surface boundary layer, OBL, bounded above by the atmosphere. Although the focus here is the OBL, it should become evident that the observational database is incomplete in some important ways and that the state of modeling is immature relative to that of the atmosphere. Therefore, in the absence of evidence to the contrary, ABL theory, observations and models are presented as being similar to the OBL. However, it is important to identify unique characteristics of the OBL. The ocean’s benthic boundary layer and its parameterization are the subjects of Beckmann (1998, this volume). Shallow coastal regions where the OBL and benthic boundary layer interact, and where ocean tidal mixing can be strong are excluded. Also excluded are ocean interior mixing processes, except when they interact with the OBL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anis, A., and J.N. Mourn (1992) The superadiabatic surface layer of the ocean during convection. J. Phys. Oceanogr., 22, 1221–1227.

    Article  Google Scholar 

  • Ayotte, K.W., P.P. Sullivan, A. Andren, S.C. Doney, A.A.M. Holtslag, W.G. Large, J.C. McWilliams, C.-H. Moeng, M.J. Otte, J.J. Tribbia, and J.C. Wyngaard, 1996: An evaluation of neutral and convective planetary boundary-layer parameterizations relative to large eddy simulations. Bound. Layer Meteorol., 79, 131–175.

    Article  Google Scholar 

  • Ball, F.K., 1960: Control of inversion height by surface heating. Quart. J. Roy. Meteor. Soc., 86, 483–494.

    Article  Google Scholar 

  • Barnier, B., 1998: Forcing the oceans. In Ocean Modeling and Parameterization, E.P. Chassignet and J. Verron (Eds.), Kluwer Academic Publishers, 45–80.

    Chapter  Google Scholar 

  • Beckmann, A., 1998: Representation of bottom boundary layer processes in numerical ocean circulation models. In Ocean Modeling and Parameterization, E.P. Chassignet and J. Verron (Eds.), Kluwer Academic Publishers, 135–154.

    Chapter  Google Scholar 

  • Blackadar, A.K., 1962: The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J. Geophy. Res., 67, 3095–3102.

    Article  Google Scholar 

  • Bryden, H.I., and E.C. Brady, 1989: Eddy momentum and heat fluxes and their effects on the circulation of the equatorial Pacific ocean. J. Mar. Res., 47, 55–79.

    Article  Google Scholar 

  • Chen, D., L.M. Rothstein, and A.J. Busalacchi, 1994: A hybrid vertical mixing scheme and its application to tropical ocean models. J. Phys. Oceanogr., 24, 2156–2179.

    Article  Google Scholar 

  • Crawford, G.C., and W.G. Large, 1996: A numerical investigation of ocean inertial resonant response to wind events. J. Phys. Oceanogr., 26, 873–891.

    Article  Google Scholar 

  • Danabasoglu, G., and J. C. McWilliams, 1995: Sensitivity of the global ocean circulation to parameterizations of mesoscale tracer transports. J. Climate, 8, 2967–2987.

    Article  Google Scholar 

  • Davis, R.E., R. deSzoeke, D. Halpern, and P. Niiler, 1981: Variability in the upper ocean during MILE. Part I: The heat and momentum balances. Deep-Sea Res., 28A, 1427–1451.

    Article  Google Scholar 

  • Deardorff, J.W., 1970: A numerical study of three-dimensional channel flow at large Reynolds numbers. J. Fluid Mech., 41, 453–480.

    Article  Google Scholar 

  • Deardorff, J.W., 1972a: Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci.,29, 91–115.

    Article  Google Scholar 

  • Deardorff, J.W., 1972b: Theoretical expression for the counter-gradient vertical heat flux. J. Geophys. Res., 77, 5900–5904.

    Article  Google Scholar 

  • Deardorff, J.W., G.E. Willis, and D.K. Lilly, 1969: Laboratory investigation of non-steady penetrative convection. J. Fluid Mech.,35, 7–31.

    Article  Google Scholar 

  • Driedonks, A.G.M., 1982: Models and observations of the growth of the atmospheric boundary layer. Bound. Layer Meteorol., 23, 283–386.

    Article  Google Scholar 

  • Donaldson, C., 1973: Construction of a dynamic model of the production of atmospheric turbulence and the dispersal of atmospheric pollutants. In Workshop on Micrometeorology, D.A. Haugen, ed., AMS, Boston, 313–392.

    Google Scholar 

  • Ekman, V.W., 1905: On the influence of the earth’s rotation on ocean currents. Arkiv. Math. Astron. O. Fysik,2, 11.

    Google Scholar 

  • Gaspar, P., 1988: Modeling the seasonal cycle of the upper ocean. J. Phys. Oceanogr., 18, 161–180.

    Article  Google Scholar 

  • Gaspar, P., Y. Gregoris, and J.-M. Lefevre, 1990: A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at station Papa and Long-Term Upper Ocean Study Site. J. Geophys. Res., 95 16,179–16,193.

    Google Scholar 

  • Garwood, R.W., 1977: An oceanic mixed layer model capable of simulating cyclic states. J. Phys. Oceanogr., 7, 455–471.

    Article  Google Scholar 

  • Gent, P.R. and M.A. Cane, 1989: A reduced gravity, primitive equation model of the upper equatorial ocean. J. Comput. Phys.,81, 444–480.

    Article  Google Scholar 

  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150–155.

    Article  Google Scholar 

  • Heisenburg, W., 1948: On the theory of statistical and isotropic turbulence. Proc. Roy. Soc. A, 195, 402.

    Article  Google Scholar 

  • Högström, U., 1988: Non-dimensional wind and temperature profiles in the atmospheric surface layer: A re-evaluation. Boundary-Layer Meteorology, 42, 55–78.

    Article  Google Scholar 

  • Holtslag, A.A.M., E.I.F. de Bruijn, and H.-L. Pan, 1990: A high resolution air mass transformation model for short-range weather forecasting. Mon. Wea. Rev.,118, 1561–1565.

    Article  Google Scholar 

  • Kaimal, J.C., J.C. Wyngaard, D.A. Haugen, O.R. Cote, Y. Izumi, S.J. Caughey, and C.J. Readings, 1976: Turbulence structure in the convective boundary layer. J. Atmos. Sci., 33, 2152–2169.

    Article  Google Scholar 

  • Kantha, L.H., and C.A. Clayson, 1994: An improved mixed layer model for geophysical applications. J. Geophys. Res., 99, 25,235–25,266.

    Article  Google Scholar 

  • Klemp, J.B, and D.R. Durran, 1983: An upper boundary condition permitting internal gravity wave radiation in numerical mesoscale models. J. Atmos. Sci., 111, 430–444.

    Google Scholar 

  • Kraus, E.B., and J.S. Turner, 1967: A one-dimensional model of the seasonal thermocline; II. The general theory and its consequences. Tellus, 19, 98–105.

    Article  Google Scholar 

  • Large, W.G., and S. Pond, 1982: Sensible and latent heat flux measurements over the ocean. J. Phys. Oceanogr.,12, 464–482.

    Article  Google Scholar 

  • Large, W.G., J.C. McWilliams, and S.C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363–403.

    Article  Google Scholar 

  • Large, W.G., G. Danabasoglu, S.C. Doney, and J.C. McWilliams, 1997: Sensitivity to surface forcing and boundary layer mixing in a global ocean model: Annual mean climatology. J. Phys. Oceanogr.,27, 2418–2447.

    Article  Google Scholar 

  • Lenschow, D.H., J.C. Wyngaard, and W.T. Pennell, 1980: Mean-field and second-moment budgets in a baroclinic convective boundary layer. J. Atmos. Sci., 37, 1313–1326.

    Article  Google Scholar 

  • Lien, R.-C., D.R. Caldwell, M.C. Gregg, and J.N. Mourn, 1995: Turbulence variability at the equator in the central Pacific at the beginning of the 1991–1993 El Nino. J. Geophys. Res., 100, 6881–6898.

    Article  Google Scholar 

  • Liu, W.T., K.B. Katsaros, and J.A. Businger, 1979: Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci., 36, 1722–1735.

    Article  Google Scholar 

  • Louis, J.F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Boundary-Layer Meteorol., 17, 187–202.

    Article  Google Scholar 

  • Lukas, R., and E. Lindstrom, 1991: The mixed layer of the western equatorial Pacific ocean. J. Geophys. Res.,96, 3343–3357.

    Article  Google Scholar 

  • Lumley, J.A., and H.A. Panofsky, 1964: The Structure of Atmospheric Turbulence. Wiley and Sons, 239 pp.

    Google Scholar 

  • Mailhôt, J., and R. Benoit, 1982: A finite-element model of the atmospheric boundary layer suitable for use with numerical weather prediction models. J. Atmos. Sci., 39, 2249–2266.

    Article  Google Scholar 

  • Martin, P.J., 1985: Simulation of the ocean mixed layer at OWS November and Papa with several models. J. Geophys. Res., 90, 903–916.

    Article  Google Scholar 

  • McPhee, M.G., and D.G. Martinson, 1994: Turbulent mixing under drifting pack ice in the Weddell Sea. Science, 263, 218–221.

    Article  Google Scholar 

  • McWilliams, J.C., P.P. Sullivan, and C.-H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334, 1–30.

    Article  Google Scholar 

  • Mellor, G.L. (1989): Retrospect on oceanic boundary layer modeling and second moment closure. In Parameterization of Small-Scale Processes, Proceedings of the ‘Aha Huliko’a Hawaiian Winter Workshop, January 1989, University of Hawaii at Manoa, P. Muller and D. Henderson (Eds.), Honolulu, Hawaii.

    Google Scholar 

  • Mellor, G.L., and T. Yamada, 1974: A hierarchy of turbulent closure models for planetary boundary layers. J. Atmos. Sci., 31, 1791–1806.

    Article  Google Scholar 

  • Mellor, G.L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851–875.

    Article  Google Scholar 

  • Moeng, C.-H., 1984: A large eddy simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41, 2052–2062.

    Article  Google Scholar 

  • Moeng, C.-H., and J.C. Wyngaard, 1984: Statistics of conservative scalars in the convective boundary layer. J. Atmos. Sci.,41, 3161–3169.

    Article  Google Scholar 

  • Moeng, C.-H., and J.C. Wyngaard, 1989: Evaluation of turbulent transport and dissipation closures in second-order modeling. J. Atmos. Sci., 46, 2311–2330.

    Article  Google Scholar 

  • Monin, A.S., and A.M. Yaglom, 1971: Statistical Fluid Mechanics, vol. 1, The MIT Press, 769 pp.

    Google Scholar 

  • Nieuwstadt, F.T.M., and H. van Dop, (Eds.), 1982: Atmospheric Turbulence and Air Pollution Modeling, Reidel, Dordrecht, Holland, 358 pp.

    Book  Google Scholar 

  • Niiler, P.P., 1975: Deepening of the wind mixed layer. J. Mar. Res.,33, 405–422.

    Google Scholar 

  • Niiler, P.P., and E.B. Kraus, 1977: One-dimensional models of the upper ocean. In Modeling and Prediction of the Upper Layers of the Ocean, E.B. Kraus, Ed., Pergamon.

    Google Scholar 

  • O’Brien, J.J., 1970: A note on the vertical structure of the eddy exchange coefficient in the planetary boundary layer. J. Atmos. Sci., 27,1213–1215.

    Article  Google Scholar 

  • Osborn, T.R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr.,10, 83–89.

    Article  Google Scholar 

  • Pacanowski, R.C., and S.G.H. Philander, 1981: Parameterization of vertical mixing in numerical models of the tropical oceans. J. Phys. Oceanogr., 11, 1443–1451.

    Article  Google Scholar 

  • Paulson, C.A., 1970: Representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteorol., 9, 857–861.

    Article  Google Scholar 

  • Peters, H., M.C. Gregg, and J.M. Toole, 1988: On the parameterization of equatorial turbulence. J. Geophys. Res., 93, 1199–1218.

    Article  Google Scholar 

  • Prandtl, L., 1925: Bericht uber Untersuchungen sur augogebildeten Turbulenz, Z. Angev. Math. Mech.,5, 136–139.

    Google Scholar 

  • Price, J.F., 1998: Parameterization of the fair weather Ekman layer. In Ocean Modeling and Parameterization, E.P. Chassignet and J. Verron (Eds.), Kluwer Academic Publishers, 121–134.

    Chapter  Google Scholar 

  • Price, J.F., R.A. Weller, and R. Pinkel, 1986: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling and wind mixing. J. Geophys. Res., 91, 8411–8427.

    Article  Google Scholar 

  • Skyllinstad, E.D., and D.W. Denbo, 1995: An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer. J. Geophys. Res., 100,8501–8522.

    Article  Google Scholar 

  • Skyllinstad, E.D., W.D. Smyth, J.N. Mourn, and H. Wijesekera, 1997: Turbulent dissipation during a westerly wind burst: A comparison of large-eddy simulation results and microstructure measurements. J. Phys. Oceanogr., 27

    Google Scholar 

  • Stull, R.B., 1984: Transilient turbulence theory. Part I: The concept of eddy-mixing across finite differences. J. Atmos. Sci., 41, 3351–3367.

    Article  Google Scholar 

  • Stull, R.B., 1988: An Introduction To Boundary Layer Meteorology, Kluwer, Boston, 666 pp.

    Book  Google Scholar 

  • Sullivan, P.P, J.C. McWilliams, C.-H. Moeng, 1996: A grid nesting method for large-eddy simulation of the planetary boundary layer flows. Boundary-Layer Meteor., 80, 167–202.

    Article  Google Scholar 

  • Tennekes, H., 1973: The logarithmic wind profile. J. Atmos. Sci., 30, 234–238.

    Article  Google Scholar 

  • Toole, J.M., 1998: Turbulent mixing in the ocean: Intensity, causes and consequences. In Ocean Modeling and Parameterization, E.P. Chassignet and J. Verron (Eds.), Kluwer Academic Publishers, 171–190.

    Chapter  Google Scholar 

  • Troen, I.B., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Boundary-Layer Meteor., 37, 129–148.

    Article  Google Scholar 

  • Wang, D., W.G. Large, and J.C. McWilliams, 1996: Diurnal cycling, eddy viscosity and horizontal rotation effects in equatorial ocean boundary layers. J. Geophys. Res., 101, 3649–3662.

    Article  Google Scholar 

  • Wang, D., J.C. McWilliams, and W.G. Large, 1998: Large eddy simulation of the diurnal cycle of deep equatorial turbulence. J. Phys. Oceanogr., 28, 129–148.

    Article  Google Scholar 

  • Wyngaard, J.C., 1982: Lectures on the planetary boundary layer. In Mesoscale Meteorology — Theories, Observations and Models, D.K. Lilly and T. Gal-Chen (Eds.), NATO ASI, Reidel, 781 pp.

    Google Scholar 

  • Wyngaard, J.C., and R.A. Brost, 1984: Top-down and bottom-up diffusion in the convective boundary layer. J. Atmos. Sci., 41,102–112.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Large, W.G. (1998). Modeling and Parameterizing the Ocean Planetary Boundary Layer. In: Chassignet, E.P., Verron, J. (eds) Ocean Modeling and Parameterization. NATO Science Series, vol 516. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5096-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5096-5_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5229-7

  • Online ISBN: 978-94-011-5096-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics